ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 2 Merkezi Eğilim Ölçüleri

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 2 Merkezi Eğilim Ölçüleri"

Transkript

1 ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 2 Merkezi Eğilim Ölçüleri

2 Basit Seriler Elde edilecek ham verilerin küçükten büyüğe doğru sıralanması ile elde edilen serilere basit seri denir ÖRNEK: Bir işletmede 25 işçiye verilecek çocuk paraları ile ilgili bir araştırma yapılmaktadır. İşçilerin çocuk sayıları aşağıda verilmiştir. 1,3,2,2,3,1,4,5,3,6,0,5,2,3,2,4,8,0,1,2,3,3,1,0,4 Verilen değerleri basit seri şeklinde düzenleyelim: 0,0,0,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,4,4,4,5,5,6,8 2

3 Frekans Serileri Düzenlenen bir frekans serisi iki sütundan oluşur: Birinci Sütun: Değişkenin aldığı farklı değerler yer alır İkinci Sütun: f i ile gösterilir ve değişkenin aldığı değerlerin tekrar sayısı gösterilir i f i 1 f 1 2 f 2 3 f Değişkenin k sayıda farklı değer k f k 3 aldığı bir frekans serisi

4 Frekans Serileri Örnekteki basit serinin frekans serisi olarak düzenlenmiş hali: i f i

5 Grupandırılmış Seriler Gruplandırılmış seriler iki sütundan oluşur: Birinci Sütun: Sınıflar sütunudur İkinci Sütun: frekans sütunudur Sınıf sayısının az olması serinin verdiği bilgilerin kaybına yol açacağından sınıf sayısının dörtten az olmaması Diğer yandan, çok fazla sınıf sayısının ise işlem zorluğu ve serinin yorumlanmasını zorlaştıracağı için sekizden fazla olmaması tavsiye edilir Önerilen kurallardan biri, sınıf sayısının birim serideki sayısının kare kökü olarak seçilmesidir 5

6 Gruplandırılmış Seriler (Sınıflı Seriler) ÖRNEK: Daha önce frekans serisi olarak düzenlenen örneği 2 eşit aralıklı sınıflı seri olarak düzenleyiniz Frekans Serisi i f i Sınıflandırılmış Seri *** Sınıflar fi Sınıflardaki frekanslar belirlenirken alt Sınıf değeri dahil üst sınıf değeri hariç 6 tutulur

7 Ortalamalar Ortalamalar hesaplanmalarında kullanılan birimlere göre iki ana gruba ayrılabilir. 1.Grup (Analitik) Aritmetik Ortalama Kareli Ortalama Geometrik Ortalama Harmonik Ortalama 2.Grup(Analitik Olmayan) Mod Medyan 1.Gruptaki ortalamaların değeri, serinin herhangi bir biriminin değeri değiştiğinde değişir. 2. gruptaki ortalamaların değerinin değişmesi için bu ortalamaların hesabında kullanılan birimlerin değerinin değişmesi gerekir. 7

8 Aritmetik Ortalama Tanım: Serideki gözlem değerleri toplamının, toplam gözlem sayısına oranı şeklinde hesaplanır. N N N N i i 1 k i i k i i fi f 1 1 k k k f f f f f f k k k f f f m f m f m f k i i k i i i f m f 1 1 Basit seride = = Frekans serisinde = = Gruplandırılmış seride = = i : i. gözlem değeri, f i : i. gözlemin tekrar sayısı (frekansı) m i : i. sınıfın sınıf orta noktası 8

9 Aritmetik Ortalamanın Bazı Özellikleri Aritmetik ortalama hassas (diğer ortalamalara nazaran) bir ortalama olup serideki aşırı değerlerden etkilenir ve aşırı değere doğru kayma gösterir. Serideki gözlem değerlerinin aritmetik ortalamadan sapmaları toplamı sıfır olur. (i -) = 0 Serideki değerlerin aritmetik ortalamadan sapmalarının kareleri toplamı minimum olur. 2 ( i ) Minimum 9

10 35. Which of the following categories best describes your annual household income? Aritmetik Ortalama SELECT ONE Under $10,000 1 $10,000 and under $20,000 2 $20,000 to less than $35,000 3 $35,000 to less than $50,000 4 $50,000 to less than $75,000 5 $75,000 to less than $100,000 6 $100,000 to less than $150,000 7 $150,000 or more 8 Transportation.mtw, soru 35. Ankete katılanların hane gelir ortalamasını hesaplayın 10

11 Mod Tanım: Bir seride en çok tekrarlanan değere mod adı verilir. İstatistikte nispeten az kullanılan bu ölçü özellikle verilerin simetrik bir dağılış göstermediği durumlarda iyi bir ölçü olarak düşünülebilir. Örnek: Yanda basit ve tasnif edilmiş iki seri verilmiştir. Bu serilerin modlarını bulunuz i i (f i )

12 Mod Örneğin bir perakende mağazası yöneticisinin ilgisi en çok satılan ürün üzerinedir. Ulaşım planlamada trafik sıkışıklığı, genellikle haftanın hangi günleri sıkışıklığın zirveye ulaştığı ve sabah ve akşam saatlerinde sıkışıklığın yoğun olduğu terimleriyle ölçülür.

13 Modun Özellikleri Ortalamalar oranında en temsili alanıdır. Pratik hayatta çok kullanılan ortalamalardandır Özellikle kalitatif (niteliksel) serilerin ortalaması mod ile ifade edilir. Mod serideki aşırı değerlere karşı hassas değildir. Yukarıdaki avantajlarının yanında analitik olmaması sebebi ile matematik işlemlere elverişli değildir. J, ters J ve U tipi serilerde mod temsili alma özelliğini kaybeder. Böyle serilerde mod ya en küçük veya en büyük değere karşılık gelir.

14 Medyan (Ortanca) Tanım: Serideki değerler küçükten büyüğe sıralandığında tam ortaya düşen ve seriyi iki eşit parçaya bölen değere medyan adı verilir. Kartil: Bir serinin elemanları küçükten büyüğe doğru sıralandığında, seriyi dört eşit parçaya bölen değerlere kartil adı verilir. Örnek: i :15,8,12,23,45,32,5,18,16,28,39,51 Yukarıdaki serinin medyanını bulunuz. Önce seri büyüklük sırasına göre dizilir i : 5,8,12,15,16,18, 23,28,32,39,45,51 Verilerin % 50 si Medyan=(18+23)/2 Medyan= 20.5 Verilerin diğer % 50 si

15 Medyanın Özellikleri 1. Pratik bir ortalamadır, sadece basit bir sıralama işlemi gerektirir. 2. Özellikle açık sınıflı seriler için medyan daha bir önem kazanır. Medyan böyle serilerin ortalamasında problemsiz olarak hesaplanabilir. 3. Serideki aşırı değerlere karşı hassas değildir. Çünkü medyan serinin ortasına rastladığında, uçlarda oluşan aşırı değerler medyanı etkilemez. 4. Serideki değerlerin medyandan mutlak farkları toplamı minimum olur. i-medyan minimum 5. Medyanın zayıf tarafı serideki bütün değerleri dikkate almaması sebebi ile matematik işlemlere elverişli değildir.

16 Mod, Medyan ve Aritmetik Ortalama Arasındaki İlişkiler 1- Simetrik serilerde her üç ortalama birbirine eşit olur. =medyan=mod

17 Mod, Medyan ve Aritmetik Ortalama Arasındaki İlişkiler 2- Sağa çarpık serilerde > Medyan > Mod olur. Simetrik eğri Sağa çarpık eğri M o d M e d y a n

18 Mod, Medyan ve Aritmetik Ortalama Arasındaki İlişkiler 3- Sola çarpık seride < Medyan < Mod olur. M e d y a n M o d 4- Asimetrisi hafif seriler için yaklaşık olarak aşağıdaki eşitlik geçerlidir. ( - Mod ) 3( - Medyan)

19 Değişkenlik Ortalamalar, serilerin karşılaştırılmasında her zaman yeterli ölçüler değildir. Aynı ortalamayı sahip seriler farklı dağılım gösterebilirler. Bu nedenle serilerin karşılaştırılmasında, değişkenlik ve asimetri ölçülerine bakılır.

20 Değişkenlik Aynı ortalamaya sahip seriler farklı dağılım gösterebilirler. Bu nedenle serilerin karşılaştırılmasında, değişkenlik ve asimetri ölçülerine de bakılır. i ve Y i aşağıdaki gibi iki seri verilmiş olsun: i Yi Serilerin aritmetik ortalamaları: Y n i i n 5 N Yi i N 5

21 Değişkenlik Ölçüleri Değişkenliği az olan serilerin ortalamaları daha temsili oldukları halde, değişkenliği fazla olanların ortalamaları seriyi daha az temsil eder. Değişkenlik Ölçüleri Mutlak Değişkenlik Ölçüleri Değişim Aralığı Kartil ve Desil Aralığı Standart Sapma Nisbi Değişkenlik Ölçüleri Değişim Katsayısı

22 Değişim Aralığı Tanım: Gözlem değerlerinin maksimum ve minimumu arasındaki fark olup, verilerin ne kadarlık bir aralıkta değiştiğini gösterir. Değişim aralığı frekans serilerinde i sütununun maksimum ve minimum değerleri arasındaki farka, gruplandırılmış serilerde ise ilk grubun alt sınır değeri ile, son sınıfın üst sınır değeri arasındaki farka eşittir. R = max - min Örnek: i : 12,15,20,30,50,52,58,70,90 olan bir serinin değişim aralığı R=90-12 =78 Yani gözlem değerleri 78 birimlik bir aralıkta değişim göstermektedir.

23 Standart Sapma Tanım: Seri değerlerinin aritmetik ortalamadan farklarının kareli ortalamasına standart sapma denir. Standart sapma σ ile gösterilir. Tanım: Standart sapmanın karesine varyans adı verilir. Varyans V() yada σ 2 ile ifade edilir.

24 Standart Sapma Varyans serideki değişimi nasıl ölçer? x i x her zaman sıfır olacağından farkların karelerini alırız ( i ) N 2

25 Değişim Katsayısı Tanım: Standart sapmanın ortalamanın bir yüzdesi olarak ifade edilmesine değişim katsayısı adı verilir. Bu tanıma göre standart sapmanın büyüklüğü ortalamaya göre ifade edilmektedir. D. K.100 Bu hesaplama ile ölçü birimlerinin etkisi giderilmiş olmaktadır. Bu nedenle bu karşılaştırılmak istenen serilerin değerleri farklı ölçü birimleri ile ifade edildiği durumlarda değişim katsayısı kullanılabilir. Değişim katsayısı küçük olan serilerde, birimlerin ortalama etrafında daha uygun dağıldıkları sonucuna varılır.

26 Değişim Katsayısı Örnek: Konutlarda tüketilen aylık elektrik ve su miktarları için aşağıdaki veriler elde edilmiştir. Değişim katsayılarını bularak hangi grupta değişkenliğin daha fazla olduğunu araştırın Elekt. Konut Say. mi fi.mi fi.mi ,125 K 37812, Tük.(kw/h) K , , , D. K D. K , , , Su Tük.(ton/h) Konut Say. mi fi.mi fi.mi 2 K 1011, K , ,55 138,16 11, ,75 D. K.100 D. K , ,

27 Değişim Katsayısı Elektrik Tüketimi İçin ,125 K 37812, K ,5 178, , D. K.100 D. K ,125 44,8 Su Tüketimi İçin , K 1011, K ,4 29, ,16 11,75 11,75 D. K.100 D. K ,55 39,76

28 Asimetri Ölçüleri Tanım: Serilerin dağılım şekillerini belirlemek için hesaplanan ölçülere asimetri ölçüleri denir. Değişkenlik ölçüleri serilerin değişkenliğini ölçebilmesine rağmen, onların dağılma şekilleri hakkında bilgi vermez. Oysa ortalamaları ve değişkenlik ölçüleri birbirine eşit veya yakın olan serilerin dağılımları birbirinden farklı olabilir. Bu nedenle serilerin sadece değişkenli ölçüleri değil, dağılma şekilleri de araştırılmalıdır.

29 Asimetri Ölçüleri Dağılımı çan eğrisine benzeyen, tek maksimumlu ve simetrik olan dağılım istatistikte önemli bir yere sahiptir ve bazı yöntemlerin uygulanması dağılımların normal dağılım olduğu varsayımına dayanmaktadır. Bir dağılımın normal dağılım olarak kabul edilebilmesi için simetri durumunun bulunması ve basıklık ölçüsünün hesaplanması gerekir. Basıklık ölçüsü ile bir dağılımın basıklığının, normal dağılımın basıklığından farklı olup olmadığı belirlenmektedir.

30 Ortalamalar Arası Farklar ile Hesaplanan Asimetri Ölçüleri Simetrik dağılım gösteren tek modlu serilerde aritmetik ortalama, mod ve medyan birbirine eşittir. M e M o ise seri simetriktir. Bu değerler arasındaki fark arttıkça serinin eğikliği artar.

31 Ortalamalar Arası Farklar ile Hesaplanan Asimetri Ölçüleri M e M o ise seri sola çarpıktır. M e M o ise seri sağa çarpıktır.

32 Asimetri Ölçüleri Sola Eğik Seri Simetrik Seri Sağa Eğik Seri

33 Kutu Diyagramları Kutu diyagramı, bir serinin ortalaması, simetrik olup olmadığını, verilerdeki değişkenliği ve aşırı uç değerler olup olmadığını görsel olarak belirlemek için kullanılan bir diyagramdır. Bir kutu diyagramı Alt ve Üst Çizgiler Uç değerler Aşırı Uç değerler in belirlenmesinde çok yararlı bir çizgedir

34 Kutu Diyagramları Alt çizgi, Q 1 den, 1,5 çeyrekler arası değişim aralığı kadar uzatılır Üst çizgi, Q 3 den, 1,5 çeyrekler arası değişim aralığı kadar uzatılır Q 1 Q 2 Q 3 Uç değerler Uç değerler 1,5ÇAD 1,5ÇAD ÇAD 1,5ÇAD 1,5ÇAD Aşırı Uç değerler Çeyrekler Arası Değişim Aralığı (ÇAD)=Q 3 -Q 1

35 Kutu Diyagramları Şekil Bir metale ait kopma kuvveti verilerinin kutu diyagramı

36 Kalite İndeksi Kutu Diyagramları Şekil Üç fabrikadaki kalite indeksinin karşılaştırmalı kutu çizgeleri Fabrika

37 Skewness Asimetri Ölçüsü Minitab da Descriptive Statistics menüsünde Skewness Simetri ölçüsü hesaplanabilmektedir. Skewness =0 ise seri simetrik Skewness<0 ise seri sola çarpık Skewness >0 ise seri sağa çarpıktır Negatif 0 Pozitif

38 Kurtosis Basıklık Ölçüsü Minitab da Descriptive Statistics menüsünden Kurtosis Basıklık ölçüsü hesaplanabilmektedir. Kurtosis=0 ise seri normal dağılım ile aynı sivriliğe sahip. Kurtosis <0 ise seri normal dağılıma göre daha basık Kurtosis >0 ise seri normal dağılıma göre daha sivri

39 Tanımlayıcı İstatistikler Stat >>Basic Statistics >>>Display Descriptive Statistics

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Nokta Grafikleri Nokta grafikleri örnek veri dağılımlarını değerlendirmek ve karşılaştırmak için kullanılır. Bir nokta grafiği örneklem verilerini gruplandırır

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız. .4. Merkezi Eğilim ve Dağılım Ölçüleri Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin

Detaylı

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Merkezi Eğilim ve Değişim Ölçüleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 İstatistik

Detaylı

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ

TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ TEMEL İSTATİSTİKİ KAVRAMLAR YRD. DOÇ. DR. İBRAHİM ÇÜTCÜ 1 İstatistik İstatistik, belirsizliğin veya eksik bilginin söz konusu olduğu durumlarda çıkarımlar yapmak ve karar vermek için sayısal verilerin

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA

JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ. Prof. Dr. Mualla YALÇINKAYA JEODEZİK VERİLERİN İSTATİSTİK ANALİZİ Prof. Dr. Mualla YALÇINKAYA Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü Trabzon, 2018 VERİLERİN İRDELENMESİ Örnek: İki nokta arasındaki uzunluk 80 kere

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

Sapma (Dağılma) ölçüleri. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Sapma (Dağılma) ölçüleri. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Sapma (Dağılma) ölçüleri Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr Sapma (Dağılma) ölçüleri Mutlak Sapma Ölçüleri Değişim aralığı Kartil ve Desil aralığı Ortalama mutlak sapma Standart sapma

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011

Temel Ġstatistik. Tanımlayıcı Ġstatistik. Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri. Y.Doç.Dr. Ġbrahim Turan Mart 2011 Temel Ġstatistik Tanımlayıcı Ġstatistik Dağılımları Tanımlayıcı Ölçüler Yer Ölçüleri Y.Doç.Dr. Ġbrahim Turan Mart 2011 Yer / Konum Ölçüleri 1- Aritmetik Ortalama (Mean): Deneklerin aldıkları değerlerin

Detaylı

Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan

Konum ve Dağılım Ölçüleri. BBY606 Araştırma Yöntemleri Güleda Doğan Konum ve Dağılım Ölçüleri BBY606 Araştırma Yöntemleri Güleda Doğan Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl? Yakın, uzak? Sıklık dağılımlarının karşılaştırılması

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ)

İSTATİSTİKSEL KALİTE KONTROLDE KULLANILAN TEMEL İSTATİSTİKSEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) İTATİTİKEL KALİTE KOTROLDE KULLAILA TEMEL İTATİTİKEL ÖLÇÜLER (MERKEZİ EĞİLİM VE DAĞILIM ÖLÇÜLERİ) Kalite Mühendisliği kapsamında İstatistik Proses Kontrolde (İPK) kullanılan temel istatistik ölçüler ve

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median)

KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR ANALİTİK OLMAYAN MERKEZİ. Aritmetik ortalama **Medyan(median) KONU2 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 MERKEZİ EĞİLİM ÖLÇÜLERİ ANALİTİK ORTALAMALAR Bir örneklemde mevcut olan tüm veriler hesaba katılır. ANALİTİK OLMAYAN MERKEZİ EĞİLİM ÖLÇÜLERİ Bir örneklemdeki verilerin bir

Detaylı

EĞĠTĠMDE ÖLÇME VE DEĞERLENDĠRME BÖLÜM IV Ölçme Sonuçları Üzerinde Ġstatistiksel ĠĢlemler VERİLERİN DÜZENLENMESİ VERİLERİN DÜZENLENMESİ

EĞĠTĠMDE ÖLÇME VE DEĞERLENDĠRME BÖLÜM IV Ölçme Sonuçları Üzerinde Ġstatistiksel ĠĢlemler VERİLERİN DÜZENLENMESİ VERİLERİN DÜZENLENMESİ 09.0.0 Temel Kavramlar EĞĠTĠMDE ÖLÇME VE DEĞERLENDĠRME BÖLÜM IV Ölçme Sonuçları Üzerinde Ġstatistiksel ĠĢlemler Dr. Aylin ALBAYRAK SARI Hacettepe Üniversitesi Eğitim Fakültesi Evren: Üzerinde çalışılacak

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR)

İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) SAÜ 5. BÖLÜM İSTATİSTİKSEL MERKEZİ EĞİLİM ÖLÇÜLERİ (DUYARSIZ ORTALAMALAR) PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 1. HASSAS OLMAYAN ORTALAMALAR 1.1. Mod (Tepe Noktası) 1.1.1.1. Basit Serilerde Mod 1.1.1.2.

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

Ders 8: Verilerin Düzenlenmesi ve Analizi

Ders 8: Verilerin Düzenlenmesi ve Analizi Ders 8: Verilerin Düzenlenmesi ve Analizi Betimsel İstatistik Merkezsel Eğilim Ölçüleri Dağılım Ölçüleri Grafiksel Gösterimler Bir kitlenin tamamını, ya da kitleden alınan bir örneklemi özetlemekle (betimlemekle)

Detaylı

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI

UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI 1 UYGULAMA 4 TANIMLAYICI İSTATİSTİK DEĞERLERİNİN HESAPLANMASI Örnek 1: Ders Kitabı 3. konuda verilen 100 tane yaş değeri için; a. Aritmetik ortalama, b. Ortanca değer, c. Tepe değeri, d. En küçük ve en

Detaylı

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.

Detaylı

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK

ÖLÇME VE DEĞERLENDİRME. Antrenörlük Eğitimi 4. Sınıf. Ölçme ve Değerlendirme - Yrd. Doç. Dr. Yetkin Utku KAMUK ÖLÇME VE DEĞERLENDİRME Antrenörlük Eğitimi 4. Sınıf ÖLÇME VE DEĞERLENDİRME Merkezi Eğilim Ölçütleri Mod En çok görülen puandır ve hesaplanma yöntemi yoktur. İnceleme yolu ile bulunur. Terminal istatistiktir.

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Beklenti Anketi ne İlişkin Yöntemsel Açıklama

Beklenti Anketi ne İlişkin Yöntemsel Açıklama Beklenti Anketi ne İlişkin Yöntemsel Açıklama İstatistik Genel Müdürlüğü Reel Sektör Verileri Müdürlüğü İçindekiler I- Amaç... 3 II- Kapsam... 3 III- Yöntem... 3 IV- Tanımlar ve Hesaplamalar... 3 V- Yayımlama...

Detaylı

Gruplanmış serilerde standart sapma hesabı

Gruplanmış serilerde standart sapma hesabı Gruplanmış serilerde standart sapma hesabı Örnek: Verilen gruplanmış serinin standart sapmasını bulunuz? Sınıflar f i X X X m i f i. m i m i - (m i - ) f i.(m i - ) 0 den az 3 4 den az 7 4 6 dan az 4 6

Detaylı

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University. Company Logo

17/01/2015. PowerPoint Template. Dr. S.Nihat ŞAD LOGO. İnönü University.  Company Logo PowerPoint Template LOGO Dr. S.Nihat ŞAD İnönü University www.thmemgallery.com Company Logo 1 Contents www.thmemgallery.com geliştirme süreci Birey hakkında bilgi toplama yolları lerin sınıflandırılması

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ DAĞILMA YADA DEĞİ KENLİK ÖLÇÜLERİ (MEASURE OF DISPERSION) 1 AMAÇ... Mevcut veri seti için bulunan merkezi eğilim ölçüsünün yorumlamak Birden fazla veri seti için dağılımlar arası kıyaslama yapabilmek amaçlarıyla

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

YANLILIK. Yanlılık örneklem istatistiği değerlerinin evren parametre değerinden herhangi bir sistematik sapması olarak tanımlanır.

YANLILIK. Yanlılık örneklem istatistiği değerlerinin evren parametre değerinden herhangi bir sistematik sapması olarak tanımlanır. AED 310 İSTATİSTİK YANLILIK Yanlılık örneklem istatistiği değerlerinin evren parametre değerinden herhangi bir sistematik sapması olarak tanımlanır. YANLILIK Yanlı bir araştırma tasarımı uygulandığında,

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

Verilerin Düzenlenmesi

Verilerin Düzenlenmesi Verilerin Düzenlenmesi İstatistiksel verileri anlamlı hale getirmenin 5 ayrı yolu: 1. Sözel ifadelerle açıklama 2. Tablolar halinde düzenleme 3. Seriler halinde düzenleme 4. Grafiklerle gösterme 5. Bu

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ DÖNEM SONU SINAV SORULARI Tarih/Saat/Yer: 15.06.16/09:00-10:30/AS115-116-117 Instructor: Prof. Dr. Hüseyin

Detaylı

İSTATİSTİK MHN3120 Malzeme Mühendisliği

İSTATİSTİK MHN3120 Malzeme Mühendisliği İSTATİSTİK MHN3120 Malzeme Mühendisliği CBÜ - Malzeme Mühendisliği Bölümü Ofis: Mühendislik Fakültesi A Blok Ofis no:311 Tel: 0 236 2012404 E-posta :emre.yalamac@cbu.edu.tr YARDIMCI KAYNAKLAR Mühendiler

Detaylı

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir.

Grafik üzerindeki bilgiler özetlenmiştir. Veriler arasındaki ilişkiler görünür haldedir. GRAFİK VE İSTATİSTİK Grafikler,verileri görsel hale getirerek,veriler üzerinde daha kolay işlem yapılmasına ve elde edilen sonuçları değerlendirerek üzerinde tahmin yapılmasına olanak sağlar. Grafik üzerindeki

Detaylı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı

İSTATİSTİK. İstatistik Nedir? İstatistiksel Araştırmanın Amacı İSTATİSTİK İstatistik, belirli amaçlar için veri toplama, toplanan verileri tasnif etme, çözümleme ve yorumlama bilimidir Yrd. Doç. Dr. Hamit AYDIN İstatistik Nedir? Latince de durum anlamına gelen status

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 23.02.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

BÖLÜM 1 GİRİŞ: İSTATİSTİĞİN MÜHENDİSLİKTEKİ ÖNEMİ

BÖLÜM 1 GİRİŞ: İSTATİSTİĞİN MÜHENDİSLİKTEKİ ÖNEMİ BÖLÜM..AMAÇ GİRİŞ: İSTATİSTİĞİ MÜHEDİSLİKTEKİ ÖEMİ Doğa bilimlerinde karşılaştığımız problemlerin birçoğunda olaydaki değişkenlerin değerleri bilindiğinde probleme kesin ve tek bir çözüm bulunabilir. Örneğin

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ TELAFĐ SINAVI SORULARI Tarih/Saat/Yer: 20.06.16/15:00-16:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz Öğrenci

Detaylı

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

7. HAFTA. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 7. HAFTA Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 14.04.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr.

5. SUNUM. Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar. Yrd. Doç. Dr. 5. SUNUM Verilerin düzenlenmesi Verilerin gruplandırılması Merkezi eğilim ölçüleri Merkezi dağılım ölçüleri Standart puanlar Yrd. Doç. Dr. Sedat ŞEN 08.09.2016 1 Veri nedir? Bir öğrenci kümesine uygulanan

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

Biyoistatistiğe Giriş: Temel Tanımlar ve Kavramlar DERS I VE II

Biyoistatistiğe Giriş: Temel Tanımlar ve Kavramlar DERS I VE II Biyoistatistiğe Giriş: Temel Tanımlar ve Kavramlar DERS I VE II İstatistik Nedir? İstatistik kelimesi farklı anlamlar taşımaktadır. Bunlar; Genel anlamda; üretim, tüketim, nüfus, sağlık, eğitim, tarım,

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

BİYOİSTATİSTİK MERKEZİ EĞİLİM ÖLÇÜLERİ

BİYOİSTATİSTİK MERKEZİ EĞİLİM ÖLÇÜLERİ BİYOİSTATİSTİK MERKEZİ EĞİLİM ÖLÇÜLERİ B Doç. Dr. Mahmut AKBOLAT *Bir veri setinin merkez noktasını gösteren, serinin normal değerinin bir göstergesi olan ve veriyi tek bir değerle ifade eden değerlere

Detaylı

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme

3/6/2014. Küresel Isınma. Öğrenme Amaçlarımız. Küresel Isınma. Aritmetik Ortalama. Veri Özetleme ve Gösterme Küresel Isınma Küresel Yer-Okyanus Sıcaklık Endeksi Yıllık Ortalama 5 Yıllık Kayan Ortalama Veri Özetleme ve Sunum (Grafiksel Teknikler) Sıcaklık Değişikliği ( o C) Yrd. Doç. Dr. Ümit Deniz Uluşar Bilgisayar

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

Copyright 2004 Pearson Education, Inc. Slide 1

Copyright 2004 Pearson Education, Inc. Slide 1 Slide 1 Bölüm 2 Verileri Betimleme, Keşfetme, ve Karşılaştırma 2-1 Genel Bakış 2-2 Sıklık Dağılımları 2-3 Verilerin Görselleştirilmesi 2-4 Merkezi Eğilim Ölçüleri 2-5 Değişimin Ölçülmesi 2-6 Nispi Sabitlerin

Detaylı

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR TATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR Ders Adı : İstatistiğe Giriş Sınav Türü : Bütünleme WWW.NETSORULAR.COM Sınavlarınızda Başarılar Dileriz... İstatistiğe Giriş A Bu testte 20 soru

Detaylı

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler

Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Biyoistatistiğin Tanımı Biyoistatistikte Kullanılan Terimler Değişken Tipleri Parametre ve İstatistik Tanımlayıcı İstatistikler Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik

Detaylı

Sıklık Tabloları, BASİT ve TEK değişkenli Grafikler Ders 3 ve 4 ve 5

Sıklık Tabloları, BASİT ve TEK değişkenli Grafikler Ders 3 ve 4 ve 5 Sıklık Tabloları, BASİT ve TEK değişkenli Grafikler Ders 3 ve 4 ve 5 Sıklık Tabloları Veri dizisinde yer alan değerlerin tekrarlama sayılarını içeren tabloya sıklık tablosu denir. Tek değişken için çizilen

Detaylı

TEST VE MADDE ANALİZLERİ

TEST VE MADDE ANALİZLERİ TEST VE MADDE ANALİZLERİ Madde güçlüğü Madde ayırt ediciliği Madde varyansı ve madde standart sapması Madde güvenirliği Çeldiricilerin işlerliği Test Analizleri Merkezi Eğilim(Yığılma Ölçüleri) Merkezi

Detaylı

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması

Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Adı: İstatistik yardımıyla YGS ye hazırlık için soru çözme planlaması Projenin Amacı : YGS de başarılı olmak isteyen bir öğrencinin, istatistiksel yöntemler çerçevesinde, sınavda çıkan soru sayısını,

Detaylı

ÖLÇME VE DEĞERLENDĠRME (3)

ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME VE DEĞERLENDĠRME (3) ÖLÇME SONUÇLARI ÜZERĠNDE ĠSTATĠSTĠKSEL ĠġLEMLER VERĠLERĠN DÜZENLENMESĠ -Herhangi bir test uygulamasından önce verilerin düzenlenmesi için önce bütün puanların büyüklüklerine

Detaylı

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1

SPSS UYGULAMALARI-II Dr. Seher Yalçın 1 SPSS UYGULAMALARI-II 27.12.2016 Dr. Seher Yalçın 1 Normal Dağılım Varsayımının İncelenmesi Çarpıklık ve Basıklık Katsayısının İncelenmesi Analyze Descriptive Statistics Descriptives tıklanır. Açılan pencerede,

Detaylı

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir?

3)Aşağıdaki tabloda gruplandırılmış bir veri kümesi bulunmaktadır. Bu veri kümesinin mutlak ortalamadan sapması aşağıdakilerden hangisidir? İSTATİSTİK SORU VE CEVAPLARI 1)Tabloda 500 kişinin sahip oldukları akıllı telefon markalarını gösteren bilgiler verilmiştir.bu tabloda ki bilgileri yansıtan daire grafiği aşağıdakilerden hangisidir? TELEFON

Detaylı

İSTATİSTİĞE GİRİŞ FINAL

İSTATİSTİĞE GİRİŞ FINAL İSTATİSTİĞE GİRİŞ İSTATİSTİĞE GİRİŞ FINAL İSTATİSTİĞE GİRİŞ A İSTATİSTİĞE GİRİŞ DİKKAT! Bu testte 25 soru bulunmaktadır. Cevaplarınızı, cevap kâğıdınızın İstatistiğe Giriş testi için ayrılan kısmına işaretleyiniz.

Detaylı

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ

İSTATİSTİĞE GİRİŞ ÜNİTE 2 İSTATİSTİK VERİLERİ VERİ TÜRLERİ İSTATİSTİĞE GİRİŞ ÜNİTE 1 TEMEL KAVRAMLAR İSTATİSTİĞİN TANIMI İstatistik; herhangi bir konuyla ilgili verilerin toplanması, düzenlenmesi, özetlenmesi, sunulması, uygun yöntemlerle analizi ve bu analizlerle

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR

ATATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR TATÜRK ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ ÇIKMIŞ SORULAR Ders Adı : İstatistiğe Giriş Sınav Türü : Final WWW.NETSORULAR.COM Sınavlarınızda Başarılar Dileriz... İSTATİSTİĞE GİRİŞ DİKKAT! Bu testte 25 soru

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

VERİLERİ ÖZETLEME. Prof.Dr. Levent ŞENYAY III - 1

VERİLERİ ÖZETLEME. Prof.Dr. Levent ŞENYAY III - 1 3 VERİLERİ ÖZETLEME 3.. Frekans Tablolarının Düzenlenmesi 3.2. Frekans poligonu 3.3. Frekans tablosu hazırlama 3.4. Frekans Histogramı 3.5. Frekans eğrisi tipleri 3.6. Diğer İstatistiksel Grafik Gösterimler

Detaylı

Merkezi Eğilim Ölçüleri

Merkezi Eğilim Ölçüleri Merkezi Eğilim Ölçüleri 1) Parametrik merkezi eğilim ölçüleri Serinin bütün birimlerinden etkilenen merkezi eğilim ölçüleridir. 1) Aritmetik ortalama 2) Geometrik ortalama (G) 3) Harmonik ortalama (H)

Detaylı

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK

Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Editörler Yrd.Doç.Dr.Aysen Şimşek Kandemir &Yrd.Doç.Dr.Tahir Benli İSTATİSTİK Yazarlar Yrd.Doç.Dr.Nizamettin Erbaş Yrd.Doç.Dr.Tuğba Altıntaş Dr.Yeliz Sevimli Saitoğlu A. Zehra Çelenli Başaran Azize Sağır

Detaylı

FREKANS VERİLERİ. Prof.Dr. Levent ŞENYAY III - 1

FREKANS VERİLERİ. Prof.Dr. Levent ŞENYAY III - 1 3 FREKANS VERİLERİ 3.1. Frekans Tablolarının Düzenlenmesi 3.2. Frekans poligonu 3.3. Frekans tablosu hazırlama 3.4. Frekans Histogramı 3.5. Frekans eğrisi tipleri 3.6. Diğer İstatistiksel Grafik Gösterimler

Detaylı

İSTATİSTİK EXCEL UYGULAMA

İSTATİSTİK EXCEL UYGULAMA İSTATİSTİK EXCEL UYGULAMA EXCEL UYGULAMA Bu bölümde Excel ile ilgili temel bilgiler sunulacak ve daha sonra İstatistiksel Uygulamalar hakkında bilgi verilecektir. İşlenecek Konular: Merkezi eğilim Ölçüleri

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI

İSTATİSTİK STATISTICS (2+0) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI İSTATİSTİK STATISTICS (+) Yrd.Doç.Dr. Nil TOPLAN SAÜ.MÜH. FAK. METALURJİ VE MALZEME MÜH. BÖLÜMÜ ÖĞRETİM ÜYESİ ÖĞRETİM YILI KONU BAŞLIKLARI :. İSTATİSTİĞE GİRİŞ. VERİLERİN DÜZENLENMESİ. MERKEZİ EĞİLİM ÖLÇÜLERİ.

Detaylı

Ders 1 Minitab da Grafiksel Analiz-I

Ders 1 Minitab da Grafiksel Analiz-I ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 1 Minitab da Grafiksel Analiz-I İstatistik Nedir? İstatistik kelimesi ilk olarak Almanyada devlet anlamına gelen status kelimesine dayanılarak kullanılmaya

Detaylı