3.2. Euler Yüksek Mertebeden Değişken Katsayılı Diferansiyel Denklemi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "3.2. Euler Yüksek Mertebeden Değişken Katsayılı Diferansiyel Denklemi"

Transkript

1 3.2. Euler Yüksek Mertebeden Değişken Katsaılı Diferansiel Denklemi (n). (n) + (n-). (n-) = Q() Değişken dönüşümü apalım. Diferansiel denklemi sabit katsaılı ( erine t bağımsız değişkeni ) gelecek şekild = e t dönüşümü ile; d = = d d/ dt d =. d/ dt dt t = e -t d. e dt d = e t dt = e -2t 2 d d.( 2 ) dt dt = e -3t d 3d 2d.( ) dt dt dt = e t ve,, diferansiel denklemde erine konularak Euler diferansiel denklemi sabit katsaılı hale gelir. a n.(t) (n) + a n-.(t) (n-) + + a 2. (t) + a. (t) + a 0.(t) = Q(t) bilinen ollardan birisi ile çözülür. Bu diferensiel denklemin genel çözümünd = e t Denkleminin Genel Çözümü elde edilir. konularak Euler Diferensiel ÖRNEK: = 2 Euler üksek mertebeden diferansiel denklemi (I) Sabit katsaılı hale getirmek için = e t dönüşümü ugulaalım. (I) ifadesind = e t,,, ifadelerini t e göre koalım. e 3t d 3d 2d.[ dt dt dt 2 d 3d 2d d dt dt dt dt 2 d 2 dt ].e -3t + 5. e 2t [ d d = e 2t dt dt d ].e -2t + 3. e t d [ ].e -t = e 2t dt dt d 2d = e 2t sabit katsaılı diferansiel denklem ( düzgün fonksion, belirsiz dt dt katsaılar öntemi ile) Karakteristik denklem; f(r) = r 3 +2.r 2 = 0 r 2 ( r+2) r = r2 = 0, r3 = 2 c. e0.t +c2.t. e0.t +c3. e-2.t c + c2.t + c3.e-2.t

2 = A. e 2t = 2A. e 2t = 4A. e 2t = 8A. e 2t d 2d = e 2t olarak bulmuştuk. dt dt 8A. e 2t + 2.(4A. e 2t ) = e 2t 6A = A = /6 = A. e 2t olarak bulmuştuk. O halde; = (/6).e 2t özel çözüm Genel çözüm = = h + = c + c2.t + c3.e-2.t + (/6).e 2t e t = t = ln erine konulursa; = c + c2.ln + c (/6). 2 Euler diferansiel denkleminin genel çözümü olur. Çözülmüş Problem Örnekleri ÖRNEK(ug) 4. = 5. Polinomlu bir ifade varsa ve köklerden biri sıfırsa özel çözüm ile ikisi sıfırsa 2 ile çarpılır. h 2 Karakteristik denklem: f(r)= r 3 4.r 2 = 0 r 2 ( r 4) = 0, r = r 2 = 0, r 3 = 4 = (A.+B). 2 2 anı ve 0 a eşit kök var. (rezonans)

3 c + c2. + c3. e4 =A. 3 +B. 2 = 3A. 2 +2B. =6A+2B =6A bu değerleri erine koarsak ( 4. ) ; 6A 4(6A+2B) = 6A 24A 8B = A= /24, B= /32 =( /24). 3 +( /32). 2 2 = C. 2 = C. 2 = C. 2 = C. burada rezonans olup olmadığının kontrolü şu şekilde apılır. terimind in katsaısı dir. çözümünde bulduğumuz A ve B değerleri e eşit değilse rezonans söz konusu değildir. Bu değerleri erine koarsak ( 4. ) ; C. 4.C = 5. C= 5/3 2 = C. 2 = 5/3. = h =c + c2. + c3. e4 (/24). 3 (/32) /3. ÖRNEK(ug) = sin.( +3) ***trigonometrik ve üstel çarpımlar polinom rezonansını ortadan kaldırır. Karakteristik denklem: f(r)= r 3 +3.r 2 +2r = 0 r (r 2 +3r+2) = 0, r = 0, r 2 =, r 3 = 2 c + c2. e- +c3. e-2 = sin(a+b) + cos(c+d) = cos(a+b) + sin.a sin(c+d)+cos.c = sin(a+b) + cos.a + cos.a cos(c+d) sin.c sinc = cos(a+b) sin.a sin.a sin.a + sin(c+d) cos.c cos cos burada erine koarsak; cos(a+b) sin.a sin.a sin.a+sin(c+d) cos.c 2.cos + 3.[ sin(a+b)+cos.a + cos.a cos(c+d) sin.c sinc] + 2[cos(A+B) + sin.a sin(c+d)+cos.c] = sin.( +3) Buradan A=/0, B= 34/00, C= 3/0, D= 2/00 hesaplanıp de erine konulursa; = sin(a+b) + cos(c+d) = sin( ) + cos( +00 ) = h + =c +. c2 e- +c e-2 + sin( 00 ) + cos( +00 ) 0 0 genel çözümü elde edilir.

4 ÖRNEK:(ug) = e e 3. sin. e Karakteristik denklem: f(r)= r 3 2.r 2 3.r = 0 r(r 2 2.r 3 ) = 0 r = 0, r 2 =, r 3 = 3 +. c c2 e- +c3. e3 = e 2. ( A. 2 + B + C ) 2 = e 3 ( D. + E )* X burada e 3 te katsaı 3 ve köklerden biriside 3 olduğundan rezonans vardır. Fakat fonksionlarda öncelik sırası söz konusu olup şu şekildedir. ) Trigonometrik 2) Üstel 3) Polinom Çarpımlarda Trigonometrik değer üstel ile polinomun, üstel değer ise sadece polinomun rezonansını önler. 2 = e - ( F.sin + G.cos ) burada e - te katsaı ve köklerden biriside olduğundan rezonans vardır. Fakat trigonometrik olan değer sin değeri rezonansı kaldırır. ÖRNEK:(ug) + = Karakteristik denklem: r 2 + = 0 r = i, r 2 = i c ei. +c2. e-i. c.cos + c2.sin = ().cos + ().sin genel çözüm olsun. c c2 sin / ().cos c +c2 ().sin = 0 cos / c ().sin +c2 ().cos = Q()/a n = + / = ().sin 2 + ().cos 2 = c2 c2 ()[ sin 2 + cos 2 ] = c2 c2 = cos cos c2 cos () = cos.d + K 2 sin = u cos.d = du du =lnu u

5 c2 = ln( sin) + K 2 ().cos c +c2 ().sin = 0 (I). Denklemde ()= c2 ().cos + c cos.sin = 0 c () = c = d + K c = + K cos ifadesini erine koarsak; c.cos + c2.sin de c ve c2 değerlerini erine koarsak; ( + K ).cos + [ln( sin) + K 2 ].sin = K.cos K 2.sin.cos + sin. ln( sin) ÖRNEK:(ug) = düzgün olmaan fonksion Karakteristik denklem: f(r)= r 3 2.r 2 3r = 0 r (r 2 2r 3) = 0, r = 0, r 2 =, r 3 = 3 c + c2. e- +c3. e3 (I) c +c2. e - +c3. e 3 = 0 (II).0. e - + c c2 3.c3. e 3 = 0 (III).0 +. e - + c c2 9.c3. e 3 = Q()/a n = /= (II)+(III) = 2.. e 3 = c3 ()= c3 2 2 c3 2 ()=.d 2 2 ()= [ln. e -2 c3 ln( 2. e -2 ).d]+k (II) + (III) = 4.c2 (). e - = () = c2 4 2 ()= [ln. e 2 c2 ln( 2. e -2 ).d]+k 2 4 () ve () ifadelerini (I) de erine koalım. c2 c3 +c2. e - +c3. e 3 = 0 c c () = 3. c () = 3.[ln. ln..d] +K c, c2 ve c3 h ta konularak genel çözüm bulunur.

6 c + c2. e- +c3. e3 = 3.[ln. ln..d] +K + e - [ 4 (ln. e 2 ln( 2. e -2 ).d)+k 2 ] + e 3 [ 2 (ln. e -2 ln( 2. e -2 ).d)+k 3 ] *** bazı İntegraller analitik olarak çözülemeebilir. Bu durumda İntegraller integral işareti içerisinde bırakılır.. Böle İntegraller saısal olarak çözülebilirler. 4. Adî Diferansiel Denklemlerin Saısal Çözümleri Analitik Çözümler Genel Çözümler =f (,c) = fonksion Saısal Çözümler Özel Çözümler 0 = f( 0 ) = nokta Diferansiel denklemler vea diğer matematik problemlerin analitik çözüm öntemlerile çözülemediği durumlarda problemlerin çözümü için saısal çözüm öntemleri kullanılır ancak analitik öntemlerle genel çözümlere ulaşılırken saısal öntemlerle özel çözümlere ulaşılır. Bu nedenle saısal çözümler ancak analitik çözümlerin kullanılamadığı durumlarda kullanıma ugundur. Arıca saısal öntemlerle sınırlı saıda özel çözümün bulunabileceği de bilinmelidir. Özel Çözümler =f() Genel Çözüm Fonksionu 0 başlangıç şartı (noktası)

7 4.. Euler Saısal Çözüm Yöntemi (. mertebeden diferansiel denklemler için) 0 ε teğet ε=hatalar =f() Genel Çözüm Fonksionu a = 0 h = o + h.tg = o + h..( 0 ) b = h c = 2 tg = h 0 = o + h.f( 0, 0 ) 2 = + h.f(, )... Euler çözüm formülleri n= n- + h.f( n-, n- ) Euler Formüllerinin Talor Dizisi ile İlişkisi f ( a)' f(b)= f(a) + ( b a) +! f( a)" ( ) 2 b a + + 2! f ( a) n! ( n) ( b a) n + R. mertebe türevler R= kalan terimler = ( ) f(b)= f(a) + ( b a ) = o + h. ( 0 ) = o + h.f( 0, 0 ) f (a)' Euler Yönteminin Ugulanması ) Diferansiel denklemi =f(,) şekline getirilmeli. 2) Başlangıç şartı (noktası) belirlenmeli. ( 0 )= 0 vea ( 0, 0 ) 3) Bir h = adım değeri belirlenmeli. 4) = o + h.f( 0, 0 ) = o + h.f(, )... Euler formülleri ile Saısal Çözümler... ardışık olarak elde edilir.... n= n- + h.f( n-, n- )

8 ÖRNEK: (+) + = 0 diferansiel denklemini (0)= başlangıç şartına göre 0 aralığındaki h= 0.2 adım değerini kullanarak saısal çözümleri bulalım. ) =f(,)= şeklinde dif.denklemi düzenleelim 2)(0) = başlangıç şartı olsun 3)h = 0.2 adım değeri olsun. Buna göre adım değerleri = 0, 0.2, 0.4, 0.6, 0.8, olur. 4)Bu adım değerlerine karşılık Euler formülleri ile ardışık saısal çözümleri bulalım. n=. adım = o + h.f( 0, 0 ) 0 = 0, 0 =, h=0.2 için = 0 + h = = = = = 0.2=0.8 = 0.2 için = n= 2. adım 2 = + h.f(, ) = 0.2, = 0.8, h=0.2 için 2 = + h = = = = = = 0.4 için 2 = n= 3. adım 3 = 2 + h.f( 2, 2 ) 2 = 0.4, 2 = 0.67, h=0.2 için 3 = 2 + h = = = = = = 0.6 için 3 = n= 4. adım 4 = 3 + h.f( 3, 3 ) 3 = 0.6, 3 = 0.57, h=0.2 için 4 = 3 + h = = = = = = 0.8 için 4 = n= 5. adım 5 = 4 + h.f( 4, 4 ) 4 = 0.8, 3 = 0.57, h=0.2 için 5 = 4 + h = = = = = = için 5 = Gerçek değerler için analitik çözümü kontrol edelim; d d (+) = = d ln= ln(+) + lnc ln= ln C = C d d = d Genel Çözümü bulunur. 0 = 0, 0 = den = C C= = 0

9 = 0.2 için = = = 0.4 için 2 = = = 0.6 için 3 = = Gerçek Değerler 4 = 0.8 için 4 = = = için 5 = Euler Saısal Çözümü ve Analitik öntemle bulunan gerçek değerler tablosu: X 0 = 0 = = = = = e =euler çözümü g = Gerçek değerler (mutlak hatalar) ÖRNEK:(ug) + = + 4 Diferansiel denkleminin (0)= başlangıç şartı altındaki ilk 3 çözümünü h= 0. adım değeri için bulalım, hataları belirleelim. ) =f(,)= +4 2)(0) = 3)h = 0. adım değeri 4), 2, 3 çözümleri 5)Hatalar n=. adım = o + h.f( 0, 0 ) 0 = 0, 0 =, h=0. için = 0 + h = = 0. = + 0.( + 4* 0 ) = 0. için =.5 n= 2. adım 2 = + h.f(, ) = 0., =.5, h=0. için 2 = + h = = =.5+ 0.( + 4*.5 0. ) 2 = 0.2 için = 2.9 n= 3. adım 3 = 2 + h.f( 2, 2 ) 2 = 0.2, 2 = 2.9, h=0. için 3 = 2 + h = = = ( + 4* ) 3 = 0.3 için = 3.4 Tabloa bakıldığında adım değerleri küçüldükçe aklaşık çözüm değerlerinin giderek gerçek çözüme aklaştıkları görülüor. Burada ortaa çıkan hatalara bakıldığında; X Euler Genel Çözüm Hatalar ( ) Genel Çözüm: = C.e =0, = için; = + + C.e C=+ =

10 3 9 = + +.e = 0. için = + +.e 4*0. = = 0.2 için 2 = + +.e 4*0.2 = = 0.3 için 3 = + +.e 4*0.3 = X H=0. h=0.2 h=0.3 Gerçek Hatalar 2 = 0.2 ve h=0. de; Mutlak hata ( MH = g e MH 2 = = ) Bağıl hata ( BH = MH = = 0.27 ) mutlak hataların gerçek değere oranı g Runge-Kutta Saısal Çözüm Yöntemi Euler saısal çözüm öntemi. mertebeden saısal çözüm Runge-Kutta saısal çözüm öntemi üksek mertebeden saısal çözüm Diferansiel denklemlerin saısal çözüm öntemleri içerisinde çok kullanılan ve tarihi önemi bulunan bir öntemdir. Bu öntem 2 ve daha üksek mertebeden terimleri içerisinde bulunduran bir öntem olması dolaısıla daha hassas çözümlerin elde edilmesini sağlar. Bu öntemin ugulanılmasında da Euler de olduğu gibi ine başlangıç şartları ve adım değerine ihtiaç duulur. ) Başlangıç şartı ( 0 )= 0 verilmelidir. 2) Adım değeri = h verilmelidir. 3) Diferansiel denklem =f(,) şekline getirilmelidir. 4) 4. Mertebe Runge-Kutta formülleri n=. adım için: k = h.f( 0, 0 ) k 2 = h.f( 0 + h/2, 0 + k /2 ) k 3 = h.f( 0 + h/2, 0 + k 2 /2 ) k 4 = h.f( 0 + h, 0 + k 3 ) = 0 + h için; k= 6 ( k + 2k 2 + 2k 3 + k 4 ) = 0 + k elde edilir. Diğer adımlardaki hesaplamalarda anı şekilde apılır.

11 ÖRNEK: + = 0 Diferansiel Denkleminin (0)=2 başlangıç şartını sağlaan çözümünü 4. Mertebeden Runge-Kutta öntemi ile h=0. için =0.2 terimine kadar elde edelim. ) Başlangıç şartı (0)=2 2) Adım değeri = h = 0, 3) Diferansiel denklem = = = f(,) 4) Runge-Kutta öntemil = 0., 2 = 0.2 için, 2 saısal çözümlerini bulalım. n=. adım = 0 + h = 0+0. = 0. için =? k = h.( 0 0 )= 0.(2 0)=0.2 k 2 = h.[( 0 + k /2) ( 0 + h/2 )] = 0.[( /2) (0 + 0./2 )] = k 3 = h.[( 0 + k 2 /2) ( 0 + h/2 )] = 0.[( /2) (0 + 0./2 )] = k 4 = h. [( 0 + k 3 ) ( 0 + h )] = 0.[( ) ( )] = k= 6 ( k + 2k 2 + 2k 3 + k 4 ) = k= 6 ( 0, , , )= = 0. için; k= = 0 +k = = n=2. adım 2 = + h = = 0.2 için 2 =? k = h.( )= 0.( )= k 2 = h.[( + k /2) ( + h/2 )] = 0.[( /2) ( /2 )] = k 3 = h.[( + k 2 /2) ( + h/2 )] = 0.[( /2) ( /2 )] = k 4 = h. [( + k 3 ) ( + h )] = 0.[( ) ( )] = k= 6 ( k + 2k 2 + 2k 3 + k 4 ) = k= 6 ( 2, , , )= = 0.2 için; k= = +k 2 = 2, = elde edilir.

UYGULAMALI DİFERANSİYEL DENKLEMLER

UYGULAMALI DİFERANSİYEL DENKLEMLER UYGULAMALI DİFERANSİYEL DENKLEMLER GİRİŞ Birçok mühendislik, fizik ve sosal kökenli problemler matematik terimleri ile ifade edildiği zaman bu problemler, bilinmeen fonksionun bir vea daha üksek mertebeden

Detaylı

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) 3.1.2.1. Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) ÖRNEK: y + 4.y + 4.y = 5.sin2x diferensiyel denkleminin genel çözümünü bulalım: Homojen kısmın çözümü: y + 4.y + 4.y = 0

Detaylı

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri Saısal Yöntemler Neden Kullanılır?!! NÜMERİK ANALİZ Saısal Yöntemlere Giriş Yrd. Doç. Dr. Hatice ÇITAKOĞLU 2016 Günümüzde ortaa konan problemlerin bazılarının analitik çözümleri apılamamaktadır. Analitik

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

DERS 1: TEMEL KAVRAMLAR

DERS 1: TEMEL KAVRAMLAR DERS : TEMEL KAVRAMLAR Dersin Amacı: Diferansiel denklemlerin doğasını kavramak, onları tanımlamak ve sınıflandırmak, adi diferansiel denklemleri lineer ve lineer olmama durumuna göre sınıflandırmak, bir

Detaylı

MAT 102 DERS NOTLARI

MAT 102 DERS NOTLARI MAT DERS NOTLAR Halit KARABULUT b z b/c b - c c b - c - c İÇİNDEKİLER BÖLÜM... TÜREV VE UYGULAMALAR... Bir Değişkenin Limiti... Bir f() Fonksionunun Limiti... Türevin Tanımı... Üssü Pozitif Tam Sa Olan

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

3. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 3 HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 BÖLÜM 2 EŞ-ANLI DENKLEM SİSTEMLERİ Bu bölümde analitik ve grafik olarak eş-anlı denklem sistemlerinin

Detaylı

TRİGONOMETRİK DENKLEMLER

TRİGONOMETRİK DENKLEMLER TRİGONOMETRİK DENKLEMLER Daha önceden Sin + Cos = 1 ifadesinin R için gerçekleştiğini biliyoruz. Bu tür eşitliklere Özdeşlik adını verdiğimizi biliyorsunuz. Fakat ; Sin = 0 ve tan = 0 gibi eşitlikler R

Detaylı

ETKİNLİK ÇÖZÜMLERİ ADIM m(ëa) + m(b) = m(ëa) = ise 2.m(ëA ) = =

ETKİNLİK ÇÖZÜMLERİ ADIM m(ëa) + m(b) = m(ëa) = ise 2.m(ëA ) = = ETKİNLİK ÇÖZÜMLERİ DIM 0. m(ë) 0 0 7 ise.m(ë ) 80 60 8 0.m(ë) m(ë) 8 0 8 7 99 7 66 60. m(ë) m() 8 60 08 dir. 08 R 80 08. R 80 radandır. 99 8 6. 60 06 9 8 60 0 79 8 6 79 8 6 7. irim çemberin üzerindeki

Detaylı

Fonksiyonların Grafikleri... 378

Fonksiyonların Grafikleri... 378 f() a a TÜREV KAVRAMI Türev ile Hız Arasındaki İlişki...5 Türev ve Teğetin Eğimi Arasındaki İlişki... 58 Diferansiel Kavramı... 6 Türevin Tanımı...6 Türev Alma Kuralları... 7 Sabitin Türevi... 7 Toplam

Detaylı

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır.

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır. 5. Diferansiyel Denklem Sistemleri ve Çözüm Yöntemleri X=bağımsız, Y, Z, W = bağımlı değişkenler olmak üzere; Y= (X, Y, Y, Y,, Z, Z, Z,, W, W, W, ) Z= (X, Y, Y, Y,, Z, Z, Z,, W, W, W, ) W= (X, Y, Y, Y,,

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

kpss Önce biz sorduk 50 Soruda SORU Güncellenmiş Yeni Baskı ÖABT LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER

kpss Önce biz sorduk 50 Soruda SORU Güncellenmiş Yeni Baskı ÖABT LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Önce biz sorduk kpss 0 1 8 50 Soruda 0 SORU Güncellenmiş Yeni Baskı ÖABT LİSE MATEMATİK ANALİZ DİFERANSİYEL DENKLEMLER Fikret Hemek ÖABT Lise Matematik Analiz-Diferansiel Denklemler ISBN 978-605-18-911-4

Detaylı

Newton Metodu. Nümerik Kök Bulma. Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ. mkocak

Newton Metodu. Nümerik Kök Bulma. Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ.  mkocak Nümerik Kök Bulma Mahmut KOÇAK ESOGU FEN-ED.FAK. MATEMATİK BÖLÜMÜ http://www2.ogu.edu.tr/ mkocak Mahmut KOÇAK, March 28, 2008 Newton Metodu - p. 1/7 f( )=0 denklemini nümerik olarak çözelim. Tahmini bir

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz.

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz. Diferansiel Denklemler I /8 Çalışma Soruları 9.0.04 A. Aşağıda istenilenleri elde ediniz!. ( e +. d + ( e + k. d 0 denkleminin tam diferansiel denklem olabilmesi için ugun k saısını belirleiniz. Bu k saısı

Detaylı

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322

0 1 2 n 1. Doğu Akdeniz Üniversitesi Matematik Bölümü Mate 322 Bölüm 3. İkici Mertebede Lieer ve Sabit Katsaılı Diferesiel Deklemler 4 3. Geel Taımlar ( ) ( ) ( ) a ( ) + a ( ) + a ( ) +... + a ( ) + a ( ) = f ( ) () 0 şeklideki bir deklem. mertebede lieer deklem

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

1 (c) herhangi iki kompleks sayı olmak üzere

1 (c) herhangi iki kompleks sayı olmak üzere KOMPLEKS FONKSİYONLAR TEORİSİ UYGULAMA SORULARI- Problem. Aşağıdaki (a) ve (b) de olmak üere (a) olduklarını gösterini. (b) (c) Imi Re Çöüm (a) i olsun. i i (b) i olsun. i i i i i i i i i i Im i Re i (c)

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

EZGİ GÜLERYÜZ

EZGİ GÜLERYÜZ Türev ile Hız Arasındaki İlişki...5 Türev ve Teğetin Eğimi Arasındaki İlişki... 58 Diferansiel Kavramı... 6 Türevin Tanımı...6 Türev Alma Kuralları... 7 Sabitin Türevi... 7 Toplam vea Farkın Türevi...

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

2.2 Bazıözel fonksiyonlar

2.2 Bazıözel fonksiyonlar . Bazıözel fonksionlar Kuvvet fonksionu, polinomlar ve rasonel fonksionlar, mutlak değer ve tam değer fonksionları, pratik grafik çizimleri. 1-) Lineer fonksionlar: m ve n sabit saılar olmak üzere f()

Detaylı

Diferansiyel Denklemler I (M) Çalışma Soruları

Diferansiyel Denklemler I (M) Çalışma Soruları Diferansiel Denklemler I (M Çalışma Soruları 800 ( A Aşağıdaki diferansiel denklemlerin çözümlerini bulunuz ( ( = d n d 0 d ( sin cos d = 0 3 ( cos sin d sin d = 0 4 5 6 7 ( 5 d ( 5 d = 0 ( ( = d d 0 =

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

TÜREV TANIMI TÜREV ALMA KURALLARI FEN LĠSESĠ ÖĞRETĠM PROGRAMINA GÖRE DERS ANLATIM FÖYÜ 1

TÜREV TANIMI TÜREV ALMA KURALLARI FEN LĠSESĠ ÖĞRETĠM PROGRAMINA GÖRE DERS ANLATIM FÖYÜ 1 TÜRE TNIMI TÜRE LM KURLLRI FEN LĠSESĠ ÖĞRETĠM PROGRMIN GÖRE DERS NLTIM FÖYÜ Ortalama Değişim Oranı Bu itte dönüşümü apılırsa olur. f(b) B d f() f(b) f(a) Bu durumda iken olur. Buna göre, f() fonksionunun

Detaylı

TÜREV TÜREV. Kurallar. Konu Kavrama Çalışması. çözüm. kavrama sorusu. çözüm. kavrama sorusu

TÜREV TÜREV. Kurallar. Konu Kavrama Çalışması. çözüm. kavrama sorusu. çözüm. kavrama sorusu f()= 6 ise f ı ()=6. 6 =6 5 Cevap: 6 5 TÜREV TÜREV Bu bölümde fonksionların türevlerinin nasıl alınacağını öğrenmee başlıoruz. = f() fonksionunun türevi f ı (), d(f()) vea d ile gösterilebilir. d d Kurallar

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabol Denkleminin Yazılması www.mustafaagci.com.tr, 11 Cebir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Parabol Denkleminin Yazılması B ir doğru kaç noktasıla bellidi? İki, değil mi Çünkü tek bir noktadan geçen istediğimiz kadar

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Sürekliliği tanımlamak için önce yakınlık kavramını tanımlamak gerekmektedir.

Sürekliliği tanımlamak için önce yakınlık kavramını tanımlamak gerekmektedir. Genel olarak matematikte, özel olarak da matematiksel iktisatta, fonksionlar üzerine konulan en önemli kısıtlama sürekliliktir. Kabaca, bir fonksion tanımlı olduğu bir o noktasında sürekli ise, o a akın

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 10 SAYISAL ANALİZ BÖLÜM 9-DİFERANSİYEL DENKLEMLERİN SAYISAL ÇÖZÜMÜ 1 GİRİŞ Diferansiyel denklemler, mühendislikte fiziksel olayların modellenmesinde sık karşılaşılan denklemlerdendir. Dolayısıyla bu

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

5. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

5. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 5. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 BÖLÜM 3 DOĞRUSAL OLMAYAN FONKSĠYONLAR VE ĠKTĠSADĠ UYGULAMALARI Bu bölümde öğrencilere ekonomi

Detaylı

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö)

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö) İÜ Fen Fakültesi Matematik Bölümü Diferansiel Denklemler I (örgün iö) Ekim04 Ödevler - Çalışma Sorları - Arasınav Hazırlık Sorları Hazırlaan: YrdDoçDr Serkan İLTER http://avesistanbledtr/ilters/dokmanlar

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ANALİZ ÇÖZÜMLÜ SORU BANKASI

ANALİZ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik, fotokopi a da herhangi bir

Detaylı

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim LİMİT I. TANIM:, a yakınındaki değerleri için tanımlı bir onksiyon olsun. Alınan ε> sayısına karşılık -L < ε olacak şekilde -a < δ koşulunu sağlayan δ > sayısı bulunabiliyorsa ;, a ya yaklaşırken, L ye

Detaylı

mol Akisa dik x y z A maddesi alan Adım 4: Molar denge eşitliğini matematiksel terimlerle ifade edelim;

mol Akisa dik x y z A maddesi alan Adım 4: Molar denge eşitliğini matematiksel terimlerle ifade edelim; 21 kontrol hacminin akışa dik kesit alanını gösterir. [] m 2 Denge bölgesinin hacmi V [] m 3 s m mol ] [ r m mole ] [ 3 3 dım 3: Kontrol diferensiel hacmi üerinde "" maddesinin molar denge eşitliğini aalım.

Detaylı

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz.

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz. 04/10/ 011 011 01 Eğitim Öğretim Yılı Güz Dönemi Diferansiel Denklemler Dersi Çalışma Sorları denklemini çözünüz. 1) d + ( cot + sin ) d 0 denklemini çözünüz. ) (4+t)d/dt + 6+t diferansiel denklemini çözünüz.

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva BÖLÜM Taşkın, Çetin, Abdullaeva FONKSİYONLAR.. FONKSİYON KAVRAMI Tanım : A ve B boş olmaan iki küme a A ve b B olmak üzere ( ab, ) sıralı eleman çiftine sıralı ikili denir. ( ab, ) sıralı ikilisinde a

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1 ..3 Ters Trigonometrik Fonksionlar Önceki kesimde belirtilen bütün trigonometrik fonksionlar perodik olduklarından görüntü kümesindeki her değeri sonsuz noktada alırlar. Bölece trigonometrik fonksionlar

Detaylı

BÖLÜM 3: İLETİM HAT TEORİSİ

BÖLÜM 3: İLETİM HAT TEORİSİ BÖLÜM 3: İLETİM HAT TEORİSİ 1 İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla(ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin iletimini gerçekleştirmek

Detaylı

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler

DERS 5. Çok Değişkenli Fonksiyonlar, Kısmi Türevler DERS 5 Çok Değişkenli Fonksionlar Kısmi Türevler 5.1. Çok Değişkenli Fonksionlar. Reel saılar kümesi R ile gösterilmek üere ve her n için olarak tanımlanır. R R 3 {( ): R} = {( ) : R} = {( L ): L R} n

Detaylı

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ KONU ANLATIMI MODÜL - 1 ANALİZ

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ KONU ANLATIMI MODÜL - 1 ANALİZ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ KONU ANLATIMI MODÜL - ANALİZ ÖABT YAYINLARI Genel Yaın Yönetmeni Savaş DOĞAN Genel Yaın Yönetmen Yardımcısı Arzu ALAN Yazar Ahmet YILDIRIM Orhan Gökhan GÖKDAŞ ISBN 978-605-08-4-4

Detaylı

LİSE MATEMATİK ÖĞRETMENLİĞİ KONU ANLATIMI MODÜL - 1 ANALİZ

LİSE MATEMATİK ÖĞRETMENLİĞİ KONU ANLATIMI MODÜL - 1 ANALİZ LİSE MATEMATİK ÖĞRETMENLİĞİ KONU ANLATIMI MODÜL - 1 ANALİZ ÖABT YAYINLARI Genel Yaın Yönetmeni Savaş DOĞAN Genel Yaın Yönetmen Yardımcısı Arzu ALAN Yazar Ahmet YILDIRIM Orhan Gökhan GÖKDAŞ ISBN 978-605-308-33-0

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1)

KONU 8: SİMPLEKS TABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.1. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx (8.1) KONU 8: SİMPLEKS ABLODA KARŞILAŞILAN BAZI DURUMLAR - II 8.. İki Evreli Yöntem Standart biçime dönüştürülmüş min /max Z cx AX b X (8.) biçiminde tanımlı d.p.p. nin en ii çözüm değerinin elde edilmesinde,

Detaylı

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN

Konikler ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Hüseyin AZCAN Konikler Yazar Doç.Dr. Hüsein AZCAN ÜNİTE 7 Amaçlar Bu ünitei çalıştıktan sonra; lise ıllarından da tanıdığınız çember, elips, parabol ve hiperbol gibi konik kesitleri olarak adlandırılan geometrik nesneleri

Detaylı

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum

DERS 8. Artan ve Azalan Fonksiyonlar, Konkavlık, Maksimum ve Minimum DERS 8 Artan ve Azalan Fonksionlar, Konkavlık, Maksimum ve Minimum 8.. Artan ve Azalan Fonksionlar. Bir fonksionun vea onun grafiğinin belli bir aralık üzerinde artan vea azalan olmasının ne anlama geldiği

Detaylı

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr.

SAÜ. Mühendislik Fakültesi Endüstri Mühendisliği Bölümü DİFERENSİYEL DENKLEMLER Dönemi Ders Notları. Prof. Dr. SAÜ. Mühedislik Fakültesi Edüstri Mühedisliği Bölümü DİFERENSİYEL DENKLEMLER - Döemi Ders Notları Pro. Dr. Cemaletti KUBAT .Çok Değişkeli Foksiolarda Talor-McLauri Açılımları, Ekstremum Noktalar..Talor-McLauri

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ 8 9 Ocak 04 TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Fonksionlar. Kazanım : Fonksion kavramı, fonksion çeşitleri ve ters fonksion kavramlarını açıklar.. Kazanım : Verilen bir fonksionun artan, azalan ve sabit

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum

DERS 6. Çok Değişkenli Fonksiyonlarda Maksimum Minimum DERS Çok Değişkenli onksionlarda Maksimum Minimum.. Yerel Maksimum Yerel Minimum. z denklemi ile tanımlanan iki değişkenli bir onksionu ve bu onksionun tanım kümesi içinde ab R verilmiş olsun. Tanım. Eğer

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

Polinom Tabanlı Diferansiyel Alan Hesabı Metodu (PDQM) nun İki Boyutlu Elektromanyetik Probleme Uygulanması

Polinom Tabanlı Diferansiyel Alan Hesabı Metodu (PDQM) nun İki Boyutlu Elektromanyetik Probleme Uygulanması S Ü E M A N D E M İ R E Ü N İ V E R S İ T E S İ T E K N İ K B İ İ M E R M E S E K Ü K S E K O K U U S U E M A N D E M I R E U N I V E R S I T T E C H N I C A S C I E N C E S V O C A T I O N A S C H O O

Detaylı

Öğrenci Seçme Sınavı (Öss) / 14 Haziran Matematik II Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 14 Haziran Matematik II Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 4 Haziran 9 Matematik II Soruları ve Çözümleri. pozitif gerçel saısı için olduğuna göre, kaçtır? ( )² ifadesinin değeri A) B) 4 C) 4 D) 6 E) 6 5 Çözüm ( )² ifadesinde ( ) erine

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı