Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları"

Transkript

1 Kesikli ġans DeğiĢkenleri Ġçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

2 Kesikli ġans DeğiĢkenlerinin Olasılık Fonksiyonları X, şans değişkeni ve, 2,.., n ise bu tesadüfi değişkenin alabileceği değerler olsun. X tesadüfi değişkeninin herhangi bir değerini alma olasılığı Pr{X=} şeklinde gösterilir. Bu olasılık X in dağılım ya da olasılık kanunu diye adlandırılır. Kesikli X değişkeninin hangi değerleri hangi olasılıklarla alacağını gösteren fonksiyona olasılık fonksiyonu denir. Bir dağılımın kesikli olasılık fonksiyonu olabilmesi için. P() 0, tüm değerleri için 2. Tüm P( ) şartlarını sağlaması gerekir. 2

3 3 Örnek: Hilesiz bir zar atıldığında şans değişkeni üst yüze gelen sayıyı ifade etmek üzere bu şans değişkeninin olasılık fonksiyonunu elde ediniz. S = { /,2,3,4,5,6 } P ( X = i ) = / 6 X P ( X = i ) / 6 / 6 / 6 / 6 / 6 / 6 d d X P ) ( İki farklı şekilde ifade edilen şans değişkeninin dağılımına bakıldığında P(X i ) 0 ve tüm değerleri için P(X=)= şartları sağlandığı görülmektedir. P(X=) in bir olasılık fonksiyonu olduğu sonucu ortaya çıkmaktadır.

4 Beklenen Değer Bir şans değişkeninin herhangi bir olasılık fonksiyonunda almış olduğu tüm değerlerin ortalaması o şans değişkeninin beklenen değeridir. X şans değişkeninin beklenen değeri E () ile gösterilir. Bir şans değişkenin beklenen değeri o şans değişkeninin ortalamasına eşittir. E () = µ 4

5 Beklenen Değer Kullanarak Varyansın Elde Edilmesi E( 2 ) : şans değişkeninin karesinin beklenen değeri Var ( ) E( ) [ E( )] E( ) [ E( )] 2 Var( ) E( 2 ) 5

6 6 Kesikli ġans DeğiĢkenleri Ġçin Beklenen Değer ve Varyans Tüm i i P E ) ( ) ( 2 2 )] ( [ ) ( ) ( E E Var 2 2 ) ( ) ( ) ( tüm i i tüm i i P P Var Tüm i i P E ) ( ) ( 2 2

7 Örnek: Bir otomobil bayisinin günlük otomobil satışlarının dağılımının aşağıdaki gibi olduğunu ifade etmektedir. X P(X) 0,02 0,08 0,5 0,9 0,24 0,7 0,0 0,04 0,0 Bu dağılışa göre bayinin; a) 5 ten fazla araba satması olasılığını bulunuz P(X = 6) + P ( X = 7 ) + P ( X = 8 ) = =0,5 b) Satışların beklenen değerini hesaplayıp yorumlayınız. P( i ) E(X) = = (0)(0,02)+()(0,08)+(2)(0,5)+.+(8)(0,0) =3,72 Bayinin 00 günde 372 araba satışı yapması beklenir. c) Satışların varyansını bulunuz. 2 P( ) i E(X 2 ) = =(0 2 )(0,02)+( 2 )(0,08)+.+ (8 2 )(0,0) = 6,68 Var(X)= E(X 2 ) - [E(X)] 2 = 6,68 - (3,72) 2 = 2,84 7

8 KESĠKLĠ ġans DEĞĠġKENLERĠNĠN OLASILIK DAĞILIMLARI Kesikli Üniform Dağılımı Bernoulli Dağılımı Binom Dağılımı Negatif Binom Dağılımı Geometrik Dağılım Hipergeometrik Dağılım Poisson Dağılımı 8

9 Kesikli Üniform Dağılımı Kesikli bir şans değişkeni tanımlı olduğu tüm noktalarda eşit olasılık değerine sahip ise bir başka ifadeyle tanımlı olduğu değerlerin hepsinde olasılık fonksiyonun aldığı değer sabit ise bu kesikli şans değişkeni üniform dağılımına uygundur. Üniform dağılımı gösteren bir şans değişkeni k farklı noktada tanımlı ise olasılık dağılımı; P( X ) k 0 d. d,2,3..., k şeklinde ifade edilir. 9

10 0 Kesikli Üniform Dağılımının Beklenen Değer ve Varyansı 2 2 ) ( ) ( ) ( k k k k k P E k i k i i 2 ) )( ( ) ( k k Var

11 Örnek: Hilesiz bir zar atıldığında şans değişkeni ortaya çıkabilecek farklı durum sayısını ifade ettiğine göre in olasılık dağılımını oluşturarak beklenen değerini ve varyansını bulunuz. S = { /,2,3,4,5,6 } Ortaya çıkan olaylar eşit olasılıklı olaylar şans değişkeninin dağılımı k = 6 olan kesikli üniform dağılımına uygundur. P( X ) E( ) 2 3,5 d. d,2,3,4,5,6 (6 )(6 ) Var ( )

12 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli deneyinin varsayımlarının sağlanması gereklidir. Bernoulli Deneyinin Varsayımları:. Deneyler aynı koşullarda tekrarlanabilirlik özelliğine sahip olmalıdır. 2. Deneylerin yalnız iki mümkün sonucu olması gereklidir. 3. Başarı olasılığı (p), deneyden deneye değişmemektedir (Başarısızlık olasılığı q = -p ile gösterilir) 4. Denemeler birbirinden bağımsız olmalıdır. 2

13 Bernoulli deneyinde ortaya çıkan sonuçlardan bir tanesi baģarı durumu, diğeri ise baģarısızlık olarak ifade edilir. Bernoulli şans değişkeninin dağılımı ifade edilirken deneyin sadece kez tekrarlanması gereklidir. 3

14 Bernoulli dağılışında şans değişkeni başarı durumu için, başarısızlık durumu için ise 0 değerini alır. S = { / 0, } Bernoulli Dağılımının Olasılık Fonksiyonu; P( X ) p ( 0 p) d. d 0, = E ( ) = p 2 = Var ( ) = p (-p) = pq 4

15 Örnekler: Bir fabrikada üretilen bir ürünün hatalı veya sağlam olması, Bir madeni para atıldığında üst yüze yazı veya tura gelmesi, Hilesiz bir zar atıldığında zarın tek veya çift gelmesi, 5

16 Örnek: Bir deste iskambilden çekilen bir kağıdın as olup olmaması ile ilgileniyor. As gelmesi başarı olarak ifade edildiği durum için olasılık fonksiyonunu oluşturunuz. = 0 (as gelmemesi) = ( as gelmesi) S = { / 0, } P( X = 0 ) = 48 / 52 P( X = ) = 4 / 52 P( X ) d. d 0, 6

17 Binom Dağılımı Birbirinden bağımsız n adet bernoulli deneyinin bir araya gelmesi sonucunda binom deneyi gerçekleşir. Binom deneyinin gerçekleşmesi için bernoulli deneyinin bütün varsayımlarının sağlanması gereklidir. Binom şans değişkeni, n adet denemedeki başarı sayısını ifade etmektedir. n denemede en az 0, en fazla n adet başarı gözlenebileceğinden S = { / 0,,2,,n } olur. 7

18 Binom Olasılık Fonksiyonunun Elde Edilmesi Gerçekleştirilen her bir Bernoulli deneyi birbirinden bağımsızdır ve olasılık fonksiyonu olarak ifde edilmiş idi. Bernoulli deneyi n defa tekrarlandığı durumda toplam adet başarı olmasının olasılığı, adet başarı olasılığı (p) ile n - adet başarısızlık olasılığının (q=-p) çarpımını içermelidir. P() p.q 0, 8

19 Başarı ve başarısızlıkların oluşum sırası yani n sıralama önemsiz ise C farklı şekilde ortaya n çıktığı için ; P( X ) n.p 0.( p) n d. d 0,,2,..., n olarak elde edilir. 9

20 Örnekler: Bir fabrikanın deposundan seçilen 0 üründen 2 sinin hatalı olması, Bir madeni para 5 kez atıldığında hiç tura a gelmemesi, üst yüze yazı veya tura gelmesi, Hilesiz bir zar 4 kez atıldığında zarın en çok kez çift gelmesi, 20

21 Binom Dağılımının Karakteristikleri Aritmetik Ortalama E( X ) np Varyans P(X) n = 5 p = X np( p) npq P(X) n = 5 p = X 2

22 Örnek: Bir işletmede üretilen ürünlerin % 6 sının hatalı olduğu bilinmektedir. Rasgele ve iadeli olarak seçilen 5 üründen, a) tanesinin hatalı olmasının olasılığını, b) En az 4 tanesinin hatalı olmasının olasılığını hesaplayınız. p = 0,06 - p = 0,94 n = 5 a)p ( X = ) =? b)p ( X 4 ) =? P( X P ( X 4 ) = P ( X = 4) + P ( X = 5 ) ). (0,06).(0,94) 4.(0,06).(0,94) 5.(0,06) (0,94) 0 0,23 22

23 Negatif Binom Dağılımı Bernoulli deneyinin tüm varsayımları negatif binom dağılımı içinde geçerlidir. Binom dağılımında n denemede adet başarı olasılığı ile ilgilenilirken, negatif binom dağılımında ise şans değişkeni (), k ncı baģarıyı elde edinceye kadar yapılan deney sayısına karşılık gelir. 23

24 Örnekler: 3 tura gelinceye kadar bir parayı ardışık olarak atalım. X,3 tura elde etmek için gereken atışların sayısı negatif binom rasgele değişkendir. Bir,kutuda M beyaz N siyah top vardır. Toplar tekrar yerine konarak çekiliş yapılıyor. X, dört siyah top elde edinceye kadar gereken çekilişlerin sayısı negatif binom rasgele değişkendir. Bir parayı 5 kez tura gelinceye kadar atalım. X,5 nci turayı elde ettiğimiz deneme sayısı negatif binom rasgele değişkendir. Bir basketbolcunun 3 sayılık atışlarda 0 ncu isabeti sağlaması için gerekli olan atış sayısı sayısı negatif 24 binom rasgele değişkendir.

25 : deney sayısı k : baģarı sayısı p : baģarı olasılığı S = { / k, k+, k+2, k+3 } k- k Binom dağılımını kullanarak - denemede k- adet başarı olasılığı hesaplanır ve nci denemedeki k ncı başarıyı elde etme olasılığı p ile bağımsız olaylar olduğundan çarpılarak aşağıdaki olasılık fonksiyonu elde edilir. k k p p k, k, k P( X ) k 0 d. d 2,... 25

26 Negatif Binom Dağılımının Beklenen Değer ve Varyansı k k( E( ) Var( ) 2 p p p) Yandaki histogram p = 0,5 ve k = 8 parametreli negatif binom dağılım gösteren bir populasyondan alınmış 00 hacimlik bir örnek için oluşturulmuştur ,0 0,0 2,0 4,0 6,0 8,0 20,0 22,0 24,0 26

27 k k p p k, k, k 2,... P( X ) k 0 d. d Örnek: Bir kişinin hilesiz bir zarı 0 kez atması sonucunda, 0 ncu atışında 5 nci kez 6 gelmesi olasılığını hesaplayınız. p = / 6 - p = 5 / 6 = 0 (deney sayısı) k = 5 (baģarı sayısı) 0 5 P( X 0; k 5).( ).( ) Zarın kaçıncı kez atılması sonucu 5 nci kez 6 gelmesini beklersiniz? k 5 E( ) p 6 Not:Binom dağılımını kullanarak - denemede k- adet başarı olasılığı hesaplanır ve nci denemedeki k ncı başarıyı elde etme olasılığı p ile bağımsız olaylar 30 olduğundan çarpılarak aşağıdaki olasılık fonksiyonu elde edilir. 27

28 Geometrik Dağılım Bernoulli deneyinin tüm varsayımları geometrik dağılım içinde geçerlidir. Negatif Binom dağılımının özel bir durumudur. k = olduğunda negatif binom dağılımı geometrik dağılım olarak ifade edilir. Geometrik dağılım gösteren Ģans değiģkeni X, ilk baģarıyı elde edinceye kadar yapılan deney sayısını ifade eder. 28

29 Örnekler: Bir parayı tura gelinceye kadar attığımızda, X ilk turayı bulmak için yapılan atıģ sayısı geometrik rasgele değiģkendir., Bir işletmenin deposundan ilk hatalı ürünü bulana kadar alınan örnek sayısı. Bir zar 6 gelinceye kadar atılıyor. Burada X, ilk altıyı elde etmek için gereken atış sayısı olsun. X geometrik rasgele değişkendir. Bir kutuda 6 kusurlu, 7 kusursuz parça vardır. Parçalar ardışık olarak yerine konup çekiliyor. Burada X, kusurlu parça elde edinceye kadar gereken çekilişlerin sayısı geometrik rasgele değişkendir. 29

30 30 : deney sayısı p: baģarı olasılığı S = { /, 2, 3, 4.. } d d k k k p p k X P k k. 0 2,...,, ) ( ) ( p p X P Negatif Binom dağılımında k = alındığında; d d p p X P. 0,2,3,... ) (

31 Geometrik Dağılımının Beklenen Değer ve Varyansı E( ) p Var ( ) p 2 p 200 Yandaki histogram p = 0,5 parametreli geometrik dağılım gösteren populasyondan alınmış 250 hacimlik bir örnek için oluşturulmuştur

32 Örnek: Bir avcı hedefe isabet sağlayana kadar ateş etmektedir. Avcının hedefi vurma olasılığı 0,75 olduğuna göre avcının hedefi ilk kez 8 nci kez atış yaptığında isabet ettirmesinin olasılığını hesaplayınız. = 8 P ( X = 8) =? P( X ) p 0 p,2,3,... d. d P( X ) 0,75 0,75 0,2,3... d. d 8 0,75 0,75 0,750, 25 7 P( X 8) 32

33 Hipergeometrik Dağılım Varsayımları, n deneme benzer koşullarda tekrarlanabilir. Her denemenin 2 mümkün sonucu vardır. Sonlu populasyondan iadesiz örnekleme yapılır. Örnekleme iadesiz olduğundan başarı olasılığı ( p ) deneyden deneye değiģir. 33

34 34 Hipergeometrik Dağılımın Olasılık Fonksiyonu n : örnek hacmi N : anakütle eleman sayısı B : populasyondaki başarı sayısı : örnekteki başarı sayısı S = { / 0,, 2, 3,..,n } d d n n N n B N B X P. 0 0,,2,3..., ) (

35 Hipergeometrik Dağılımın Karakteristikleri p = B/N için E( ) n p Var ( ) np( 60 p) N N n Yandaki histogram N = 0000 ve B = 2000 parametreli hipergeometrik dağılım gösteren populasyondan alınmış 250 hacimlik bir örnek için oluşturulmuştur X

36 Örnek: Yeni açılan bir bankanın ilk 00 müşterisi içinde 60 tanesi mevduat hesabına sahiptir. Ġadesiz olarak rasgele seçilen 8 müşteriden 5 tanesinin mevduat hesabına sahip olmasının olasılığı nedir? n : örnek hacmi n=8 N : anakütle eleman sayısı N=00 B : populasyondaki başarı sayısı B=60 : örnekteki başarı sayısı = 6 36

37 37 d d n n N n B N B X P. 0 0,,2,3..., ) ( N= 00 B = 60 n = 8 = ( 5) 00 8 PX

38 Poisson Dağılımı Kesikli Şans değişkenlerinin olasılık dağılımlarından en önemlilerinden biri Poisson Dağılımıdır. Günlük hayatta ve uygulamada çok sayıda kullanım alanı bulunmaktadır. Ünlü Fransız matematikçisi Poisson tarafından bulunmuştur. Belirli bir alan içerisinde rasgele dağılan veya zaman içerisinde rasgele gözlenen olayların olasılıklarının hesaplanabilmesi için çok kullanışlı bir modeldir. 38

39 Poisson Sürecinin Varsayımları. Belirlenen periyotta meydana gelen ortalama olay sayısı sabittir. 2. Herhangi bir zaman diliminde bir olayın meydana gelmesi bir önceki zaman diliminde meydana gelen olay sayısından bağımsızdır.(periyotların kesişimi olmadığı varsayımı ile) 3. Mümkün olabilecek en küçük zaman aralığında en fazla bir olay gerçekleşebilir. 4. Ortaya çıkan olay sayısı ile periyodun uzunluğu doğru orantılıdır. 39

40 Örnekler Bir şehirde bir aylık süre içerisinde meydana gelen hırsızlık olayların sayısı, Bir telefon santraline dk. içerisinde gelen telefon çağrılarının sayısı, Bir kitap içindeki baskı hatalarının sayısı, İstanbul da 00 m 2 ye düşen kişi sayısı, Ege Bölgesinde 3 aylık sürede 4,0 şiddetinden büyük olarak gerçekleşen deprem sayısı. 40

41 l Poisson Dağılımının Olasılık Fonksiyonu : belirlenen periyotta ortaya çıkan olay sayısı : ortaya çıkma olasılığı araştırılan olay sayısı S = { / 0,, 2, 3,.., } P( X ) e l! 0 l 0,,2,... diger durumlarda 4

42 Poisson Dağılımının Beklenen Değer ve Varyansı Beklenen Değer E() l Varyans Var() l Beklenen değeri ve varyansı birbirine eşit olan tek dağılıştır. 42

43 Frekans Frekans 400 l n = l n=

44 Örnek: Bir mağazaya Cumartesi günleri 5 dakikada ortalama olarak 4 müşteri gelmektedir. Bir Cumartesi günü bu mağazaya, a) 5 dakika içinde müşteri gelmesi olasılığını, b)yarım saate 2 den fazla müşteri gelmesi olasılığını, 4 e 4 4 a) l 4 P ( = ) =? ! ! P( X ) ! 4e b) 5 dk da 4 müşteri gelirse, 30 dk da 24 müşteri gelir. l 24 P ( > 2 ) =? P( > 2 ) = [P(=0)+P(=)+P(=2)] e e ÖDEV: saatte en çok müşteri gelmesinin olasılığını hesaplayınız. e 2! 33e 24 44

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

Rastlantı Değişkenleri

Rastlantı Değişkenleri Rastlantı Değişkenleri Olasılık Kütle Fonk. Example: A shipment of 8 similar microcomputers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers,

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN

Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ RANDOM DEĞİŞKEN SÜREKSİZ (DISCRETE) OLASILIK DAĞILIMLARI 1 RANDOM DEĞİŞKEN Nümerik olarak ifade edilebilen bir deneyin sonuçlarına rassal (random) değişken denir. Temelde iki çeşit random değişken vardır. ##süreksiz(discrete)

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler

EME Sistem Simülasyonu. Giriş. Olasılık Dağılımı. Rassal Degiskenler EME 3105 1 Giriş Sistem Simülasyonu Önümüzdeki hafta simulasyon girdilerinin modellenmesinde kullanılan kesikli ve sürekli Simulasyonda İstatistiksel Modeller-I Ders 4 dağılımlar hatırlatılacaktır. Rassal

Detaylı

Kesikli Üniform Dağılımı

Kesikli Üniform Dağılımı 9.. KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Kesili Üniform Dağılımı. Bernoulli Dağılımı 3. Binom Dağılımı 4. Negatif Binom Dağılımı. Geometri Dağılım. Hiergeometri Dağılım 7. Poisson Dağılımı

Detaylı

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik

İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik 6.SUNUM İstatistik, genel olarak, rassal bir olayı (ya da deneyi) matematiksel olarak modellemek ve bu model yardımıyla, anakütlenin bilinmeyen karakteristik özellikleri (ortalama, varyans v.b. gibi) hakkında

Detaylı

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 6: Kesikli Olasılık Dağılımları

Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

Ders 5: Kesikli Olasılık Dağılımları

Ders 5: Kesikli Olasılık Dağılımları Ders 5: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTTİSTİK Olasılıkta Temel Kavramlar Yrd. Doç. Dr. slı SUNER KRKÜLH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim D. Web: www.biyoistatistik.med.ege.edu.tr 1 OLSILIK Olasılık; Tablo

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Bazı Olasılık Dağılışları Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Uygulamalı bilim

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

Ders 6: Sürekli Olasılık Dağılımları

Ders 6: Sürekli Olasılık Dağılımları Ders 6: Sürekli Olasılık Dağılımları Normal Dağılım Standart Normal Dağılım Binom Dağılımına Normal Yaklaşım Düzgün (uniform) Dağılım Üstel Dağılım Dağılımlar arası ilişkiler Bir rastgele değişkenin, normal

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi: İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı...

İÇİNDEKİLER. Ön Söz Saymanın Temel Kuralları Permütasyon (Sıralama) Kombinasyon (Gruplama) Binom Açılımı... İÇİNDEKİLER Ön Söz... Saymanın Temel Kuralları... Permütasyon (Sıralama)... 8 Kombinasyon (Gruplama)... 6 Binom Açılımı... Olasılık... 9 İstatistik... 8... Dağılımlar... 5 Genel Tarama Sınavı... 6 RASTGELE

Detaylı

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1

Ankara Üniversitesi, SBF İstatistik 2 Ders Notları Prof. Dr. Onur Özsoy 1 1 Rastgele bir denemede ortaya çıkması olası sonuçların tamamıdır Örnek: bir zar bir kez yuvarlandığında S= Yukarıdaki sonuçlardan biri elde edilecektir. Sonuçların her biri basit olaydır Örnek: Bir deste

Detaylı

SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı

SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı SAB 101 OLASILIK DERS NOTLARI Prof.Dr. Fatih TANK Ankara Üniversitesi Uygulamalı Bilimler Fakültesi Sigortacılık ve Aktüerya Bilimleri Bölümü Prof.Dr. Fatih TANK - Olasılık Ders Notları- Sayfa : 1/7 Haftalık

Detaylı

Kesikli Üniform Dağılımı

Kesikli Üniform Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Kesikli Üniform Dağılımı Bernoulli Dağılımı Binom Dağılımı Negatif Binom Dağılımı Geometrik Dağılım Hipergeometrik Dağılım Poisson Dağılımı Kesikli Üniform

Detaylı

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler, bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

1.58 arasındaki her bir değeri alabileceği için sürekli bir

1.58 arasındaki her bir değeri alabileceği için sürekli bir 7.SUNUM Hatırlanacağı gibi, kesikli rassal değişkenler sonlu (örneğin; 0, 1, 2,...,10) veya sayılabilir sonsuzlukta (örneğin; 0, 1, 2,...) değerler alabilmektedir. Fakat birçok uygulamada, rassal değişkenin

Detaylı

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY

İstatistik 1. Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları. Ankara Üniversitesi SBF, GYY İstatistik 1 Bölüm 5 Olasılık Teorisi ve Kesikli Olasılık Dağılımları Bu Bölümde İşlenecek Konular Temel Olasılık Teorisi Örnek uzayı ve olaylar, basit olasılık, birleşik olasılık Koşullu Olasılık İstatistiksel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler:

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. Örnekler: OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI SAKARYA UNIVERSITESI Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI Prof. Dr. Mustafa AKAL 1 İÇİNDEKİLER 1. BERNOULLİ DAĞILIMI 2. BİNOM DAĞILIMI 3. POİSSON DAĞILIMI 4. PASCAL DAĞILIMI 5. GEOMETRİK DAĞILIM 6. HİPERGEOMETRİK

Detaylı

SÜREKLİ DÜZGÜN DAĞILIM

SÜREKLİ DÜZGÜN DAĞILIM SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR

ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR ALKÜ EKONOMİ ve FİNANS BÖLÜMÜ ISL 207 İSTATİSTİK I ALIŞTIRMALAR 1- İlaçla tedavi edilen 7 hastanın ortalama iyileşme süresi 22.6 gün ve standart sapması.360 gündür. Ameliyatla tedavi edilen 9 hasta için

Detaylı

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru

OLASILIK. Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru OLSILIK opulasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. u hata payının ortaya çıkmasının sebebi

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI

BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI ÖNEMLİ SÜREKLİ DEĞİŞKEN DAĞILIMLARI BAZI SÜREKLİ OLASILIK DAĞILIMLARI 1. SÜREKLİ DÜZGÜN (UNIFORM) DAĞILIM 2. NORMAL DAĞILIM 3. BİNOM DAĞILIMINA NORMAL YAKLAŞIM 4. POISSON DAĞILIMINA NORMAL YAKLAŞIM

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Deney Dizaynı ve Veri Analizi Ders Notları

Deney Dizaynı ve Veri Analizi Ders Notları Deney Dizaynı ve Veri Analizi Ders Notları Binom dağılım fonksiyonu: Süreksiz olaylarda, sonuçların az sayıda seçenekten oluştuğu durumlarda kullanılır. Bir para atıldığında yazı veya tura gelme olasılığı

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir.

Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. OLASILIK Populasyon hakkında bilgi sahibi olmak amacı ile alınan örneklerden elde edilen bilgiler bire bir doğru olmayıp hepsi mutlaka bir hata payı taşımaktadır. Bu hata payının ortaya çıkmasının sebebi

Detaylı

Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 3 Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr Olasılık Hatırlatma Olasılık teorisi,

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 5 3. kişi için iki durum

Detaylı

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi, POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım

Detaylı

İSTATİSTİK. Hafta 7.2 Kesikli Olasılık Dağılımları Poisson Dağılımı. Yrd. Doç. Dr. H. İbrahim CEBECİ

İSTATİSTİK. Hafta 7.2 Kesikli Olasılık Dağılımları Poisson Dağılımı. Yrd. Doç. Dr. H. İbrahim CEBECİ İSTATİSTİK Hafta 7.2 Kesikli Olasılık Dağılımları Simeon Poisson a atfen isimlendirilen dağılım, bir örnek uzayın belli bir bölgesi veya zamanındaki olayların sayısının incelendiği kesikli bir olasılık

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 = 5 3. kişi için iki durum

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık

ÖĞRENCİNİN ADI SOYADI: NUMARASI: SINIFI: KONU: Olasılık ÖĞRENCİNİN ADI SOYADI: NUMARASI: Dersin Adı SINIFI: KONU: Olasılık Dersin Konusu. Bir kutudaki 7 farklı boncuğun içinden iki tanesi seçiliyor. Buna göre, örneklem uzayının eleman sayısı A) 7 B)! 7. madeni

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS OLASILIK VE İSTATİSTİK FEB-222 2/ 2.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1 3. Olasılık Hesapları ve Olasılık Dağılımları 3.3. Sayma Teknikleri Olasılık hesapları ve istatistikte birçok problem, verilen küme elemanlarının sayılmasını veya sıralanmasını gerektirir. Eğer bir olayın

Detaylı

İSTATİSTİK II. Hipotez Testleri 1

İSTATİSTİK II. Hipotez Testleri 1 İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler

Detaylı

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız.

Örnek...2 : Hilesiz iki zar atma deneyinin bütün çıktılarını aşağıdaki tabloya yazınız. OLASILIK (İHTİMALLER HESABI) Olasılık kavram ı ilk önceleri şans oyunları ile başlamıştır. Örneğin bir oyunda kazanıp kazanmama, bir paranın atılmasıyla tura gelip gelmemesi gibi. Bu gün bu kavramın birçok

Detaylı

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir.

8. SINIF MATEMATiK OLASILIK. Murat ÇAVDAR OLASILIK. Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. 04 8. SINIF MATEMATiK OLASILIK OLASILIK Olasılık: Sonucu önceden kesin olarak bilinmeyen rastlantıya bağlı olaylara olasılık denir. Bir zarın atılması, bir torbadan top çekilmesi, bir paranın yazı veya

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Olasılık Föyü KAZANIMLAR

Olasılık Föyü KAZANIMLAR Olasılık Föyü KAZANIMLAR Bir olaya ait olası durumları belirler. Daha fazla, eşit, daha az olasılıklı olayları ayırt eder, örnek verir. Eşit şansa sahip olan olaylarda her bir çıktının olasılık değerinin

Detaylı

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK

Rassal Değişken. Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK Rassal Değişken Yrd. Doç. Dr. Tijen ÖVER ÖZÇELİK tover@sakarya.edu.tr S örnek uzayı içindeki her bir basit olayı yalnız bir gerçel (reel) değere dönüştüren fonksiyona rassal değişken adı verilir. O halde

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı