NÜKLEER ENERJİ. Doç.Dr.M.Azmi AKTACİR. Harran Üniversitesi Makine Mühendisliği Bölümü 2018-ŞANLIURFA. Bu sunu ders notu olarak hazırlanmıştır.

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "NÜKLEER ENERJİ. Doç.Dr.M.Azmi AKTACİR. Harran Üniversitesi Makine Mühendisliği Bölümü 2018-ŞANLIURFA. Bu sunu ders notu olarak hazırlanmıştır."

Transkript

1 NÜKLEER ENERJİ Doç.Dr.M.Azmi AKTACİR Harran Üniversitesi Makine Mühendisliği Bölümü Bu sunu ders notu olarak hazırlanmıştır. Dr. M. Azmi Aktacir

2 Enerji Herhangi bir hareketi yapan ya da yapmaya hazır olan kabiliyete Enerji denir. Kısaca iş yapma yeteneği olarak da tanımlanabilir. Enerji çeşitli şekillerde bulunabilir. Fakat bu şekillerin tamamı iki ana başlığa incelenebilir. Bunlar kinetik enerji ve potansiyel enerjidir. 2

3 Enerji Türleri Potansiyel enerji: Bir nesnenin konumundan dolayı, diğer nesnelere bağlı olan enerjisidir. Depolanmış enerji Isı sebebi ile oluşan enerji olup, aslında molekül ve atomların kinetik enerjisi olarak da adlandırılır. 1- Yer çekimi Potansiyel Enerjisi: Bir kütle, bulunduğu yerden düşey konumdaki alt bir noktaya göre yüksekte ise, sahip olduğu enerjiye denir 3

4 Enerji Türleri 2- Isıl (Termal) Potansiyel Enerji: Kömür, petrol, doğalgaz gibi yakıtların yakılmasıyla ısı enerjisi ortaya çıkmaktadır. Elde edilen ısı enerjisi ilk önce türbinler yardımıyla mekanik enerjiye, daha sonra da jeneratörler yardımıyla elektrik enerjisine dönüştürülebilmektedir. 3- Elektrik Potansiyel Enerjisi: Elektrik yüklemesi sebebi ile ortaya çıkan enerjidir. Yüklenmiş partiküllerin hareket enerjisidir. 4

5 Enerji Türleri 4. Kimyasal Enerji: Kimyasal tepkime sonucunda ortaya çıkan enerjiye kimyasal enerji adı vermekteyiz. Bunun en temel örneği yanan odun, kömür, petrol gibi fosil yakıtlar,kağıt vb. gibi birçok malzemelerdeki molekül ile havadaki oksijen molekülünün birleşerek ortaya çıkardığı ısıl enerjidir.günlük hayatımızda sıkça kullandığımız pil ve aküler kimyasal enerjiyi elektrik enerjisine dönüştüren düzeneklerdir. Pil ve akülerde elektrik enerjisinin depolanması kimyasal yöntemlerle yapılmaktadır. Kimyasal enerji; mekanik, ısı ve ışık enerjisine dönüştürülebilmektedir. 5. Nükleer Enerji: Atom çekirdeklerinin kararsızlığı nedeni ile oluşan enerjidir 5

6 Enerji Türleri 6. Manyetik Enerji:Mıknatısın manyetik kuvvetinden dolayı oluşan enerjidir. 7. Elastik Potansiyel Enerji:Bir yay, lastik gibi esnek cisimlerin sıkıştırılması veya esnetilmesiyle depolanan enerjiye "elastik potansiyel enerji" denir. 6

7 Enerji Türleri Kinetik enerji: Bir cismin hareketinden dolayı sahip olduğu enerjiye Kinetik Enerji denir. Mekanik Enerji: Faydalı iş yapabilen hareket enerjisidir. Hareket enerjisi (kinetik enerji) bir iş yaptığında mekanik enerji olarak ortaya çıkmaktadır. Elektrik santrallerinde türbine çarpan suyun mekanik enerjiye dönüştüğü gibi pense ile kablo keserken, tornavida ile vida sıkarken vb. durumlarda da mekanik enerji üretilmiş olmaktadır. Elde edilen mekanik enerji ile herhangi bir iş yapılabileceği gibi elektrik enerjisi de üretilebilmektedir. 7

8 Elektrik enerji üretim kaynakları Elektrik enerjisi üretim kaynakları İKİ ana başlık altında ifade edilir. 1. Ana enerji kaynakları. 2. Yenilenebilir (Alternatif) enerji kaynakları. Ana enerji kaynakları 3 çeşittir. Su enerjisine hidrolik, Kömür,petrol ve gaz enerjisine termik, Çekirdek enerjisine de nükleer enerji denilmektedir. Alternatif (yenilenebilir) enerji kaynakları ise çok çeşitlidir. Rüzgar, güneş, jeotermal, biomas, güneş pilleri,vb. 8

9 Enerji kaynakları kısaca, bir maddenin iş yapabilme yeteneği için tanımlanan enerji nin elde edildiği kaynaklara denir. Enerji kaynakları herhangi bir yöntemle enerji üretilmesini sağlayan kaynaklardır. Dünyadaki enerji kaynakları, oluşumlarına bağlı olarak yenilenebilir ve yenilenemez enerji kaynakları olmak üzere ikiye ayrılır. 9

10 Enerji Kaynaklarının Sınıflandırılması Yenilenemez enerji kaynakları, Kömür, Petrol, Doğalgaz, Nükleer. Yenilenebilir enerji kaynakları, Güneş enerjisi, Rüzgar enerjisi, Hidrolik enerjisi, Jeotermal enerji, Dalga enerjisi, Biyokütle enerjisi. 10

11 Yenilenemez Enerji Kaynakları Nelerdir? Yenilenemez enerji kısaca tükenebilir enerji demektir. Yani, bu enerji kaynağını elde etmek için tükenebilir yakıt kullanılması gerekmektedir. Ve genelde yenilenemez enerji kaynaklarıkullanımı zararlıdır. Çünkü, bu kaynakların kullanımı için kullanılan yakıtlar yakıldığı zaman, doğaya zararlı atıklar ve gazlar salmaktadır. 11

12 Kömür En eski enerji kaynakları olarak kömür söylenebilir. Özellikle buharlı makinelerin icadından sonra kömür kullanımı ciddi artış göstermiştir. İlk olarak 1860 lı yıllarda kömür enerji kaynağı olarak kullanılmaya başlanmıştır. Kömürden elektrik elde etmek için termik santrallerkullanılmaktadır. Kömür ülkemizdeki enerji kaynakları arasında kullanım yoğunluğu olarak çok büyük paya sahiptir. Yenilenemez enerji kaynakları arasında olan kömür fosil yakıtlar arasındadır. 12

13 Petrol Dünyada petrol üretimi 1900 lü yıllarda başlamıştır. O yıllardan bugüne, petrol kullanımının artması ile doğru orantılı olarak, petrol üretimi de sürekli artmıştır. Petrol çok önemli bir enerji kaynağıdır. Hem petrolün yakılması ile elektrik üretilir. Hem de jeneratör, araba gibi araçlar başta olmak üzere, aklınıza gelebilecek neredeyse tüm alanlarda petrol kullanılmaktadır. Günümüzde KKTC (kuzey kıbrıs türk cumhuriyeti) elektrik üretmek için petrol kaynağını çok yoğun kullanmaktadır. Ayrıca, tükenebilir enerji kaynakları arasında olan petrolün yaklaşık 50 yıllık rezervi kaldığı da bilinmektedir. Petrol de fosil yakıtlar arasında bulunmaktadır. Yani hayvan ve bitkilerin zamanla fosilleşmesi sonucu meydana gelen kaynaklar arasındadır. Dr.M.Azmi Aktacir

14 Doğalgaz Doğalgaz yenilenemez enerji kaynakları içerisinde çok önemli bir kaynaktır. Hatta ülkemiz açısından da çok önemlidir. Çünkü türkiye günümüzde doğalgaz ile elektrik üretimini çok yoğun kullanmaktadır. İlk olarak 1950 li yıllarda doğalgaz enerji kaynağı olarak kullanılmaya başlanmıştır. Dünyada ki doğalgaz rezervinin yaklaşık 8100 tcf olduğu bilinmektedir. Günümüzde yıllık 68 tcfdoğalgaz kullanılmaktadır. Yıllık tüketilen doğalgaz miktarı hesaba katıldığında, dünya nın 120 yıllık doğalgaz rezervinin kaldığı söylenebilir. Not: 1 tcf (kübik feet) = 28,32cm 3 1m 3 =35,3 kübik feet 14

15 Nükleer enerji, yenilenemez enerji kaynakları arasındadır. Fosil yakıt değildir. İlk nükleer santral 1950 yıllarında faaliyete geçmiştir. O yıllarda, nükleer enerjinin ne kadar verimli olduğu tespit edilmiş olup, günümüze kadar nükleer santral sayıları da sürekli artmıştır. Nükleer enerji santralleri oldukça yüksek verime sahiptir. Örneğin, 1 ton uranyum ile elde edilen enerji miktarı, 3.3 milyon ton kömür ile elde edilen enerji miktarına eşittir. Amerika ve rusya başta olmak üzere, nükleer enerjiyi en yoğun kullanan bölge avrupa dır. Dr.M.Azmi Aktacir

16 Yenilenebilir Enerji Kaynakları Nelerdir? Yenilenebilir enerji kaynakları, fosil yakıtlar ve yenilenemez enerji kaynaklarına göre daha az zararlı veya zararı olmayan enerji kaynaklarına denir. Bu enerji kaynakları, kendisini doğada sürekli yenileyebilen enerji kaynakları dır. Tükenmeyen enerji kaynakları olarakta adlandırılır. 16

17 Nükleer Enerji Nedir? Nükleer enerji, atomun çekirdeğinden elde edilen bir enerji türüdür. Kütlenin enerjiye dönüşümünü ifade eden, Albert Einstein' a ait olan E=mc² (E: Enerji, m: kütle, c: Işığın sabit hızı) formülü ile ilişkilidir. Bununla beraber, kütle - enerji denklemi, tepkimenin nasıl oluştuğunu açıklamaz, bunu daha doğru olarak nükleer kuvvetler yapar. Nükleer enerjiyi zorlanmış olarak ortaya çıkarmak ve diğer enerji tiplerine dönüştürmek için nükleer reaktörler kullanılır. Dr. M. Azmi Aktacir

18 Işınım (Radyasyon) Işık ışınları, ısı, X ışınları, radyoaktif maddelerin saldığı ışınlar ve evrenden gelen kozmik ışınların hepsi birer ışınım biçimidir. Radyoaktif maddelerin saldığı alfa ve beta ışınları ile yıldızlardan savrulan kozmik ışınlar parçacık biçiminde yayılan ışınımlardır. Gamma ışınları, X ışınları, morötesi (ultraviyole) ışınları, görünür ışık, kızılötesi (enfraruj) ışınım, radarlarda kullanılan mikrodalgalar ve radyo dalgaları elektromagnetik ışıma biçimleridir. Gamma ışınları hem uranyum ve radyum gibi doğal radyoaktif maddelerce, hem de bir nükleer reaktörde ya da bir atom bombası patladığında atom çekirdeklerinin parçalanmasıyla salınır. 18

19 Işık spektrumu 19

20 Dr.M.Azmi Aktacir

21 Güneş ışınları, kızıl ötesi ışınlar(infraruj) (IR), gözle görülen ışınlar ve morötesi(ultra viyole) (UV) ışınlar olarak sınıflandırılır. Güneşten gelen enerjinin içinde UV ışınları % 6.3 gibi küçük bir paya sahip olmasına rağmen, farklı dalga boylarında önemli biyolojik etkileri (anti-bakteriyel etki, D vitamini sentezi, eritem oluşumu vb.) olduğu bilinmektedir. 21

22 Nükleer Teknolojinin Kullanım Alanları 22

23 Endüstride Nükleer Teknoloji Radyografi tekniğiyle, taşınabilir X veya gama radyasyonu yayan cihazlardan yararlanılarak röntgen filmleri çekilen endüstriyel ürünlerin ( kaynak yapılmış malzemeler, borular, buhar kazanları, her türlü makine aksamı, vb.) herhangi bir hata içerip içermedigi saptanabilmektedir. Demir, çelik, lastik, kâğıt, plastik, çimento, seker vb. birçok endüstri ürününün üretim aşamasındaki seviye, nem ve yoğunluk ölçümleri radyasyondan yararlanılarak yapılmaktadır. Kâğıt, tekstil ve kimya sanayi atık suları arıtma işleminin minimum düzeyde kimyasal madde kullanılarak gerçekleşmesi için radyasyonla arıtma teknolojisi geliştirilmektedir. 23

24 Endüstride Nükleer Teknoloji Kâğıt, alüminyum folyo gibi pek çok ince malzemenin üretimi sırasında, ürünün kalınlığının sürekli kontrol edilmesinde yine radyasyon kullanılmaktadır Akarsularda debi ölçümü, barajlarda su kaçaklarının saptanması ve yeraltı suları hareketlerinin izlenmesi gibi diğer endüstriyel uygulamalarda radyoizotopların kullanılması hem ucuz hem de kolay bir yöntemdir. Gıdaların daha uzun süre dayanmalarını sağlamak amacıyla mikroorganizmalardan arındırılması ve tıbbi malzemelerin sterilizasyonu için radyasyon uygulaması yapılmaktadır. 24

25 Tıpta Nükleer Teknoloji Nükleer tıp uygulamalarında, vücuda enjekte edilen bazı radyoaktif maddelerin vücuttaki dagılımı bir Gama radyasyon kamerasıyla izlenmekte, incelenecek organ veya dokunun görüntüsü alınarak, işlevleri hakkında bilgi edinilmektedir. Tıpta radyoloji uygulamalarında, vücuttaki hastalıklı bölgenin görüntüsü radyografi filmi seklinde elde edilir ve hastalığın teşhisinde yardımcı olur. (Radyolojik işlemler:düz film radyografisi, floroskopi, kompüterize tomografi, mamografi.) Tıpta radyoterapi olarak adlandırılan Kobalt-60 ve benzeri gama radyasyonu yayan radyoaktif maddelerin kullanıldığı bir diğer uygulama alanında vücuttaki kanserli hücreler tedavi edilmektedir. Dr.M.Azmi Aktacir

26 Tarımda Nükleer Teknoloji Yüksek verimli ve daha besleyici nitelikli, hastalıklara karsı daha dayanıklı tarım ürünlerinin elde edilmesinde radyoizotoplar kullanılmaktadır. Tarım ürünlerinde böceklenmenin engellenmesinde veya böcek yoğunluğunun kontrol altına alınmasında nükleer radyasyondan yararlanılmaktadır. Verimli tarımsal sulama yapmak amacıyla topraktaki nem miktarı nükleer tekniklerle ölçülmektedir. 26

27 Hayvancılıkta Nükleer Teknoloji Hayvan beslemede, üremenin izlenmesinde ve hastalıkların teşhisinde radyoizotoplarla işaretleme ve izleme teknikleri uygulanmaktadır. Hayvan yemlerinde kullanılan maddelerin bazı özelliklerinin değiştirilmesi ve iyileştirilmesi için de radyasyon kullanılmaktadır. 27

28 RADYOAKTİF ELEMENTLER Bazı atomlar çekirdeklerinden görünmez radyasyon (ışıma) yayarlar. Bu atomlar radyoaktiftirler. Radyasyon yayıldıkça, element farklı bir element haline dönüşür. Yeni bir element oluşunca, bozunma meydana gelir. Bozunma, bir atomun çekirdeğinin nükleer parçacıklar kaybetmesi demektir. Radyoaktiflik 1896 yılında Fransız bilim adamı Henry Becquerel tarafından keşfedilmiştir. Karanlık bir odada bulunan masa çekmecesinde bulunan bir fotoğraf levhası üzerine biraz uranyum tuzu bırakmıştı. Fotoğraf levhasına bakkıtığında, uranyum tuzunun izinin fotoğrafa çıktığını farketti. Uranyum görünmez bir radyasyon yaymış ve bu da fotoğraf levhası üzerine onun resmini çıkarmıştır. Uranyum radyoaktif bir elementtir. 28

29 RADYOAKTİF ELEMENTLER 1898 yılında, Marie ve Pierre Curie iki yeni radyoaktif element keşfetmişlerdir. Bu elementlerin atom sayısı 83 ' ten büyüktür. Bununla beraber, daha hafif elementlerin doğal izotopları da radyoaktiftir. İzotop, aynı elementin farklı sayıda nötron bulunduran atomlarıdır. Örneğin, potasyum ve karbonun herbiri radyoaktif izotoplara sahiptir. Yapay elementler ise laboratuvar veya nükleer reaktörlerde elde edilirler. Bunlar doğal olarak bulunmazlar. Atom sayıları 93 ve 105 arasındaki elementler, yapay elementlerdir. Örneğin, plütonyum yapay bir elementtir. Tüm yapay elementler radyoaktiftirler. 29

30 Çekirdek kararlığının nötron proton oranına bağlılığı 30

31 ÇEKİRDEK Atom çekirdeğinin temel taşları proton (p) ve nötron (n) dur. Çekrideğin etrafında proton sayısına eşit sayıda elektronların yer aldığı belirtilmişti. pozitif yüklü proton ile yüksüz nötron taneciklerinin yaklaşık eşit kütlededir. negatif yüklü elektronun ise, diğer ikisine kıyasla çok daha küçük bir kütleye sahiptir. Atom çekirdeğinde yer alan proton ve nötron tanecikleri "nükleon" olarak adlandırılırlar. Buna göre bir çekirdekte yer alan nötron ve protonların toplam sayısı (n+p) veya farklı bir ifade ile nükleonların toplam sayısı, o çekirdeğe ilişkin "kütle numarasının" belirtir ve"a" harfi ile sembolize edilir. Öte yandan bilindiği gibi atom çekirdeğinde yer alan protonların toplam sayısı (nötür yapıdaki atomlar için elektron sayısı da olabilir), o çekirdeğe ilişkin "atom numarası" belirtir ve "Z" harfi ile sembolize edilir. Bir çekirdeğin atom numarası ve kütle numarası A ZX veya Z X A şeklinde ifade edilir. 31

32 ÇEKİRDEK izoton" eşit sayıda nötron içeren çekirdeklere "denir. izotop "atom numarası eşit ancak atom kütle numarası farklı çekirdeklere denir izobar "atom kütle numarası eşit ancak atom numarası farklı çekirdeklere " denir 32

33 RADYOAKTİF ATOMLAR Bazı elementlerin radyoaktif atomları doğada bulunurlar. Radyoaktif bir atoma nüklit adı verilir. Radyoaktif atomlar, laboratuarda elementlerin nötronlar ve yüklü parçacıklarla bombardıman edilmesiyle elde edilebilir. Niçin bazı atomlar radyoaktiftir? Hafif bir elementin kararlı olup olmaması, çekirdeğindeki protonların ve nötronların sayısına bağlıdır. Bir atomdaki protonların nötronlara oranı yaklaşık olarak eşitse, bu atomun çekirdeği kararlıdır. Kararlı bir atomun çekirdeği radyoaktif değildir. Karbon - 12 kararlı bir atoma örnektir. 6 adet proton ve 6 tane de nötronu vardır. Karbon - 12'de protonların nötronlara oranı 1:1 dir. Protonlara göre bir atom çekirdeğinde çok sayıda nötron varsa, element ve izotopu radyoaktif olabilir. Karbon 14: 6 adet proton ve 8 adet nötrona sahiptir. Bu izotop radyoaktiftir. Bilinen çoğu elementlerin radyoaktif atomları vardır. 33

34 RADYOAKTİF ATOMLAR Yapay radyoaktif atomların birçok pratik kullanımı vardır. Kobalt - 60 gibi radyoaktif bir atomdan çıkan radyasyon kanser tedavisinde kullanılır. Yüksek enerjili radyasyon kanserli hücreleri öldürür. Radyoaktif atomlar aynı zamanda bir bitki veya hayvan vücudundaki bir elementi izlemekte kullanılır. Bir elementin yolunu izlemek suretiyle, bir kimse onun vücutta nasıl kullanıldığını öğrenebilir. 34

35 RADYOAKTİF ATOMLAR Bir bitki etrafındaki toprağa yerleştirilen fosfor-32, bitki tarafından emilir. Bitki içindeki fosfor- 32 nin hareketi bir Geiger sayacı ile takip edilebilir. Bu cihaz, radyasyonu taramakta kullanılır. Radyoaktif bir atom izlenebilir. Bundan dolayı ona "etiketli atom" adı verilir. Yaydığı radyasyon, onun izlenmesini sağlayan bir etiket olmaktadır. Radyoaktif atomlar, organlardaki hastalıklar ve tümörlerin bulunması için kullanılırlar. Çok az bir miktar kana karıştırılır ve onu kanla hasta organa taşır. Sağlıklı bir organ ile hasta bir organın yaydıkları ışımalar kıyaslanarak bir sonuca varılabilir. 35

36 RADYOAKTİVİTE Doğada kararlı bir çekirdeğe sahip atom sayısı oldukça azdır. Daha önce değinildiği gibi bir çekirdeğin kararlı olması, belli sayıda nötrona ve protona sahip olmasına bağlıdır. Bu sayıların dışına çıkıldığı zaman, çekirdekler kararsız bir yapı kazanırlar. Kararlı hale gelebilmek için parçalanan bu tür çekirdekler, "radyoaktif çekirdek" ler olarak bilinirler. Ağır elementlerin çoğu radyoaktif özelliklere sahiptir. 36

37 Radyoaktif Çekirdekler Radyoaktif çekirdekler kararlı bir nötron/proton oranına ulaşana kadar, bozunmaya uğrarlar. İlk bozunmaya uğrayan radyoaktif çekirdek "ana çekirdek", ve ana çekirdeğin radyoaktif bozunmaya uğraması sonucu oluşan çekirdek ise "yavru çekirdek" adını alırlar. Bozunma sürecindeki radyoaktif çekirdekler, alfa (α), beta (β) ve gamma (γ) radyasyonlarından birini veya birkaçını yayınlayarak, rahatlama yolunu seçerler. 37

38 NÜKLEER RADYASYON Radyoaktif bir elementin çekirdeği kararsızdır. Çekirdekte bir değişme olursa bu radyasyon olarak yayılır. Çekirdekten yayılan üç tür radyasyon vardır. Bunlar alfa parçacıkları, beta parçacıkları ve gama ışınlarıdır. 38

39 Kararsız bir radyoaktif çekirdekten kararlı bir çekirdek oluşumu Bir radyoaktif ana çekirdekten alfa (α), beta (β) ve gamma (γ) bozunmaları sonucu yavru çekirdekler oluşturan seriler, "radyoaktif seriler" olarak tanımlanır. Radyoaktif seriler uranyum, toryum, aktinyum ve neptinyum serisi şeklinde dört grup oluşturulmuştur. Her seri, bozunma zincirini tamamladıktan sonra kararlı bir çekirdek haline dönüşür. 39

40 Uranyum-238 serisi 40

41 Radyoaktivite ve Işıma Çeşitleri Radyoaktiflik, kararsız bir çekirdekten parçacıklar (alfa (a), beta+, beta-) salınması çekirdeğin en içteki elektron tabakasındaki elektronları yakalaması ve kararsız çekirdek tarafından elektromanyetik ışın (gama) yayılmasıdır. Gama ışını yayılması dışındaki radyoaktif bozunmalar bir elementin başka bir elemente dönüşmesine neden olur. 41

42 Alfa Radyoaktif çekirdeklerin kararlı bir çekirdek yapısına ulaşmak için izlediği yollardan biri "αbozunmasıdır." Alfa (α) bozunması, radyoaktif çekirdekten kütle numarası 4 atom numarası 2 olan bir taneciğin ayrılması sonucu gerçekleşir. Alfa (a) parçacıkları; helyum-4 (He) çekirdeği olup daha büyük atomların çekirdeklerinden yayınlanırlar. Kısaca, alfa ışıması radyoaktif çekirdekten iki proton ve iki nötronun yayınlanması ve daha hafif bir çekirdeğin meydana gelme sürecidir. 42

43 Alfa Alfa (α) taneciklerinin giricilikleri (nufuz etme gücü) düşüktür. Bu tanecikler ince bir kağıt yardımıyla durdurulabilirler. İnsan derisi alfa (α) taneciklerini hücrelere ulaşmadan durdurabilir. 43

44 Beta (β - ) Beta (β) taneciği aslında çekirdekten yayınlanan yüksek enerjili bir elektrondur. Beta (β) bozunması sürecinde, radyoaktif çekirdekte bulunan bir nötron, bir proton ile bir elektrona dönüşür. 44

45 POZİTRON BOZUNMASI (β + ) Pozitronun kütlesi elektronun kütlesine eşit, yükü +1 dir. Pozitron bozunması n/p oranı kararlılık kuşağından küçük olan kararsız izotoplarda görülen bozunmadır. n/p oranının büyümesi için proton sayısı azalmalı ve nötron sayısı artmalıdır. β + parçacıkları ışıma şeklinde çekirdekten dışarı yayılır, bu ışımaya pozitron bozunması denir. Örnek Tepkimelerde görüldüğü gibi, Atom numarası bir azalırken, kütle numarası değişmez. 45

46 Gama a ve b parçacıkları oluşturan bazı radyoaktif bozunma tepkimeleri sonunda yüksek enerjili hale gelen çekirdekten, elektro manyetik ışıma şeklinde enerji yayınlanır. Bu olaya gama ışınımı denilmektedir. Radyoaktif atomların yaydıkları gama ışınları çok daha girgin (nüfus edici) ışınlardır. Işınımların (radyasyonun) yolu üzerine, arkasına geçemeyeceği bir madde konularak her radyasyonun yolu kesilebilir ve verebileceği tüm zararlara engel olunabilir. İşte bunun içindir ki röntgen operatörleri kurşun içeren önlük giyerek ve kalın kristal cam arkalarından bakarak x-ışınlarının vereceği zararlardan korunmaktadırlar. 46

47 Özet 47

48 Özet-Nükleer Reaksiyonlar Atom; merkezinde bulunan atom çekirdeği ve etrafındaki yörüngelerde dönen elektronlardan meydana gelmiştir. Atom çekirdeği, atomun merkezinde toplanmış olan proton ve nötronların oluşturduğu yapıya denir. Nötronlar yüksüz ve protonlar + yüklü parçacıklar olduklarından atom çekirdeği + yüklüdür. Nötronlar, çekirdekte bulunan parçacıkları bir arada tutmaya yardımcı olur. Atom çekirdeklerinin kararlığı nötron ve proton sayısına bağlıdır. Her atom çekirdeği belirli bir sayıda nötron ile kararlı olabilmekte, nötronların sayısı bu sayının altında veya üstüne çıkması durumunda kararsız hale gelir. Atomlar fazla parçacıklarını atarak kararlı hale gelmeye çalışırlar. Bu tür kararsız atomlara RADYOAKTİF madde adı verilmektedir. Nötron ve protonların kütle çekimine karsın, pozitif elektrik yüklü protonların birbirlerini itmeleri çekirdeğin kararlılığını etkiler. Örneğin, Karbonun izotoplarından 12 C 6 kararlı, 14 C 6 ise kararsızdır. Çekirdekleri kararsız olan atomlar kararlı hale gelmek için bozunarak radyasyon yaptıklarından,kendilerine radyoizotop denir. 48

49 BOZUNMA VE YARI-ÖMÜR Radyoaktif bir atom çekirdeğinden radyasyon yayarken, başka bir elementin atomuna dönüşebilir. Uranyum-238 bir seri bozunmaya uğrayıp, sonuçta kurşuna dönüşen bir radyoaktif elementtir. Kurşun-206 kararlı olup, radyoaktif değildir. Uranyumu kurşuna dönüştüren nükleer reaksiyonlar, çok sayıda radyoaktif element meydana getirirler. Nükleer değişmeler, kimyasal ve fiziksel değişmelerden tamamıyla farklıdır. Sıcaklık ve basınç, kimyasal ve fiziksel değişmeleri etkiler. Bununla beraber, nükleer değişim hızı, sıcaklık veya basınçtaki bir değişme ile etkilenemez. 49

50 BOZUNMA VE YARI-ÖMÜR Radyoaktif bir maddedeki atomların yarısının bozunması için gerekli süreye yarı ömür adı verilir. Bir izotop için yarı-ömür bir saniyenin kesri kadar olabilir. Başka bir izotop için bu binlerce yıl veya daha fazla olabilir. Örneğin, baryum-139'un yarılanma ömrü 86 dakikadır. Şimdi, bir kurşun muhafaza içinde on gramlık saf baryum bulunduğunu kabul edelim. 86 dakika sonra, atomların yarısı bozunmuş olacaktır. Elimizde beş gram radyoaktif baryum -139 kalmış olacaktır. Bir başka 86 dakika sonra ise geri kalan baryum-139 atomlarının yarısı daha bozunmuş olacaktır. Böylece geriye 2,5 gram baryum kalacaktır. 50

51 BOZUNMA VE YARI-ÖMÜR Protonların sayısı değişince, element başka bir elemente dönüşecektir. Örneğin, Uranyum-238 değişe değişe sonuçta kurşun - 206'ya dönüşür. Bu element kararlıdır. Bazı radyoaktif elementlerin yarılanma ömrü, çok eski nesnelerin yaş tayininde kullanılır. Örneğin, 5730 yıllık yarılanma ömrüne sahip olan karbon-14, bazı fosillerin yaş tayininde kullanılır. Bir hayvan veya bitki canlı iken sabit bir karbon-14 düzeyini korur. Hayvan veya bitki öldüğünde karbon-14 düzeyi zamanla azalacaktır. Karbonla yaş tayininde, bir nesnenin küçük bir numunesi alınır. Karbon - 14 miktarı, yayılan beta parçacıkları sayılarak ölçülür. Diğer radyoaktif elementler kullanarak nesnelerin yaşını tayin etmek mümkündür. 51

52 Fisyon Ağır bir atomun örneğin Uranyumun çekirdeği çok büyük miktarda enerji açığa çıkararak parçalanır. Dünyada mevcut yaklaşık 440 civarındaki nükleer santral, FİSYON yani Uranyum-235 atomunun çekirdeğinin bir nötron ile parçalanması neticesi ortaya çıkan enerjiyi elektriğe çeviren tesislerdir. Fisyon reaksiyonlarına örnek olarak, atom bombası patlamasını verebiliriz. 52

53 Fisyon tepkimesi ve zincirleme tepkime 53

54 Fisyon tepkimesi Atom enerjisine bir örnek verecek olursak, 92U o n 1 -> 38 Sr Xe o n 1, bölünme etkileşmesini verebiliriz. Uranyum elementinin bir üyesi olan 92 adet protona sahip, 235 kütle numaralı Uranyum-235 izotopu, gelen nötronla bölünme etkileşmesine girerek, Samaryum-90, Xenon-144 (Zenon) izotopları ile iki adet nötronun ortaya çıkmasına neden olur. 54

55 Yakıt türü Birim miktar başına açığa çıkan enerji 1 ton U-235 e karşı gereken miktar U-235 2,3x10 10 kw.saat / ton 1 ton U-235 Kömür 6944 kw.saat / ton 3,3 milyon ton kömür Doğal Gaz 10,62 kw.saat / m3 2,2x109 m3 doğal gaz Fuel oil kw.saat / ton 2,1x106 ton fuel-oil Petrol-varil 1700 kw.saat /varil 13,5x106 varil ham petrol 55

56 Füzyon Farklı iki elementin çekirdeğinin birleştiği tepkime sonucunda daha ağır bir çekirdeğe sahip atomun oluştuğu reaksiyonlara nükleer füzyon veya nükleer kaynaşma denilebilir. 56

57 Füzyon Küçük çekirdekler örneğin hidrojen, çok büyük miktarda enerji açığa çıkararak kaynaşırlar. Bu tepkimeler güneşte sürekli olmaktadır. Ayrıca en güçlü nükleer silah olan hidrojen bombası patladığında da füzyon tepkimeleri olur. Güneşin yaklaşık %90 ı hidrojenden oluşmuştur. Güneşin merkezinde hidrojenler birleşerek helyum çekirdeklerini oluşturmakta ve bu tepkimeler sonucu büyük bir enerji açığa çıkmaktadır. Yani nükleer füzyon sonucu hafif elementlerden daha ağır elementlerin oluşmaktadır. 57

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez.

Radyoaktif elementin tek başına bulunması, bileşik içinde bulunması, katı, sıvı, gaz, iyon halinde bulunması radyoaktif özelliğini etkilemez. RADYOAKTİFLİK Kendiliğinden ışıma yapabilen maddelere radyoaktif maddeler denir. Radyoaktiflik çekirdek yapısıyla ilişkilidir. Radyoaktif bir atom hangi bileşiğin yapısına girerse o bileşiği radyoaktif

Detaylı

Hayat Kurtaran Radyasyon

Hayat Kurtaran Radyasyon Hayat Kurtaran Radyasyon GÜNLÜK HAYAT KONUSU: Kanser tedavisinde kullanılan radyoterapi KĐMYA ĐLE ĐLĐŞKĐSĐ: Radyoterapi bazı maddelerin radyoaktif özellikleri dolayısıyla ışımalar yapması esasına dayanan

Detaylı

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI

3- KİMYASAL ELEMENTLER VE FONKSİYONLARI 3- KİMYASAL ELEMENTLER VE FONKSİYONLARI Doğada 103 elementin olduğu bilinmektedir. Bunlardan 84 metal elementlerdir. Metal elementler toksik olan ve toksik olmayan elementler olarak ikiye ayrılmaktadır.

Detaylı

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü

KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü KİM-117 TEMEL KİMYA Prof. Dr. Zeliha HAYVALI Ankara Üniversitesi Kimya Bölümü Bu slaytlarda anlatılanlar sadece özet olup ayrıntılı bilgiler ve örnek çözümleri derste verilecektir. BÖLÜM 5 ATOM ÇEKİRDEĞİNİN

Detaylı

RADYOAKTİFLİK. Bu çalışmalar sonucunda radyoaktif olarak adlandırılan atomların yüksek enerjili tanecikler ve ışınlar yaydıkları belirlenmiştir.

RADYOAKTİFLİK. Bu çalışmalar sonucunda radyoaktif olarak adlandırılan atomların yüksek enerjili tanecikler ve ışınlar yaydıkları belirlenmiştir. RADYOAKTİFLİK Atomların ve molekiller arası çekim kuvvetlerinin değişmesi ile fiziksel değişimlerinin, atomların değerlik elektron sayılarının değişmesiyle kimyasal değişimlerin olduğu bilinmektedir. Kimyasal

Detaylı

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır.

1. Hafta. İzotop : Proton sayısı aynı nötron sayısı farklı olan çekirdeklere izotop denir. ÖRNEK = oksijenin izotoplarıdır. 1. Hafta 1) GİRİŞ veya A : Çekirdeğin Kütle Numarası (Nükleer kütle ile temel kütle birimi arasıdaki orana en yakın bir tamsayı) A > Z Z: Atom Numarası (Protonların sayısı ) N : Nötronların Sayısı A =

Detaylı

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri

Büyük Patlama ve Evrenin Oluşumu. Test 1 in Çözümleri 7 Büyük Patlama ve Evrenin Oluşumu 225 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktur. Işık hızıyla hareket ettikleri için atom içerisinde bulunamazlar. Fotonlar

Detaylı

RADYOAKTİVİTE Radyoaktivite (Radyoaktiflik / Işınetkinlik)

RADYOAKTİVİTE Radyoaktivite (Radyoaktiflik / Işınetkinlik) RADYOAKTİVİTE Radyoaktivite (Radyoaktiflik / Işınetkinlik), atom çekirdeğinin, tanecikler veya elektromanyetik ışımalar yayarak kendiliğinden parçalanmasıdır, bir enerji türüdür. Çevremizde her zaman için

Detaylı

ENERJİ DEPOLAMA YÖNTEMLERİ BEYZA BAYRAKÇI ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ENERJİ DEPOLAMA YÖNTEMLERİ BEYZA BAYRAKÇI ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ENERJİ DEPOLAMA YÖNTEMLERİ 1 BEYZA BAYRAKÇI ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ 2 Mekanik Enerji Isı Enerjisi Kimyasal Enerji Nükleer Enerji Yerçekimi Enerjisi Elektrik Enerjisi 2. ENERJİ DEPOLAMANIN

Detaylı

Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon. Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü

Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon. Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü Fisyon,Füzyon, Nükleer Güç Santralleri ve Radyasyon Prof. Dr. Niyazi MERİÇ A.Ü. Nükleer Bilimler Enstitüsü Fisyon Otto Hahn ve Fritz Strassmann 1939 yılında 235 U i bir n ile bombardıman edilmesiyle ilk

Detaylı

Morötesi ışınlar (ultraviole ışınlar); güneş ışını içerisinde bulunduğu gibi yapay olarak da meydana getirilir ve x-ışınlarına göre dalga boyları

Morötesi ışınlar (ultraviole ışınlar); güneş ışını içerisinde bulunduğu gibi yapay olarak da meydana getirilir ve x-ışınlarına göre dalga boyları RADYASYON 1.Radyasyonun tanımı, türleri, kaynakları: Radyasyon Latince bir kelime olup dilimizde ışıma olarak kullanılır. Atomlardan, Güneş ten ve diğer yıldızlardan yayılan enerjiye, radyasyon enerji

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR

NÜKLEER FİSYON Doç. Dr. Turan OLĞAR Doç. Dr. Turan OLĞAR Ankara Üniversitesi, Mühendislik Fakültesi, Fizik Mühendisliği Bölümü Birçok çekirdek nötron yakalama ile β - yayınlayarak bozunuma uğrar. Bu bozunum sonucu nötron protona dönüşür

Detaylı

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ

T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ T. C. GAZİ ÜNİVERSİTESİ GAZİ EĞİTİM FAKÜLTESİ FİZİK EĞİTİMİ A. B. D. PROJE ÖDEVİ ÖĞRETİMİ PLANLAMA VE DEĞERLENDİRME Dr. Yücel KAYABAŞI ÖLÇME ARACI Hazırlayan : Hasan Şahin KIZILCIK 98050029457 Konu : Çekirdek

Detaylı

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti

Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Kaynak: Forum Media Yayıncılık; İş Sağlığı ve Güvenliği için Eğitim Seti Radyasyonun Keşfi 1895 yılında Wilhelm Conrad Röntgen tarafından X-ışınlarının keşfi yapılmıştır. Radyasyonun Keşfi 1896 yılında

Detaylı

ÜNİTE 13. Radyoaktivite. Amaçlar. İçindekiler. Öneriler

ÜNİTE 13. Radyoaktivite. Amaçlar. İçindekiler. Öneriler ÜNİTE 13 Radyoaktivite Amaçlar Bu üniteyi çalıştıktan sonra, Radyoaktivite, Çekirdek kararlılığı, Radyasyon ve etkileri, İyonlaştırıcı radyasyon etkileri, Radyasyon ölçü ve birimleri hakkında bilgi edineceksiniz.

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 101537 RADYASYON FİZİĞİ Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum

Detaylı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Atomsal yapı Malzeme Bilgisi Prof. Dr. Akgün ALSARAN Temel kavramlar Atomsal yapı İçerik Temel kavramlar Atom modeli Elektron düzeni Periyodik sistem 2 Temel kavramlar Bütün maddeler kimyasal elementlerden oluşur.

Detaylı

Radyoaktiflik ve Nükleer Enerji

Radyoaktiflik ve Nükleer Enerji ÜNİTE 13 Radyoaktiflik ve Nükleer Enerji Amaçlar Bu üniteyi çalıştıktan sonra, radyoaktif elementleri tanıyacak, radyoaktif atomları, nükleer ışımayı, bozunma ve yarı ömrü kavrayacak, radyasyonun nasıl

Detaylı

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar Termal nötronlar (0.025 ev) Orta enerjili nötronlar (0.5-10 kev) Hızlı nötronlar (10 kev-10 MeV) Çok hızlı nötronlar (10 MeV in üzerinde)

Detaylı

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 1. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 1 Prof. Dr. Kıvanç Kamburoğlu Herbirimiz kısa bir süre yaşarız ve bu kısa süre içerisinde tüm evrenin ancak çok küçük bir bölümünü keşfedebiliriz Evrenle ilgili olarak en anlaşılamayan

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü

Prof. Dr. Niyazi MERİÇ Ankara Üniversitesi Nükleer Bilimler Enstitüsü 0537 RADYASYO FİZİĞİ Prof. Dr. iyazi MERİÇ Ankara Üniversitesi ükleer Bilimler Enstitüsü TEMEL KAVRAMLAR Radyasyon, Elektromanyetik Dalga, Uyarılma ve İyonlaşma, peryodik cetvel radyoaktif bozunum Radyoaktivite,

Detaylı

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL

Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar. Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz, Birimler ve Tanımlar Dr. Halil DEMİREL Radyasyon, Radyoaktivite, Doz ve Birimler Çekirdek Elektron Elektron Yörüngesi Nötron Proton Nükleon Atom 18.05.2011 TAEK - ADHK 2

Detaylı

ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON. Prof. Dr. Arif Altıntaş

ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON. Prof. Dr. Arif Altıntaş ATOM ve İZOTOPlar RADYOAKTİVİTE ve RADYASYON Prof. Dr. Arif Altıntaş Atom nedir? Atomlar tüm maddeler için yapıyı oluşturan çok küçük partiküllerdir. Atom; bir elementin kimyasal özelliklerini gösteren

Detaylı

ATOM ve İZOTOPLAR. Prof. Dr. Arif Altıntaş.

ATOM ve İZOTOPLAR. Prof. Dr. Arif Altıntaş. ATOM ve İZOTOPLAR RADYOAKTİVİTE TE ve RADYASYON Prof. Dr. Arif Altıntaş altintas@veterinary.ankara.edu.tr Atom nedir? Atomlar tüm maddeler için yapıyı oluşturan çok küçük partiküllerdir. Atom; bir elementin

Detaylı

SU ÜRÜNLERİNDE MEKANİZASYON-2

SU ÜRÜNLERİNDE MEKANİZASYON-2 SU ÜRÜNLERİNDE MEKANİZASYON-2 Yrd.Doç.Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları & Teknolojileri Mühendisliği Bölümü Kaynak: YENİLENEBİLİR ENERJİ KAYNAKLARI VE TEKNOLOJİLERİ

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

ESM 309-Nükleer Mühendislik

ESM 309-Nükleer Mühendislik Gazi Üniversitesi Teknoloji Fakültesi Enerji Sistemleri Mühendisliği Bölümü ESM 309-Nükleer Mühendislik Prof. Dr. H. Mehmet ŞAHİN Bölüm 2: Bağ Enerjisi Çekirdek Kuvvetleri Kararlı ve Kararsız Çekirdekler

Detaylı

GENEL BAKIŞ. Petrol ve Doğal Gaz Üretimi 2004 Senaryosu. Fosil Yakıt Rezervleri: Ekonomik olarak Kullanılabilir Kaynaklar Bilinen Tüm Kaynaklar

GENEL BAKIŞ. Petrol ve Doğal Gaz Üretimi 2004 Senaryosu. Fosil Yakıt Rezervleri: Ekonomik olarak Kullanılabilir Kaynaklar Bilinen Tüm Kaynaklar BÖLÜM M 5 NÜKLEER KİMYA ÖZET Genel Bakış Radyoaktivite Çeşitleri Radyoaktivite Nasıl Ölçülür Çekirdek Kararlılığı Radyoaktif Bozunma Hızı Radyasyon Yağmurundan Nasıl Korunulur? Nükleer Füzyon Nükleer Fizyon

Detaylı

4- RADYOAKTİF ELEMENTLER VE ÖZELLİKLERİ

4- RADYOAKTİF ELEMENTLER VE ÖZELLİKLERİ 4- RADYOAKTİF ELEMENTLER VE ÖZELLİKLERİ Radyoaktif bir elementler, çekirdeklerinde (nükleonlarında) 83 ten fazla proton bulundurduklarından dolayı kararsızdırlar ve bu nedenle daha küçük atomlara dönüşürler.

Detaylı

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır.

Element atomlarının atom ve kütle numaraları element sembolleri üzerinde gösterilebilir. Element atom numarası sembolün sol alt köşesine yazılır. Atom üç temel tanecikten oluşur. Bunlar proton, nötron ve elektrondur. Proton atomun çekirdeğinde bulunan pozitif yüklü taneciktir. Nötron atomun çekirdeğin bulunan yüksüz taneciktir. ise çekirdek etrafında

Detaylı

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur.

DEMOCRİTUS. Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. ATOM TEORİLERİ DEMOCRİTUS DEMOCRİTUS Atom hakkında ilk görüş M.Ö. 400 lü yıllarda Yunanlı filozof Democritus tarafından ortaya konmuştur. Democritus, maddenin taneciklerden oluştuğunu savunmuş ve bu taneciklere

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3

MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3 Enerji Kaynakları MAKİNE MÜHENDİSLİĞİNE GİRİŞ Ders 3 Enerji kaynakları Yakıtlar Doğa kuvvetleri Özel doğa kuvvetleri Yrd. Doç. Dr. Yüksel HACIOĞLU Katı Sıvı Gaz Odun Petrol Doğal Gaz Hidrolik Güneş Rüzgar

Detaylı

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ ATOM Elementlerin özelliğini taşıyan, en küçük yapı taşına, atom diyoruz. veya, fiziksel ve kimyasal yöntemlerle daha basit birimlerine ayrıştırılamayan, maddenin en küçük birimine atom denir. Helyum un

Detaylı

ÇEKİRDEK KİMYASI. Kimya Ders Notu

ÇEKİRDEK KİMYASI. Kimya Ders Notu ÇEKİRDEK KİMYASI Kimya Ders Notu ÇEKİRDEK KİMYASI Atomaltı Tanecikler Atomaltı parçacıklar bağımsız olarak ömürleri çok kısa olduğu için normal şartlar altında gözlemlenemezler. Bu amaçla oluşturulan parçacık

Detaylı

FİZ314 Fizikte Güncel Konular

FİZ314 Fizikte Güncel Konular FİZ34 Fizikte Güncel Konular 205-206 Bahar Yarıyılı Bölüm-7 23.05.206 Ankara A. OZANSOY 23.05.206 A.Ozansoy, 206 Bölüm 7: Nükleer Reaksiyonlar ve Uygulamalar.Nötron İçeren Etkileşmeler 2.Nükleer Fisyon

Detaylı

4. Ünite 2. Konu Enerji Kaynakları. A nın Yanıtları

4. Ünite 2. Konu Enerji Kaynakları. A nın Yanıtları ENERJİ KAYNAKLARI 1 4. Ünite 2. Konu Enerji Kaynakları A nın Yanıtları 1. Günümüzde kullanılan nin maliyetinin düşük, çevreye zarar vermeyen... yenilenebilir ve güvenli olmasına önem verilmektedir. 12.

Detaylı

Radyoaktivitenin Canlılar Üzerindeki Etkisi

Radyoaktivitenin Canlılar Üzerindeki Etkisi Radyoaktivitenin Canlılar Üzerindeki Etkisi Atom: Elementin tüm özelliklerini gösteren en küçük yapı taşıdır. Yunanlı filozofların, tüm maddelerin bölünmeyen yapıtaşları ndan oluştuğunu ilk olarak öne

Detaylı

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... İÇİNDEKİLER ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ... viii -BÖLÜM / 1- GİRİŞ... 1 -BÖLÜM / 2- ÖZEL GÖRELİLİK... 13 2.1. REFERANS SİSTEMLERİ VE GÖRELİLİK... 14 2.2. ÖZEL GÖRELİLİK TEORİSİ... 19 2.2.1. Zaman Ölçümü

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

RADYOAKT FL K. ALIfiTIRMALARIN ÇÖZÜMÜ. 5. a) Denklemi yazd m zda; 1. Yar lanma süresi T 1/2. 6. a) Madde miktar n 8 m gram al rsak 7 m gram

RADYOAKT FL K. ALIfiTIRMALARIN ÇÖZÜMÜ. 5. a) Denklemi yazd m zda; 1. Yar lanma süresi T 1/2. 6. a) Madde miktar n 8 m gram al rsak 7 m gram RADYOAKT FL K RADYOAKT FL K 1. Yar lanma süresi T 1/ ile gösterilir. Radyoaktif element içerisindeki çekirdek say s n n yar s n n bozunmas için geçen süredir. Bu süre çok uzun olabilece i gibi çok k sa

Detaylı

Nükleer Teknoloji ve Enerji Üretimi. Dr. Halil DEMİREL

Nükleer Teknoloji ve Enerji Üretimi. Dr. Halil DEMİREL Nükleer Teknoloji ve Enerji Üretimi Dr. Halil DEMİREL Nükleer Teknoloji 18.05.2011 TAEK - ADHK 2 Nükleer Teknoloji Nükleer teknolojiyi üstün kılan, nükleer reaksiyonları ve radyasyonu faydalı bir şekilde

Detaylı

Geçen Süre/Yarı ömür. İlk madde miktarı. Kalan madde miktarı

Geçen Süre/Yarı ömür. İlk madde miktarı. Kalan madde miktarı 27.10.2017 1 27.10.2017 2 27.10.2017 3 Geçen Süre/Yarı ömür Kalan madde miktarı İlk madde miktarı 27.10.2017 4 Soru 1: Yarı ömrü 18 gün olan radyoaktif bir elementin, 72 gün sonunda % kaçı bozunmadan kalır?

Detaylı

ATOM BİLGİSİ I ÖRNEK 1

ATOM BİLGİSİ I  ÖRNEK 1 ATOM BİLGİSİ I Elementlerin özelliklerini ta ıyan en küçük yapıta ı atomdur. Son çözümlemede, bütün maddelerin atomlar toplulu u oldu unu söyleyebiliriz. Elementler, aynı tür atomlardan, bile ik ve karı

Detaylı

ESM 309-Nükleer Mühendislik

ESM 309-Nükleer Mühendislik Gazi Üniversitesi Teknoloji Fakültesi Enerji Sistemleri Mühendisliği Bölümü ESM 309-Nükleer Mühendislik Prof. Dr. H. Mehmet ŞAHİN Bölüm 3: Çekirdek Reaksiyonları Nötron Madde Etkileşimi Nötron Çekirdek

Detaylı

RADYOAKTİVİTE. Radyasyon; iç dönüşüm geçiren atomlar tarafından yayımlanan, boşlukta ve madde içerisinde hareket edebilen enerjidir.

RADYOAKTİVİTE. Radyasyon; iç dönüşüm geçiren atomlar tarafından yayımlanan, boşlukta ve madde içerisinde hareket edebilen enerjidir. Radyasyon; iç dönüşüm geçiren atomlar tarafından yayımlanan, boşlukta ve madde içerisinde hareket edebilen enerjidir. RADYOAKTİVİTE Kendiliğinden ışıma yapabilen maddelere radyoaktif maddeler denir. Radyoaktiflik

Detaylı

TEKNOLOJİ VE TASARIM DERSİ

TEKNOLOJİ VE TASARIM DERSİ TEKNOLOJİ VE TASARIM DERSİ 7.Ç.1. Enerjinin Dönüşümü ve Tasarım Burdur İl Koordinatörleri Bu ünitede su, rüzgar ve güneş gibi doğal kaynakları kullanarak temiz ve sürdürülebilir enerji elde etme teknolojilerini

Detaylı

ELEMENTLERİN SEMBOLLERİ VE ATOM

ELEMENTLERİN SEMBOLLERİ VE ATOM ELEMENT VE SEMBOLLERİ SAF MADDE: Kendisinden başka madde bulundurmayan maddelere denir. ELEMENT: İçerisinde tek cins atom bulunduran maddelere denir. Yani elementlerin yapı yaşı atomlardır. BİLEŞİK: En

Detaylı

CANLILARIN KİMYASAL İÇERİĞİ

CANLILARIN KİMYASAL İÇERİĞİ CANLILARIN KİMYASAL İÇERİĞİ Prof. Dr. Bektaş TEPE Canlıların Savunma Amaçlı Kimyasal Üretimi 2 Bu ünite ile; Canlılık öğretisinde kullanılan kimyasal kavramlar Hiyerarşi düzeyi Hiyerarşiden sorumlu atom

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ

MADDENİN YAPISI VE ÖZELLİKLERİ MADDENİN YAPISI VE ÖZELLİKLERİ 1. Atomun Yapısı KONULAR 2.Element ve Sembolleri 3. Elektronların Dizilimi ve Kimyasal Özellikler 4. Kimyasal Bağ 5. Bileşikler ve Formülleri 6. Karışımlar 1.Atomun Yapısı

Detaylı

Coğrafya X-Robots-Tag: otherbot: noindex, nofollow

Coğrafya X-Robots-Tag: otherbot: noindex, nofollow Yazı İçerik Güneş Nedir? Güneşin Büyüklüğü Güneşin Bileşimi Güneşin İç Yapısı A) Çekirdek B) Radiyatif Bölge C) Konvektif Bölge Güneşin Yüzeyi (Fotosfer) Fotosferin Özellikleri Güneş Atmosferi Kromosfer

Detaylı

ATOM BİLGİSİ Atom Modelleri

ATOM BİLGİSİ Atom Modelleri 1. Atom Modelleri BÖLÜM2 Maddenin atom adı verilen bir takım taneciklerden oluştuğu fikri çok eskiye dayanmaktadır. Ancak, bilimsel bir (deneye dayalı) atom modeli ilk defa Dalton tarafından ileri sürülmüştür.

Detaylı

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler.

Yıldızların: Farklı renkleri vardır. Bu, onların farklı sıcaklıklarda olduklarını gösterir. Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldızların Hayatı Yıldızların: Farklı renkleri vardır Bu, onların farklı sıcaklıklarda olduklarını gösterir Daha sıcak yıldızlar, ömürlerini daha hızlı tüketirler. Yıldız Oluşum Bölgeleri Evren, yıldız

Detaylı

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri

ATOMUN YAPISI. Özhan ÇALIŞ. Bilgi İletişim ve Teknolojileri ATOMUN YAPISI ATOMLAR Atom, elementlerin en küçük kimyasal yapıtaşıdır. Atom çekirdeği: genel olarak nükleon olarak adlandırılan proton ve nötronlardan meydana gelmiştir. Elektronlar: çekirdeğin etrafında

Detaylı

Burada Q=200 MeV kadar bir enerjidir. (1 MeV=1.6x10-13 Joule)

Burada Q=200 MeV kadar bir enerjidir. (1 MeV=1.6x10-13 Joule) 37 3.1 GİRİŞ Bütün enerjilerin kaynağı olan güneşteki enerjinin nükleer reaksiyonlardan kaynaklandığı bilinmektedir. Nükleer reaksiyonlarda atom çekirdeği içinde bulunan proton ve nötronların alınıp verilmesi

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri. Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası

Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri. Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası Radyasyon Uygulamalarının Fizik Mühendisliği ve Eğitiminden Beklentileri Dr. Abdullah ZARARSIZ Fizik Mühendisleri Odası İÇERİK - İYONLAŞTIRICI RADYASYON Endüstriyel Uygulamalar Medikal Uygulamalar Diğer

Detaylı

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir.

İşyeri ortamlarında, çalışanların sağlığını. ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. İş Sağlığı ve Güvenliği İşyeri ortamlarında, çalışanların sağlığını ve güvenliğini korumak amacıyla yapılan bilimsel çalışmaların tümü diye tanımlanabilir. Çalışanların sağlığı ve güvenliğin bozulması

Detaylı

Elektronların Dağılımı ve Kimyasal Özellikleri

Elektronların Dağılımı ve Kimyasal Özellikleri Elektronların Dağılımı ve Kimyasal Özellikleri Helyum (2), neon (10), argon (18)in elektron dağılımları incelendiğinde Eğer bu üç elementin birer elektronu daha olsaydı, her birinde yeni bir katman oluşacaktı.

Detaylı

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir.

MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. MADDE NEDİR? Çevremize baktığımızda gördüğümüz her şey örneğin, dağlar, denizler, ağaçlar, bitkiler, hayvanlar ve hava birer maddedir. Her maddenin bir kütlesi vardır ve bu tartılarak bulunur. Ayrıca her

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

Elektronların Dizilişi ve Kimyasal Özellikleri

Elektronların Dizilişi ve Kimyasal Özellikleri Elektronların Dizilişi ve Kimyasal Özellikleri ELEKTRON ALIŞVERİŞİ VE SONUÇLARI: Helyum (2), neon (10), argon (18)in elektron dağılımları incelendiğinde Eğer bu üç elementin birer elektronu daha olsaydı,

Detaylı

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur.

ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. DERS: KİMYA KONU : ATOM YAPISI ATOM NEDİR? -Atom elementin özelliğini taşıyan en küçük parçasına denir. Her canlı-cansız madde atomdan oluşmuştur. Atom Modelleri Dalton Bütün maddeler atomlardan yapılmıştır.

Detaylı

Nükleer Enerji Üretim Teknolojilerinin Dünyadaki Gelecegi vetürkiye. Mehmet Tombakoglu Ph.D Nükleer Mühendislik Hacettepe Üniversitesi

Nükleer Enerji Üretim Teknolojilerinin Dünyadaki Gelecegi vetürkiye. Mehmet Tombakoglu Ph.D Nükleer Mühendislik Hacettepe Üniversitesi Nükleer Enerji Üretim Teknolojilerinin Dünyadaki Gelecegi vetürkiye Mehmet Tombakoglu Ph.D Nükleer Mühendislik Hacettepe Üniversitesi Nükleer Teknolojinin Şu Andaki Konumu İlk ticari nükleer reaktör 1950

Detaylı

ÜN TE IV RADYOAKT V TE

ÜN TE IV RADYOAKT V TE ÜN TE IV RADYOAKT V TE 4. 1. ATOM ÇEK RDE N N YAPISI 4. 2. RADYOAKT F BOZUNMALAR 4. 3. BOZUNMA ÇEfi TLER 4. 4. TAB Î VE SUN'Î RADYOAKT FL K 4. 5. RADYOAKT F BOZUNMA HIZI 4. 6. ÇEK RDEK TEPK MELER BU ÜN

Detaylı

7. Sınıf Fen ve Teknoloji

7. Sınıf Fen ve Teknoloji KONU: Atomun Yapısı Saçlarımızın elektriklenmesi, araba kapısına çarpan parmak uçlarımızın elektriksel yük boşalmasından dolayı karıncalanması, cam çubuğun kumaşa sürtüldükten sonra kâğıdı çekmesi, kazağımızı

Detaylı

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu

Radyoaktivite - Büyük Patlama ve Evrenin Oluşumu 40 Radyoaktivite - Büyük Patlama ve Evrenin Olşm 1 Test 1 in Çözümleri 1. Elektrikçe yüksüz parçacıklar olan fotonların kütleleri yoktr. Işık hızıyla hareket ettikleri için atom içerisinde blnamazlar.

Detaylı

GÜNEŞ ENERJİSİ VE FOTOVOLTAİK PİLLER SAADET ALTINDİREK 2011282004

GÜNEŞ ENERJİSİ VE FOTOVOLTAİK PİLLER SAADET ALTINDİREK 2011282004 GÜNEŞ ENERJİSİ VE FOTOVOLTAİK PİLLER SAADET ALTINDİREK 2011282004 GÜNEŞİN ÖZELLİKLERİ VE GÜNEŞ ENERJİSİ GÜNEŞİN ÖZELLİKLERİ Güneşin merkezinde, temelde hidrojen çekirdeklerinin kaynaşmasıyla füzyon reaksiyonu

Detaylı

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET

BÖLÜM 3: (6,67x10 Nm kg )(1,67x10 kg)»10 36 F (9x10 Nm C )(1,6x10 C) NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET BÖLÜM : NÜKLEONLAR ARASI KUVVET- NÜKLEER KUVVET Atomdaki elektronların hareketini kontrol eden kuvvetler elektromanyetik kuvvettir. Elektromanyetik kuvvet atomları ve molekülleri bir arada tutar. Çekirdekteki

Detaylı

ISI NEDİR? Isı bir enerji çeşidi olduğu için enerji birimleriyle ölçülür. HÜSEYİN DEMİRBAŞ

ISI NEDİR? Isı bir enerji çeşidi olduğu için enerji birimleriyle ölçülür. HÜSEYİN DEMİRBAŞ ISI NEDİR? Bir maddeyi oluşturan taneciklerin sahip oldukları hareket (kinetik) enerjilerinin toplamına ısı denir. Isı bir enerji türüdür ve ısı enerjisi kalorimetre kabı ile ölçülür. Isı bir enerji çeşidi

Detaylı

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir.

ATOM ATOMUN YAPISI 7. S I N I F S U N U M U. Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. ATO YAP Atomu oluşturan parçacıklar farklı yüklere sahiptir Atomda bulunan yükler; negatif yükler ve pozitif yüklerdir Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir Atomu oluşturan

Detaylı

6- RADYASYON KAYNAKLARI VE DOZU

6- RADYASYON KAYNAKLARI VE DOZU 6- RADYASYON KAYNAKLARI VE DOZU Güneşten gelen ısı ve ışık enerjisi radyasyonun doğal formudur. Bunlar çevremizde doğal olarak bulundukları gibi yapay olarak da elde edilmektedir. O nedenle radyasyon kaynağına

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI OLUŞUMU Hızlandırılmış elektronların anotla etkileşimi ATOMUN YAPISI VE PARÇACIKLARI Bir elementi temsil eden en küçük

Detaylı

BİYOLOJİK MOLEKÜLLERDEKİ

BİYOLOJİK MOLEKÜLLERDEKİ BİYOLOJİK MOLEKÜLLERDEKİ KİMYASALBAĞLAR BAĞLAR KİMYASAL VE HÜCRESEL REAKSİYONLAR Yrd. Doç.Dr. Funda BULMUŞ Atomun Yapısı Maddenin en küçük yapı taşı olan atom elektron, proton ve nötrondan oluşmuştur.

Detaylı

Bölüm 7 Radyasyon Güvenliği. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 7 Radyasyon Güvenliği. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 7 Radyasyon Güvenliği Prof. Dr. Bahadır BOYACIOĞLU RADYASYON NEDİR? Radyasyon, elektromanyetik dalgalar veya parçacıklar biçiminde enerji yayılımı ya da aktarımıdır. RADYASYON ÇEŞİTLERİ İYONLAŞTIRICI

Detaylı

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: UBT 306 - Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim: 1. (a) (5) Radyoaktivite nedir, tanımlayınız? Bir radyoizotopun aktivitesi (A), izotopun birim zamandaki

Detaylı

BAKIR ATOMUNDA K,L,M ZARFLARI

BAKIR ATOMUNDA K,L,M ZARFLARI HER ATOMUN YÖRÜNGE ZARFLARINDA (K,L,M,..) BULUNABİLECEK MAKSİMUM ELEKTRON SAYISI 2n 2 FORMÜLÜ İLE BULUNABİLİR. SON YÖRÜNGE ZARFINDA EN ÇOK 8 ELEKTRON BULUNUR. Helyum atomu BAKIR ATOMUNDA K,L,M ZARFLARI

Detaylı

İstanbul Bilgi Üniversitesi Enerji Sistemleri Mühendisliği. Çevreye Duyarlı Sürdürülebilir ve Yenilenebilir Enerji Üretimi ve Kullanımı

İstanbul Bilgi Üniversitesi Enerji Sistemleri Mühendisliği. Çevreye Duyarlı Sürdürülebilir ve Yenilenebilir Enerji Üretimi ve Kullanımı İstanbul Bilgi Üniversitesi Enerji Sistemleri Mühendisliği Çevreye Duyarlı Sürdürülebilir ve Yenilenebilir Enerji Üretimi ve Kullanımı Günlük Hayatımızda Enerji Tüketimi Fosil Yakıtlar Kömür Petrol Doğalgaz

Detaylı

X IŞINLARININ ELDE EDİLİŞİ

X IŞINLARININ ELDE EDİLİŞİ X IŞINLARININ ELDE EDİLİŞİ Radyografide ve radyoterapide kullanılan X- ışınları, havası boşaltılmış bir tüp içinde, yüksek gerilim altında, ısıtılan katottan çıkan elektron demetinin hızlandırılarak anota

Detaylı

ELEMENT VE BİLEŞİKLER

ELEMENT VE BİLEŞİKLER ELEMENT VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri: a) Elementler: Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

Not: Bu yazımızın video versiyonunu aşağıdan izleyebilirsiniz. Ya da okumaya devam edebilirsiniz

Not: Bu yazımızın video versiyonunu aşağıdan izleyebilirsiniz. Ya da okumaya devam edebilirsiniz Uzay Ne Kadar Soğuk? Uzay ne kadar soğuk, veya ne kadar sıcak? Öncelikle belirtelim; uzay, büyük oranda boş bir ortamdır. Öyle ki, uzayda 1 metreküplük bir hacimde çoğu zaman birkaç tane atom, molekül

Detaylı

ELEMENTLER VE BİLEŞİKLER

ELEMENTLER VE BİLEŞİKLER ELEMENTLER VE BİLEŞİKLER 1- Elementler ve Elementlerin Özellikleri a) ELEMENTLER Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere

Detaylı

Enerjinin varlığını cisimler üzerine olan etkileri ile algılayabiliriz. Isınan suyun sıcaklığının artması, Gerilen bir yayın şekil değiştirmesi gibi,

Enerjinin varlığını cisimler üzerine olan etkileri ile algılayabiliriz. Isınan suyun sıcaklığının artması, Gerilen bir yayın şekil değiştirmesi gibi, ENERJİ SANTRALLERİ Enerji Enerji soyut bir kavramdır. Doğrudan ölçülemeyen bir değer olup fiziksel bir sistemin durumunu değiştirmek için yapılması gereken iş yoluyla bulunabilir. Enerjinin varlığını cisimler

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ

ELEMETLER VE BİLEŞİKLER ELEMENTLER VE SEMBOLLERİ ELEMENTLER VE SEMBOLLERİ Elementler Aynı cins atomlardan oluşan, fiziksel ya da kimyasal yollarla kendinden daha basit ve farklı maddelere ayrılamayan saf maddelere element denir. Elementler çok sayıda

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

VIA GRUBU ELEMENTLERİ

VIA GRUBU ELEMENTLERİ Bölüm 8 VIA GRUBU ELEMENTLERİ Bu slaytlarda anlatılanlar sadece özet olup ayrıntılı bilgiler derste verilecektir. O, S, Se, Te, Po O ve S: Ametal Se ve Te: Yarı metal Po: Metal *Oksijen genellikle bileşiklerinde

Detaylı

KİMYA -ATOM MODELLERİ-

KİMYA -ATOM MODELLERİ- KİMYA -ATOM MODELLERİ- ATOM MODELLERİNİN TARİHÇESİ Bir çok bilim adamı tarih boyunca atomun yapısı ile ilgili pek çok fikir ortaya atmış ve atomun yapısını tanımlamaya çalışmış-tır. Zaman içerisinde teknoloji

Detaylı

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla kendinden farklı atomlara dönüşemezler. Atomda (+) yüklü

Detaylı

radyasyonlar olmak üzere iki sınıfta toplayabiliriz. İyonlaştırıcı radyasyonlar; kozmik radyasyonlar yada kozmik ışınları (uzaydan gelen X ve gama

radyasyonlar olmak üzere iki sınıfta toplayabiliriz. İyonlaştırıcı radyasyonlar; kozmik radyasyonlar yada kozmik ışınları (uzaydan gelen X ve gama ATOM, RADYOAKTİVİTE, RADYOİZOTOPLAR ve RADYASYON TÜRLERİ Ahmet Cangüzel Taner Fizik Yüksek Mühendisi Türkiye Atom Enerjisi Kurumu ( acant@taek.gov.tr ) Radyasyon yaşamın gerçeği veya bir parçası kabul

Detaylı

SUNUM KONUSU : GAMA IŞINLARI SUNUMU HAZIRLAYAN : KEMAL AKKUŞ NUMARASI : KONU BAŞLIKLARI

SUNUM KONUSU : GAMA IŞINLARI SUNUMU HAZIRLAYAN : KEMAL AKKUŞ NUMARASI : KONU BAŞLIKLARI SUNUM KONUSU : GAMA IŞINLARI SUNUMU HAZIRLAYAN : KEMAL AKKUŞ NUMARASI : 1120206019 KONU BAŞLIKLARI 1. Gama Işınları Nasıl Bulundu? 2. Gama Işınları Nedir? 3. Teknolojide ve Günlük Hayatta Kullanımı 4.

Detaylı

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ 6 X-Işınlarının madde ile etkileşimi Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI MADDE ETKİLEŞİMİ Elektromanyetik enerjiler kendi dalga boylarına yakın maddelerle etkileşime

Detaylı

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek

2- Bileşim 3- Güneş İç Yapısı a) Çekirdek GÜNEŞ 1- Büyüklük Güneş, güneş sisteminin en uzak ve en büyük yıldızıdır. Dünya ya uzaklığı yaklaşık 150 milyon kilometre, çapı ise 1.392.000 kilometredir. Bu çap, Yeryüzünün 109 katı, Jüpiter in de 10

Detaylı

NÜKLEER TEHLİKE HAZIRLAYAN :ABDULKADİR PAZAR MURAT AYDIN 2010-2011

NÜKLEER TEHLİKE HAZIRLAYAN :ABDULKADİR PAZAR MURAT AYDIN 2010-2011 NÜKLEER TEHLİKE HAZIRLAYAN :ABDULKADİR PAZAR MURAT AYDIN 2010-2011 "Ben atomu iyi bir şey için keşfettim,ama insanlar atomla birbirlerini öldürüyorlar. 'Bilim atom bombasını üretti, fakat asıl kötülük

Detaylı

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar.

Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar. Elementlerin büyük bir kısmı tabiatta saf hâlde bulunmaz. Çoğunlukla başka elementlerle bileşikler oluşturmuş şekilde bulunurlar. Elementlerin bileşik oluşturma istekleri onların kararlı yapıya ulaşma

Detaylı