NÜMER IK ANAL IZ. Nuri ÖZALP L INEER S ISTEMLER IN ÇÖZÜMÜ. Bilimsel Hesaplama Matemati¼gi, Gazi Kitabevi 2012

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "NÜMER IK ANAL IZ. Nuri ÖZALP L INEER S ISTEMLER IN ÇÖZÜMÜ. Bilimsel Hesaplama Matemati¼gi, Gazi Kitabevi 2012"

Transkript

1 NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi, Gazi Kitabevi 0 Nuri ÖZALP L INEER S ISTEMLER IN ÇÖZÜMÜ Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

2 . LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler Amac m z 8 >< >: a x + a x + a x + + a n x n = b a x + a x + a x + + a n x n = b a x + a x + a x + + a n x n = b. a n x + a n x + a n x + + a nn x n = b n formuna sahip lineer denklem sistemlerini çözmeyi nümerik bak ş aç s ndan tart şmakt r. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

3 . LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler Matrisler denklem sistemlerini temsil etmek için kullan şl araçlard r. Bu durumda, yukar daki denklem sistemini a a a a n x b a a a a n x b a a a a n 7 6 x 7 = 6 b a n a n a n a nn şeklinde yaz labilir. Böylece bu matrisleri, denklem basitçe. x n b n 7 5 Ax = b () yaz lacak şekilde A, x, ve b ile gösterebiliriz. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

4 . LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler () sistemi 6 4 a a a a nn x x x. x n = b b b. b n 7 5 köşegensel yap da ise, bu durumda sistem n tane basit denkleme indirgenir ve çözümü de b /a b /a x = b /a b n /a nn olur. E¼ger, baz i indisleri için a ii = 0 ve b i = 0 ise, bu durumda x i herhangi bir reel say olabilir. E¼ger, a ii = 0 ve b i 6= 0 ise, sistemin çözümü yoktur. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 4 / 9

5 . LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler Sistem alt üçgensel yap da ise, yani a a a 0 0 a a a a n a n a n a nn x x x. x n = şeklindeyse, ilk denklemden x i elde ederiz. Bulunan x de¼gerini ikinci denklemde yazarak, x yi çözeriz. Ayn yolla devam ederek, ardarda s rada x, x,..., x n i buluruz. b b b. b n 7 5 Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 5 / 9

6 . LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler Bu şekildeki formal çözüm algoritmas ileri-yönde yerleştirme olarak adland r l r. girdi n, (a ij ), (b i ) i = den n ye döngü!, i x i b i a ij x j a ii j= döngü sonu ç kt (x i ) Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 6 / 9

7 . LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler Ayn düşünce üst üçgensel yap ya sahip bir sistemi çözmek için de uygulanabilir. Bu tip bir matris sistemi a a a a n x b 0 a a a n x b 0 0 a a n 7 6 x 7 = 6 b 7 formundad r a nn. x n b n 7 5 Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 7 / 9

8 . LU ve Cholesky Ayr şt rmalar Kolay Çözülebilir Sistemler Tekrar, i n için a ii 6= 0 kabul edilmelidir. x i çözen formal algoritma aşa¼g daki gibi olup, geri-yönde yerleştirme olarak adland r l r: girdi n, (a ij ), (b i ) i = n den e, ad ml döngü x i b i n j=i+ a ij x j /aii döngü sonu ç kt (x i ) Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 8 / 9

9 LU-Ayr şt rmalar. LU-Ayr şt rmalar A n n, bir alt üçgensel L matrisi ile bir üst üçgensel U matrisinin çarp m şeklinde ayr şt r labildi¼gini, yani A = LU oldu¼gunu kabul edelim. Bu durumda, Ax = b sistemini çözmek için, iki aşamada Lz = b yi z ye göre çözmek yeterlidir. Ux = z yi x e göre Böyle bir ayr ş ma her matris sahip olmayabilir. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 9 / 9

10 . LU-Ayr şt rmalar Bir n n lik A matrisi ile başlayal m ve A = LU olacak şekilde ` u u u u n ` ` u u u n L = ` ` ` 0 U = 0 0 u u n `n `n `n `nn u nn 7 5 matrislerini araşt ral m. Bunun mümkün oldu¼gu durumlarda, A bir LU-ayr ş m na sahiptir deriz. L ve U, Denklem (4) ten, tek olarak belirlenmez. Asl nda, her i için, `ii veya u ii den birine (fakat her ikisine de¼gil) s f rdan farkl bir de¼ger atayabiliriz. Örne¼gin, basit bir seçim i =,,..., n için, `ii = almak ve böylece, L yi birim alt üçgensel yapmakt r. Bir başka aç k seçenek, U yu birim üst üçgensel (her i için, u ii = ) yapmakt r. Bu iki durum özel öneme sahiptir. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 0 / 9

11 . LU-Ayr şt rmalar A n n LU-ayr ş m için algoitma: s > i için `is = 0 ve s > j için u sj = 0 olmak üzere a ij = n `is u sj = s= min(i,j) `is u sj () s= Işlem sürecinin her ad m, U da yeni bir sat r ve L de yeni bir kolon belirler. k-y nc ad mda U daki,,..., k. sat rlar n ve L deki,,..., k. kolonlar n hesapland ¼g n kabul edelim. (k = için bu kabul varsay msal do¼grudur.) u kk veya `kk dan biri belirlenmişse, () de i = j = k al n rsa, di¼geri denkleminden elde edilir. a kk = k `ks u sk + `kk u kk () s= Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

12 . LU-Ayr şt rmalar Böylece `kk ve u kk bilinmek üzere, k-y nc sat r (i = k) ve j. kolon (j = k) için, Denklem () den s ras ile a kj = a ik = k `ks u sj + `kk u kj (k + j n) () s= k `is u sk + `ik u kk (k + i n) (4) s= yazar z. E¼ger `kk 6= 0 ise, u kj elemanlar n elde etmek için Denklem () kullan labilir. Benzer olarak, e¼ger u kk 6= 0 ise, `ik elemanlar n elde etmek için Denklem (4) kullan labilir. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

13 . LU-Ayr şt rmalar Yukar daki analize dayal algoritma: L birim alt üçgensel ( i n için `ii = ) iken Doolittle ayr şt rmas Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

14 . LU-Ayr şt rmalar Yukar daki analize dayal algoritma: L birim alt üçgensel ( i n için `ii = ) iken Doolittle ayr şt rmas U birim üst üçgensel ( i n için u ii = ) iken ise Crout ayr şt rmas olarak bilinir. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

15 . LU-Ayr şt rmalar Yukar daki analize dayal algoritma: L birim alt üçgensel ( i n için `ii = ) iken Doolittle ayr şt rmas U birim üst üçgensel ( i n için u ii = ) iken ise Crout ayr şt rmas olarak bilinir. U = L T ve böylece i n için `ii = u ii iken algoritma Cholesky ayr şt rmas olarak adland r l r. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

16 . LU-Ayr şt rmalar Yukar daki analize dayal algoritma: L birim alt üçgensel ( i n için `ii = ) iken Doolittle ayr şt rmas U birim üst üçgensel ( i n için u ii = ) iken ise Crout ayr şt rmas olarak bilinir. U = L T ve böylece i n için `ii = u ii iken algoritma Cholesky ayr şt rmas olarak adland r l r. Cholesky yöntemini bu kesimin sonunda daha detayl olarak ele alaca¼g z, çünkü bu ayr ş m A matrisinin reel, simetrik (A T = A ) ve pozitif tan ml (x T Ax > 0 ) olma özelliklerini gerektirmektedir. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

17 . LU-Ayr şt rmalar Yukar daki analize dayal algoritma: L birim alt üçgensel ( i n için `ii = ) iken Doolittle ayr şt rmas U birim üst üçgensel ( i n için u ii = ) iken ise Crout ayr şt rmas olarak bilinir. U = L T ve böylece i n için `ii = u ii iken algoritma Cholesky ayr şt rmas olarak adland r l r. Cholesky yöntemini bu kesimin sonunda daha detayl olarak ele alaca¼g z, çünkü bu ayr ş m A matrisinin reel, simetrik (A T = A ) ve pozitif tan ml (x T Ax > 0 ) olma özelliklerini gerektirmektedir. Bu ayr şt rmalardan hangisi daha iyidir? Bunlar n herbiri basit Gauss eleme yordam n n varyasyonlar ile ilişkilidir. Bu nedenle, konunun tam olarak anlaş lmas için bunlar hakk nda bilgiye gerek vard r. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ / 9

18 Genel LU-ayr şt rmas :. LU-Ayr şt rmalar girdi n, (a ij ) k = den n e döngü `kk veya u kk dan biri için s f rdan farkl bir de¼ger belirle ve di¼gerini hesapla k `kk u kk a kk `ks u sk s= j = k + den n ye döngü u kj k a kj `ks u sj `kk s= döngü sonu i = k + den n ye döngü `ik döngü sonu döngü sonu ç kt (`ij ), (u ij ) k a ik `is u sk u kk s= Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 4 / 9

19 . LU-Ayr şt rmalar Doolittle ayr şt rmas önkodu: girdi n, (a ij ) k = den n e döngü `kk j = k dan n ye döngü k u kj a kj `ks u sj s= döngü sonu i = k + den n ye döngü `ik döngü sonu döngü sonu ç kt (`ij ), (u ij ) k a ik `is u sk u kk s= Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 5 / 9

20 Örnek. LU-Ayr şt rmalar A = matrisinin Doolittle, Crout ve Cholesky ayr şt rmalar n bulunuz. 5 Çözüm Algoritmadan, Doolittle ayr ş m 0 0 A = LU bulunur. Di¼ger iki ayr ş m do¼grudan hesaplamak yerine, bunlar Doolittle ayr şt rmas ndan elde edebiliriz. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 6 / 9

21 . LU-Ayr şt rmalar Çözüm U nun köşegen elemanlar n bir köşegensel D matrisinde yazarak 0 0 A = buluruz. ˆL = LD dersek, A = Crout ayr ş m n elde ederiz ˆLÛ 5 LDÛ Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 6 / 9

22 . LU-Ayr şt rmalar Çözüm Cholesky ayr ş m, LDÛ ayr ş m nda D yi D / D / formuna ay rarak ve çarpanlardan biri L di¼geri de Û ile ilişkilendirerek elde edilebilir. Böylece, p p 0 0 A = p 0 0 p 60 p p p p p p p 60 p p p 60 = 4 p 60 p 5 p p ˆLˆL T olur. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 7 / 9

23 . LU-Ayr şt rmalar En çok ilgilenilen ayr ş m, L bir birim alt üçgensel ve U da bir üst üçgensel olmak üzere A = LU formudur. Bir A kare matrisinin bir LU-ayr ş m na sahip olmas için bir yeter koşul aşa¼g dad r: Teorem (LU-Ayr ş m ) E¼ger n n lik bir A kare matrisinin n tane ana temel minörleri tümüyle tekil de¼gil ise, bu durumda A bir LU-ayr ş m na sahiptir. Teorem (LL T -Ayr ş m için Cholesky Teoremi) E¼ger, A reel, simetrik (yani A = A T ) ve pozitif tan ml (yani x T Ax > 0 bir matris ise, bu durumda L pozitif köşegenli bir alt üçgensel matris olmak üzere, A n n tek bir A = LL T ayr ş m vard r. Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 8 / 9

24 . LU-Ayr şt rmalar Cholesky ayr şt rmas önkodu: girdi n, (a ij ) k = den n e döngü `kk k a kk `ks s= / i = k + den n ye döngü k `ik a ik `is `ks `kk s= döngü sonu döngü sonu ç kt (`ij ) Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6 7! L INEER S ISTEMLER IN ÇÖZÜMÜ 9 / 9

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER S ISTEMLER IN ÇÖZÜMÜ. Bilimsel Hesaplama Matemati¼gi, Gazi Kitabevi 2012

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER S ISTEMLER IN ÇÖZÜMÜ. Bilimsel Hesaplama Matemati¼gi, Gazi Kitabevi 2012 NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi, Gazi Kitabevi 0 Nuri ÖZALP L INEER S ISTEMLER IN ÇÖZÜMÜ Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 6! L INEER S ISTEMLER IN ÇÖZÜMÜ / . Pivotlama ve

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP FONKS IYONLARA YAKLAŞIM Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 4 7! FONKS IYONLARA YAKLAŞIM 1 / 21 1 Polinom Interpolasyonu Newton Formu

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / 1 Denklemlerin Köklerini Bulma Giriş Denklemlerin Köklerini Bulma

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP. Sabit Nokta ve Fonksiyonel Yineleme. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP. Sabit Nokta ve Fonksiyonel Yineleme. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP Sabit Nokta ve Fonksiyonel Yineleme Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 3 7! Sabit Nokta ve Fonksiyonel Yineleme 1 / 23 Sabit Nokta

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP. SAYISAL TÜREV ve INTEGRAL. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP. SAYISAL TÜREV ve INTEGRAL. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP SAYISAL TÜREV ve INTEGRAL Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 5 7! SAYISAL TÜREV ve INTEGRAL 1 / 23 1 Say sal Türev ve Richardson

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP MATEMAT IKSEL ÖNB ILG ILER. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP MATEMAT IKSEL ÖNB ILG ILER. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP MATEMAT IKSEL ÖNB ILG ILER Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 1 7! MATEMAT IKSEL ÖNB ILG ILER 1 / 15 Kaynaklar Nümerik Analiz-Bilimsel

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ L INEER OLMAYAN DENKLEMLER IN ÇÖZÜMÜ 1 / 27 Çok farkl durumlara uygulanabilen genel bir yöntemdir. Reel de¼gişkenli,

Detaylı

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L

fonksiyonu, her x 6= 1 reel say s için tan ml d r. (x 1)(x+1) = = x + 1 yaz labilir. Bu da; f (x) = L Limit Bu bölümde, matematik analizde temel bir görevi olan it kavram incelenecektir. Analizdeki bir çok problemin çözümünde it kavram na gereksinim duyulmaktad r. Bunlardan baz lar ; bir noktada bir e¼griye

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP. Lineer Programlama. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP. Lineer Programlama. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP Lineer Programlama Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 7 7! Lineer Programlama 1 / 32 Simpleks Algoritmas Standart teknikler anlam

Detaylı

6 Devirli Kodlar. 6.1 Temel Tan mlar

6 Devirli Kodlar. 6.1 Temel Tan mlar 6 Devirli Kodlar 6.1 Temel Tan mlar Tan m S F n q için e¼ger (a 0 ; a 1 ; : : : ; a n 1 ) 2 S iken (a n 1 ; a 1 ; : : : ; a n 2 ) 2 S oluyorsa S kümesine devirli denir. E¼ger bir C do¼grusal kodu devirli

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için,

Bir H Hilbert uzay üzerinde herhangi bir kompakt simetrik T operatörü için, Ritz Yöntemi Kullan larak Integral Operatörlerin Özde¼gerlerinin Yaklaş k Hesab Yüksel SOYKAN, Erkan TAŞDEM IR, Melih GÖCEN Zonguldak Karaelmas Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 6700

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 3- LİNEER DENKLEM SİSTEMLERİNİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ 1 LİNEER DENKLEM SİSTEMLERİ Bilimsel ve teknolojik çalışmalarda karşılaşılan matematikle ilgili belli başlı

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1

GEO182 Lineer Cebir. Matrisler. Matrisler. Dersi Veren: Dr. İlke Deniz Derse Devam: %70. Vize Sayısı: 1 GEO182 Lineer Cebir Dersi Veren: Dr. İlke Deniz 2018 GEO182 Lineer Cebir Derse Devam: %70 Vize Sayısı: 1 Başarı Notu: Yıl içi Başarı Notu %40 + Final Sınavı Notu %60 GEO182 Lineer Cebir GEO182 Lineer Cebir

Detaylı

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k 2. Topolojik Uzaylarda Ba¼glant l l k 2.1. Ba¼glant l Topolojik Uzaylar Tan m 2.1.1. (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k iki aç ktan oluşan bir örtüsü yok ise, (X; ) topolojik

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

Baki Karl ¼ga. Gazi Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Ankara/Türkiye

Baki Karl ¼ga. Gazi Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Ankara/Türkiye H IPERBOL IK VE KÜRESEL ÜÇGENLERIN KENAR UZUNLUKLARINA BA ¼GLI ALAN FORMÜLLER I Baki Karl ¼ga karliaga@gazi.edu.tr Murat Savaş msavas@gazi.edu.tr Gazi Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü

Detaylı

TANIM : a, a, a, a,..., a R ve n N olmak üzere,

TANIM : a, a, a, a,..., a R ve n N olmak üzere, MATEMAT K TANIM : a, a, a, a,..., a R ve n N olmak üzere, 0 1 2 3 n P(x) = a x n a x n 1... a x 3 a x 2 a x n n 1 3 2 1 a ifadesine reel katsay l POL NOM denir. 0 a, a, a,..., a say lar na KATSAYILAR,

Detaylı

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28)

TEMEL KAVRAMLAR MATEMAT K. 6. a ve b birer do al say r. a 2 b 2 = 19 oldu una göre, a + 2b toplam kaçt r? (YANIT: 28) TEMEL KAVRAMLAR 6. a ve b birer do al say r. a b = 19 oldu una göre, a + b toplam (YANIT: 8) 1. ( 4) ( 1) 6 1 i leminin sonucu (YANIT: ). ( 6) ( 3) ( 4) ( 17) ( 5) :( 11) leminin sonucu (YANIT: 38) 7.

Detaylı

1998 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI

1998 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI 1998 ULUSL NTLY MTEMT IK OL IMP IYTI IR INC I ŞM SORULRI Lise 1- S nav Sorular 1. T = 1! +! + 3! + ::: + 1997! + 1998! toplam n n son iki basama¼g ndaki rakamlar n toplam kaçt r? ) 13 ) 9 C) 6 D) E) Hiçbiri.

Detaylı

(z z 0 ) n. n=1. Z f (z) dz = 2ib 1

(z z 0 ) n. n=1. Z f (z) dz = 2ib 1 0 RE IDÜ TEOR IS I Tan m. f fonksiyonu z 0 noktas nda ayr k singülerli¼ge sahip olsun. Bu durumda f fonksiyonu 0 < jz z 0 j < " bölgesinde X X f(z) = a n (z z 0 ) n b n + (z z 0 ) n Laurent seri aç l m

Detaylı

Doğrusal Denklemler Sis./Sys. of Linear Equations

Doğrusal Denklemler Sis./Sys. of Linear Equations Doğrusal Denklemler Sis./Sys. of Linear Equations Uygulama alanı: Lineer olan her sistem Notation: Ax 1 = b Augmented [A l b] Uniqueness A = 0, A nxa Bu şekilde yazılan sistemler Overdetermined (denklem

Detaylı

1) 6 kişilik bir aile yuvarlak bir masa etraf nda, anne ile baban n yan yana oturmamas koşulu ile kaç farkl biçimde oturabilir?

1) 6 kişilik bir aile yuvarlak bir masa etraf nda, anne ile baban n yan yana oturmamas koşulu ile kaç farkl biçimde oturabilir? ) 6 kişilik bir aile yuvarlak bir masa etraf nda, anne ile baban n yan yana oturmamas koşulu ile kaç farkl biçimde oturabilir? Çözüm: Önce, anne ile baban n yan yana oturma durumunu düşünelim. Anne ile

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

ÇARPANLAR VE KATLAR BİR DOĞAL SAYININ ÇARPANLARINI BULMA. 3. Aşağıda verilen sayıların çarpanlarından asal olanları belirleyelim.

ÇARPANLAR VE KATLAR BİR DOĞAL SAYININ ÇARPANLARINI BULMA. 3. Aşağıda verilen sayıların çarpanlarından asal olanları belirleyelim. ÇARPANLAR VE KATLAR 8.1.1.1. Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade yada üslü ifadelerin çarpımı şeklinde yazar. BİR DOĞAL SAYININ ÇARPANLARINI BULMA Her doğal

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

ÜN TE III L NEER CEB R

ÜN TE III L NEER CEB R ÜN TE III L NEER CEB R MATR SLER Matrisin ki matrisin eflitli i Toplama ifllemi ve özellikleri Matrislerde skalarla çarpma ifllemi ve özellikleri Matrislerde çarpma ifllemi Çarpma ifllemine göre birim

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu)

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu) Iki Boyulu Sabi Kasay l Lineer Homogen Diferensiyel Denklem Sisemleri (Euler Meodu) Bu bölümde sabi kasay l, lineer, homogen 8 >< d = a 1x + b 1 y >: dy d = a 2x + b 2 y sisemi ele al nmakad r. Burada

Detaylı

Eigenvalue-Eigenvector Problemleri

Eigenvalue-Eigenvector Problemleri Bir sistemin özvektörü sistem tarafından temel olarak değiştirilmeyen vektördür. Sadece genliği değişir, genliğin değişme miktarına da özdeğer denir. Yani sistemimizi Amatrisi ile ifade edersek; x A λ

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

36. Basit kuvvet metodu

36. Basit kuvvet metodu 36. Basit kuvvet metodu Basit kuvvet metodu hakkında çok kısa bilgi verilecektir. Basit kuvvet metodunda hiperstatik bilinmeyenlerinin hesaplanmasına, dolayısıyla buna ait denklem sisteminin kurulmasına

Detaylı

PROBLEM SET I ARALIK 2009

PROBLEM SET I ARALIK 2009 PROBLEM SET I - 5 09 ARALIK 009 Soru 1 (Besanko ve Braeutigam (00), sayfa 405): Aşa¼g da tam rekabet piyasas nda faaliyet gösteren bir rman n k sa dönem toplam maliyet fonksiyonu verilmiştir: Piyasa denge

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

Belirsiz Integraller. 1.1 Ilkel Fonksiyon ve Belirsiz Integral. 1.1.1 Temel Tan mlar ve Sonuc. lar

Belirsiz Integraller. 1.1 Ilkel Fonksiyon ve Belirsiz Integral. 1.1.1 Temel Tan mlar ve Sonuc. lar Ic. indekiler Belirsiz Integraller 3. Ilkel Fonksiyon ve Belirsiz Integral................ 3.. Temel Tan mlar ve Sonuc.lar............... 3. Temel Integral Alma Yöntemleri................ 0.. De giṣken

Detaylı

17. ULUSAL ANTALYA MATEMAT IK OL IMP IYATLARI B IR INC I AŞAMA SORULARI A A A A A A A

17. ULUSAL ANTALYA MATEMAT IK OL IMP IYATLARI B IR INC I AŞAMA SORULARI A A A A A A A AKDEN IZ ÜN IVERS ITES I 17. ULUSAL ANTALYA MATEMAT IK OL IMP IYATLARI B IR INC I AŞAMA SORULARI A A A A A A A SINAV TAR IH I VE SAAT I : 24 MART 2012 - Cumartesi 10.00-12.30 Bu s nav 25 sorudan oluşmaktad

Detaylı

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?

Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır? www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, yagcimustafa@yahoo.com (a, b) şeklinde sıra gözetilerek yazılan ifadeye sıralı ikili Burada a ve b birer sayı olabileceği gibi herhangi iki nesne

Detaylı

3. BÖLÜM MATRİSLER 1

3. BÖLÜM MATRİSLER 1 3. BÖLÜM MATRİSLER 1 2 11 21 1 m1 a a a v 12 22 2 m2 a a a v 1 2 n n n mn a a a v gibi n tane vektörün oluşturduğu, şeklindeki sıralanışına matris denir. 1 2 n A v v v Matris A a a a a a a a a a 11 12

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ

4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x a x a x b 11 1 12 2 1n n 1 a x a x a x b 21 1 22 2 2n n

Detaylı

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur.

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Bölüm 2 Determinantlar Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Söz konusu fonksiyonun değerine o matrisin determinantı denilir. A bir kare matris ise, determinantı

Detaylı

1.BÖLÜM SORU SORU. (x 1) (x 3) = A + B. x 3 ise, d(p(x)) ve d(q(x)) polinomlar n derecelerini göstermek. A. B çarp m kaçt r?

1.BÖLÜM SORU SORU. (x 1) (x 3) = A + B. x 3 ise, d(p(x)) ve d(q(x)) polinomlar n derecelerini göstermek. A. B çarp m kaçt r? 1.BÖLÜM MATEMAT K Derginin bu say s nda Polinomlar konusunda çözümlü sorular yer almaktad r. Bu konuda, ÖSS de ç kan sorular n çözümü için gerekli temel bilgileri ve pratik yollar, sorular m z n çözümü

Detaylı

MATRİS - DETERMİNANT Test -1

MATRİS - DETERMİNANT Test -1 MRİS - DEERMİNN est - x y x 3., B olmak üzere, y y = B olduğuna göre, y x farkı kaçtır? 5. 5 4 0, B 4 3 7 3 matrisleri veriliyor. + B matrisi aşağıdakilerden hangisidir? 3 4 5 6 5 3 0 8 5 6 6 5 0 5 6 0

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sıralı Örüntülerin Temelleri GSP Tabanlı Sıralı Örüntü Madenciliği Algoritma Sıralı Örüntülerden

Detaylı

ÖABT Lineer Cebir KONU TESTİ Matris Cebiri

ÖABT Lineer Cebir KONU TESTİ Matris Cebiri ÖB Lineer Cebir KONU ESİ Matris Cebiri. i, j,, i için j i j a j i j a. j i j a. i için j i j a 4 6 j i j a 4 j i j a. 6. 0 0 0 4 0 0 0. 4 6 n 0 0 n 6 Cevap: D Cevap:. I. I I I 0 I 0 0 0..I I I 00 0 0 0

Detaylı

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI DERS NOTLARI 1 Önceki derslerimizde pek çok geçişten sonra n-adım geçiş olasılıklarının

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ ALES İlkbahar 007 SAY DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL- TESTİ Sınavın bu testinden alacağınız standart puan, Sayısal Ağırlıklı

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Sevdi im Birkaç Soru

Sevdi im Birkaç Soru Sevdi im Birkaç Soru M atematikte öyle sorular vard r ki, yan t bulmak önce çok zor gibi gelebilir, sonradan -saatler, günler, aylar, hatta kimi zaman y llar sonra- yan t n çok basit oldu u anlafl l r.

Detaylı

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir.

Şayet bir lineer sistemin en az bir çözümü varsa tutarlı denir. GAZI UNIVERSITY ENGINEERING FACULTY INDUSTRIAL ENGINEERING DEPARTMENT ENM 205 LINEAR ALGEBRA COURSE ENGLISH-TURKISH GLOSSARY Linear equation: a 1, a 2, a 3,.,a n ; b sabitler ve x 1, x 2,...x n ler değişkenler

Detaylı

YÖNEYLEM ARAŞTIRMASINA YÖNTEMLER VE DİĞER BİLİM DALLARI AÇISINDAN BİR BAKIŞ

YÖNEYLEM ARAŞTIRMASINA YÖNTEMLER VE DİĞER BİLİM DALLARI AÇISINDAN BİR BAKIŞ YÖNEYLEM ARAŞTIRMASINA YÖNTEMLER VE DİĞER BİLİM DALLARI AÇISINDAN BİR BAKIŞ YÖNEYLEM ARAŞTIRMASININ SINIFLANDIRILMASI Yöneylem Araştırması (YA) iki ana yönde dallanmıştır: 1- Uygulama Alanlarına Göre:

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd Elektrik Devreleri Eşanlı Denklemler Bölüm 9 daki devre analizi yöntemleri eşanlı (paralel) denklem kullanımını gerektirmektedir. Eşanlı denklemlerin çözümünü basitleştirmek için, denklemler genelde standart

Detaylı

ıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir.

ıfırdan büyük olan rasyonel sayılara pozitif rasyonel sayılar, sıfırdan küçük rasyonel sayılar da negatif rasyonel sayılar denir. 1-RASYONEL SAYILAR VE ÖZELLĐKLERĐ A)Rasyonel Sayılar:Birbirine denk olan kesirlerin meydana getirdiği her kümeye rasyonel sayı denir.rasyonel sayıların meydana getirdiği kümelere rasyonel sayılar kümesi

Detaylı

Do ufl Üniversitesi Matematik Kulübü Matematik Bireysel Yar flmas 2004 Soru ve Yan tlar

Do ufl Üniversitesi Matematik Kulübü Matematik Bireysel Yar flmas 2004 Soru ve Yan tlar o ufl Üniversitesi Matematik Kulübü Matematik ireysel Yar flmas 2004 Soru ve Yan tlar Soru. S f rdan farkl bir a say s için sonsuz ondal klarla oluflan ifadesinin de eri nedir? ise, Soru 2. 0 < < 0 olmak

Detaylı

Öncelikle tek girdili bir üretim fonksiyonu kullanarak karş laşt rmal dura¼ganl k analizini nas l

Öncelikle tek girdili bir üretim fonksiyonu kullanarak karş laşt rmal dura¼ganl k analizini nas l Hasan Şahin Matematiksel Iktisat Ders Notlar Firma Teorisi. Kar maksimizasyonu.. Tek Girdi Tek Ç kt Öncelikle tek girdili bir üretim fonksiyonu kullanarak karş laşt rmal dura¼ganl k analizini nas l gerçekleştirebilece¼gimizi

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Sonlu Lineer Uzayların Doğru Dereceleri Üzerine. Metin Şahin YÜKSEK LİSANS TEZİ. Matematik ve Bilgisayar Bilimleri Anabilim Dalı

Sonlu Lineer Uzayların Doğru Dereceleri Üzerine. Metin Şahin YÜKSEK LİSANS TEZİ. Matematik ve Bilgisayar Bilimleri Anabilim Dalı Sonlu Lineer Uzayların Doğru Dereceleri Üzerine Metin Şahin YÜKSEK LİSANS TEZİ Matematik ve Bilgisayar Bilimleri Anabilim Dalı Ağustos 2013 On Line Degrees Of The Finite Linear Spaces Metin Şahin MASTER

Detaylı

ÖRNEK 1: Üç basamakl 4AB say s, iki basamakl BA say s n n 13 kat ndan 7 fazlad r. Buna göre, BA say s kaçt r? ÖRNEK 2:

ÖRNEK 1: Üç basamakl 4AB say s, iki basamakl BA say s n n 13 kat ndan 7 fazlad r. Buna göre, BA say s kaçt r? ÖRNEK 2: MATEMAT K SAYILAR - I ÖRNEK : Üç basamakl 4AB sa s, iki basamakl BA sa s n n kat ndan fazlad r. Buna göre, BA sa s kaçt r? A) B) 25 C) 2 D) 2 E) 2 (ÖSS - ) ÖRNEK 2: Dört basamakl ABCD sa s, üç basamakl

Detaylı

IUI I I =IYI. 3.6 Ayrrstirma Yontemi. fl 1. ful. IXl = fa I 11.1, I I 1111 (. H-I)

IUI I I =IYI. 3.6 Ayrrstirma Yontemi. fl 1. ful. IXl = fa I 11.1, I I 1111 (. H-I) 3.6 Ayrrstirma Yontemi Bu yonternde denklem takirmrun katsayilar matrisi iki matrisin carpirru seklinde ifade edilerek katsayilar matrisi iki matrise aynstmhr. Bu matrislerin biri alt ucgen digeri ise

Detaylı

DENKLEM DÜZENEKLERI 1

DENKLEM DÜZENEKLERI 1 DENKLEM DÜZENEKLERI 1 Dizey kuramının önemli bir kullanım alanı doğrusal denklem düzeneklerinin çözümüdür. 2.1. Doğrusal düzenekler Doğrusal denklem düzeneği (n denklem n bilinmeyen) a 11 x 1 + a 12 x

Detaylı

TAR H MATEMAT K PROBLEMLER - I. Ahmet A A H y l A + (A H) Hasan H. A H y l. Kavram Dersaneleri 56

TAR H MATEMAT K PROBLEMLER - I. Ahmet A A H y l A + (A H) Hasan H. A H y l. Kavram Dersaneleri 56 TAR H MATEMAT K PROBLEMLER - I ÖRNEK 1: Bir lisenin son s n f ö rencileri her grupta eflit say da ö renci olmak üzere 10 gruba ayr l yor. Bu ö renciler 7 gruba ayr lsayd her gruptaki ö renci say s 6 fazla

Detaylı

YGS Soru Bankas MATEMAT K Temel Kavramlar

YGS Soru Bankas MATEMAT K Temel Kavramlar 9. 7 = 3.3.3, 07 = 3.3.3 007 = 3.3.3, 0007 = 3.3.3,... Yukar daki örüntüye göre, afla daki say lar n hangisi 81'in kat d r? A) 00 007 B) 0 000 007 C) 000 000 007 D) 00 000 000 007 13. Ard fl k 5 pozitif

Detaylı

Matematik I: Analiz und Lineer Cebir I Sömestr Ders Saati D 2 U 2 L 1 AKTS 6 Lisans/ Yüksek Lisans Lisans Dersin Kodu MAT 106 Sömestr 2

Matematik I: Analiz und Lineer Cebir I Sömestr Ders Saati D 2 U 2 L 1 AKTS 6 Lisans/ Yüksek Lisans Lisans Dersin Kodu MAT 106 Sömestr 2 Dersin Adı Matematik I: Analiz und Lineer Cebir I Sömestr Ders Saati D 2 U 2 L 1 AKTS 6 Lisans/ Yüksek Lisans Lisans Dersin Kodu MAT 106 Sömestr 2 Dersin Dili Almanca Dersi Veren(ler) Yrd. Doç. Dr. Adnan

Detaylı

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z.

Örnek...6 : Yandaki bölme işleminde A ve n birer doğal sayıdır. A nın alabileceği en küçük ve en bü yük değerleri bulunu z. MODÜLER ARİTMETİK ( BÖLME BÖLÜNEBİLME KURALLARI ÖKLİT ALGORİTMASI DEĞERLENDİRME ) BÖLME İŞLEMİ VE ÖZELLİKLERİ A, B, C, K doğal sayılar ve B olmak üzere, BÖLÜNEN A B C BÖLEN BÖLÜM Örnek...5 : A, B, C birbirinden

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

Tablo 3.3. TAKV YES Z KANAL SAC KALINLIKLARI (mm)

Tablo 3.3. TAKV YES Z KANAL SAC KALINLIKLARI (mm) 3. KANAL KONSTRÜKS YONU Türk Standart ve fiartnamelerinde kanal konstrüksiyonu üzerinde fazla durulmam flt r. Bay nd rl k Bakanl fiartnamesine göre, bas nç s - n fland rmas na ve takviye durumuna bak lmaks

Detaylı

Araştırma Notu 15/177

Araştırma Notu 15/177 Araştırma Notu 15/177 02 Mart 2015 YOKSUL İLE ZENGİN ARASINDAKİ ENFLASYON FARKI REKOR SEVİYEDE Seyfettin Gürsel *, Ayşenur Acar ** Yönetici özeti Türkiye İstatistik Kurumu (TÜİK) tarafından yapılan enflasyon

Detaylı

İki Değişkenli Bağlanım Modelinin Uzantıları

İki Değişkenli Bağlanım Modelinin Uzantıları İki Değişkenli Bağlanım Modelinin Uzantıları Hesaplamaya İlişkin Konular Ekonometri 1 Konu 19 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü E-Posta: oguahmettopcu@gmailcom We: http://mmf2oguedutr/atopcu Bilgisayar Destekli Nümerik Analiz Ders notları

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

Bir tan mla bafllayal m. E er n bir do al say ysa, n! diye yaz -

Bir tan mla bafllayal m. E er n bir do al say ysa, n! diye yaz - Saymadan Saymak Bir tan mla bafllayal m. E er n bir do al say ysa, n! diye yaz - lan say 1 2... n say s na eflittir. Yani, tan m gere i, n! = 1 2... (n-1) n dir. n!, n fortoriyel diye okunur. Örne in,

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İKİNCİ BASAMAKTAN DİFERENSİYEL DENKLEMLER İÇİN ARALIK SALINIM KRİTERİ.

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İKİNCİ BASAMAKTAN DİFERENSİYEL DENKLEMLER İÇİN ARALIK SALINIM KRİTERİ. ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ İKİNCİ BASAMAKTAN DİFERENSİYEL DENKLEMLER İÇİN ARALIK SALINIM KRİTERİ Neslihan ÇAVUNT MATEMATİK ANABİLİM DALI ANKARA 202 Her hakkı saklıdır

Detaylı

T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI. 2011-2012 Güz Yarıyılı

T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI. 2011-2012 Güz Yarıyılı T.C. MALTEPE ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ENDÜSTRĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ LĠSANS PROGRAMI 2011-2012 Güz Yarıyılı LĠNEER CEBĠR MAT 283 6 AKTS 1. yıl 1. yarıyıl Lisans Zorunlu 3 s/hafta Teorik: 3 s/hafta

Detaylı

< Network ID ><Host ID> IP ADRESLERİ Bu dökümandaki konular: EK-1

< Network ID ><Host ID> IP ADRESLERİ Bu dökümandaki konular: EK-1 IP ADRESLERİ Bu dökümandaki konular: S n fl IP Adresleme IP Adreslerinin Bileşenleri IP Adres S n flar S n fl IP Adresleme Bir Networkü Subnetlemek CIDR Subnetler Subnet Mask lar IP adresleri bilgisyarlar

Detaylı

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler

OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler BÖLÜM 4. OPERATÖRLER 4.1 Giriş Turbo Pascal programlama dilinde de diğer programlama dillerinde olduğu gibi operatörler, yapılan işlem türüne göre aritmetik, mantıksal ve karşılaştırma operatörleri olmak

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler

ÜN TE II L M T. Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler ÜN TE II L M T Limit Sa dan ve Soldan Limit Özel Fonksiyonlarda Limit Limit Teoremleri Belirsizlik Durumlar Örnekler MATEMAT K 5 BU BÖLÜM NELER AMAÇLIYOR? Bu bölümü çal flt n zda (bitirdi inizde), *Bir

Detaylı

Istatistik ( IKT 253) Normal Da¼g l m Çal şma Metni

Istatistik ( IKT 253) Normal Da¼g l m Çal şma Metni TO-ETÜ, Iktisat ölümü Istatistik ( IKT 253) Normal Da¼g l m Çal şma Metni Ortalamas 0, standart sapmas 1 olan normal da¼g l ma standart normal da¼g l m denir ve bu da¼g l m n de¼gerleri z ile gösterilir.

Detaylı

1999 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI

1999 ULUSAL ANTALYA MATEMAT IK OL IMP IYATI B IR INC I AŞAMA SORULARI 1999 ULUSL NTLY MTMT IK L IMP IYTI IR IN I ŞM SRULRI Lise 1- S nav Sorular 1. f1; ; 3; :::; 1999g kümesinin, eleman say s tek say olan kaç tane alt kümesi vard r? ) 1999 ) 1998 ) 1998-1 ) 999 ) hiçbiri.

Detaylı

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.112 Kompleks Değişkenli Fonksiyonlar 2008 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms http://tuba.acikders.org.tr

Detaylı

Minör nedir? Genel olarak, n. mertebeden bir kare matris olan A matrisinin, a ij öğesinin minörünü şöyle gösterebiliriz:

Minör nedir? Genel olarak, n. mertebeden bir kare matris olan A matrisinin, a ij öğesinin minörünü şöyle gösterebiliriz: Minör nedir? A = (a ij ) nxn kare matrisinde, bir a ij (1 i, 1 j n) öğesinin bulunduğu i. Satır ile j. sütunun çıkarılmasıyla elde edilen (n-1). mertebeden alt kare matrisin determinantına, A matrisinin

Detaylı

POL NOMLAR. Polinomlar

POL NOMLAR. Polinomlar POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit

Detaylı

YAPI ve DEPREM MÜHENDİSLİĞİNDE MATRİS YÖNTEMLER. Prof. Dr. Hikmet Hüseyin ÇATAL. Prof. Dr. Hikmet Hüseyin ÇATAL. (III. Baskı)

YAPI ve DEPREM MÜHENDİSLİĞİNDE MATRİS YÖNTEMLER. Prof. Dr. Hikmet Hüseyin ÇATAL. Prof. Dr. Hikmet Hüseyin ÇATAL. (III. Baskı) DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:294 YAPI ve DEPREM MÜHENDİSLİĞİNDE MATRİS YÖNTEMLER YAPI ve DEPREM MÜHENDİSLİĞİNDE MATRİS YÖNTEMLER (III. Baskı) Prof. Dr. Hikmet Hüseyin ÇATAL

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması

6. Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin toplam potansiyeli, rijitlik matrisi ve kurulması 6 Sistemin noktalarında süreklilik koşulu : Her elemanın düğüm noktası aynı zamanda sistemin de düğüm noktası olduğundan, sistemin noktaları

Detaylı

Do ufl Üniversitesi Matematik Kulübü nün

Do ufl Üniversitesi Matematik Kulübü nün Matematik ünas, 003 Güz o ufl Üniversitesi Matematik Kulübü Matematik Yar flmas /. ölüm o ufl Üniversitesi Matematik Kulübü nün üniversitenin ö retim üelerinin de katk - lar la düzenledi i liseleraras

Detaylı

Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi

Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi Ek 3. Sonsuz Küçük Eleman Bu bölümde, bugüne dek ancak rüyalar n zda görece inizi tahmin edece iniz bir numara gerçeklefltirece iz: 3/5, 7/9, 4/5 ve 3 gibi kesirli say lara bir eleman ekleyece iz. Miniminnac

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI YÜZEY DOLDURMA TEKNİKLERİ Deneyde dolu alan tarama dönüşümünün nasıl yapıldığı anlatılacaktır. Dolu alan tarama

Detaylı

O + T + U + Z = 30 (30) 2K + I + R = 40 (40) E + 2L + = 50 (50) A + L + T + M + I + fi = 60 (60) Y + E + T + M + + fi = 70 (70) 2S + 2E + K + N = 80

O + T + U + Z = 30 (30) 2K + I + R = 40 (40) E + 2L + = 50 (50) A + L + T + M + I + fi = 60 (60) Y + E + T + M + + fi = 70 (70) 2S + 2E + K + N = 80 Yaz yla Saymak H er harfe öyle bir tamsay vermek istiyoruz ki, örne in, B R in harfleri olan B ye, ye ve R ye verdi imiz say lar n toplam 1 olsun. K için de, ÜÇ için de ayn fley do ru olsun... 199 a kadar

Detaylı