A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?"

Transkript

1 ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)} E) {(1,7),(,),(,5)} A dır. Fakat B seçeeğideki {(1,), (1,5), (,1)} bağıtısıda taımsızdır. Dolayısıyla bu bağıtı foksiyo değildir. ÖRNEK : A = {7,8,9}, B ={1,,5} kümeleri veriliyor. A da B ye taımlı aşağıdaki bağıtılarda hagilerii hem kedisi hem de tersi foksiyodur? I. {(7,), (8,5), (9,1)} II. {(7,5), (8,), (8,5)} III.{(7,), (8,5), (8,1)} IV.{(7,1), (8,5), (9,)} A) Yalız I B) II ve III C) I ve IV D) II, III, IV E) I,III, IV I ve IV deki bağıtılar 1 1 ve örte foksiyodur. Dolayısıyla tersleri de 1 1 ve örte foksiyodur. YANIT C

2 ÖRNEK : A = {-1,, 4} ve f : A B, f() = - 1 biçimide taımlı ola foksiyo 1 1 ve örtedir. Bua göre, B kümesi aşağıdakilerde hagisidir? A) {-1,, 7} B) {-, 5, 9} C) {-,, 7} D) {-1,, 9} E) {-,,9} f, 1-1 ve örte olduğuda f(a) = B dir. f(-1) =(-1) -1 = - f() =. - 1 = f(4) =.4-1 = 7 f(a) = B = {-,,7} dir. YANIT C ÖRNEK 4 : f : AB, f() = 1 biçimide taımlı foksiyo 1 1 ve örtedir. B = [5, 14] ise A kümesi aşağıdakilerde hagisidir? A) [, 5) B) (, 5] C) (, 5) D) [, 5] E) (1, 6) f : AB 1 1 ve örte bir foksiyo ve A içi f() = 1 olduğuda 5 1 < < < 15 < 5 dir. O halde A = [, 5) kümesidir. YANIT A

3 ÖRNEK 5 : f() = + 6 ise f() +f(75) toplamı aşağıdakilerde hagisidir? A) 6 B) 1 C) 18 D)6 E) 84 f() = +6= 9 = f() = f(75) = 75+6= 81 = 4 f(75) = 4 f()+ f(75) = +4 = 6 YANIT A ÖRNEK 6 : f : R R, f() = ++1 biçimide taımlaa f() foksiyoua göre, f(1 + 5 ) edir? A) B)4 C) 5 D) 6 E)7 f() = + +1 = ( 1) + f(1 + 5 ) = (1+ 5-1) + = ( 5 ) + = 5 + =7 YANIT E ÖRNEK 7 : f( + 1) = f() ve f() = 5 ise f(0) edir? A) ! C) ! E) ! B) ! D) !

4 f ( 1) f( + 1) = f() f() = f () = =. f() f (0) = 19 =. 19 f(19) f () f() f (0) f() f (4). f() f (0). f(19) = 18. (. 19) = (.). (.).(. 19) f(0) = ! ÖRNEK 8 : f : R R, f(, y) =. y y g : R R, g() = ise g(4).f(5,-1) edir? A) 1 B) 5 C) 9 D) 1 E) 15 g(4) =. 4 = 5 f(5,-1) = 5(-1) (-1) = -4 g(4). f(5, -1) =5 - (-4) = 1 YANIT D

5 ÖRNEK 9 : f() = (a ) + b +1 birim foksiyo, g() = ( 5) + 4 sabit foksiyo ise a b + + g() edir? A) 6 B) 8 C) 9 D) 10 E) 1 a = 1 a = b + 1 = 0-1 g() = ( 5) + 4 sabit foksiyo ise, 5 = 0 = 5, g() = 4 tür. A b + + g() = (-1) = 1 dir. YANIT E ÖRNEK 10 : g : R R, g() = biçimide taımlı f ve g foksiyoları içi (fog -1) ({-1,, }) edir? A) {-1, 1, 7} B) {-1, 1, 5} C) {-1, 0, 7} D) {-1, 0, 8} E) {-1, 0, 1}

6 g() = g -1 ()= - + dir. (fog -1 ) (-1) = f(g -1 (-1)) = f (-(-1)+) = f () =. +1 =7 (fog -1 ) () = f(g -1 ()) = f( - ) = f(0) = 0-1 = -1 (fog -1 ) () = f(g -1 ()) = f(- + ) = f(-1) = (-1) 1 = 0 (fog -1 ) ({-1,,}) = {-1, 0, 7} YANIT C ÖRNEK 11 : Taımlı olduğu değerler içi f( 1) = 6 1 ve f(k + 1) = ise k edir? A) B) C) 4 D) 5 E) 6 f( 1) = 6 1 y = 1 1 y -1 = f() = = + f(k + 1) = (k + 1) + = 9k + 5 = k = dir. YANIT A ÖRNEK 1 : m f() = +, g() = 1 ve (fog) () = = olduğua göre, + m toplamı kaçtır? 17 A)- 19 B) - 0 C) - D)- 5 E) - 5

7 (fog) () = f(g()) = f m m = + = m 4 m 4 + m 4 = 1 ve m 4 1 = = - 1 = - 1 = m + 4 = - 14 m = = - m = m = - 7 = - dür. ÖRNEK 1 : f : RR g : R R f() = g() = (gof -1 ) (1) i değeri kaçtır? A) -1 B) - C) - D) -4 E) -5 f() = f -1 () = 1 f -1 (1) = = (gof -1 ) (1) =g(f -1 (1)) = g() =. = -

8 ÖRNEK 14 : 5, 1 f : RR, f() = biçimide taımlı f foksiyou içi f() >0 koşuluu sağlaya 9, 1 kaç tae tam sayısı vardır? A) 6 B)8 C) 1 D) 15 E) 0 a) <1 içi + 5>0 > -5 b) 1 içi +9 >0 < 9 Bua göre -5<<9 olmalı. 8 (-4) + 1 = 1 tae tam sayı vardır. YANIT C ÖRNEK 1 : ÇÖZÜMLÜ TEST f : R R, f() = m, g : R R, g() = + 1 biçimide taımlaa f ve g foksiyoları veriliyor. fog = l ise, m. kaçtır? A) - B) 1 C) 1 D) E)4 (fog) () = f(g()) = f( + 1) = ( +1) + m = + + m = 1 ve + m = 0 dır. 1 = m = - m. = -. 1 = -1

9 ÖRNEK : 1 1 Taımlı olduğu değerler içi. f = + 1 ise f- edir? A) 11 B) 11 C) 11 D) 11 1 E) f = y = f() =. 1 y -1 = = 1 f = = = dir. CEVAP C ÖRNEK : 1 Taımlı olduğu değerler içi (fog -1 ) -1 () = aşağıdakilerde hagisidir? 6 1 A) B) 6 1 C) ve f() = 1 ise g() i kuralı 1 D) E) (fog -1 ) -1 () = (gof -1 ) () = 1 (gof -1 of) () = of 1

10 1 g() = o ( 1) ( 1) 1 g() = ( 1) 6 1 = 4 ÖRNEK 4 : f() = ise f() i f() ciside ifadesi aşağıdakilerde hagisidir? A) 9f() + 16 B) 9f() + 0 C) f() + 1 D) f() E) 9f() + 18 f() = = f() + f() = () = 9X - = 9[f() + ] = 9f() + 16 YANIT A ÖRNEK 5 : f() = -1 ise f( + ) i f() ciside ifadesi aşağıdakilerde hagisidir? A) 1 [f()] B) [f()] C) [f()] D) g[f()] E) 7 [f()] f() = 1 =. -1 = f() f( + ) = + 1 =. = ( ). = [. f()]. = 7 [f()] dir. YANIT E

11 ÖRNEK 6 : f() = ve (fof) () = 1 8 olduğua göre kaçtır? A) -1 B) 1 C) D) E) 4 (fof) () = f(f()) = f = = 4 9 = 4 ) (9 = 1 8 = -1 dir. YANIT A ÖRNEK 7 : f() doğrusal foksiyou içi f() = 5, f() = 8 ise f(1) kaçtır? A) -1 B) 1 C) D) 4 E) 6 f() doğrusal olduğuda f() = a + b biçimidedir. 8 b a f() 5 b a f() 1 b a dir. f() = a + b = -1 f(1) =. 1 1 = YANIT C

12 ÖRNEK 8 : f() = +, g() = + ve (fog) () = gof() ise kaçtır? A) -1 B) 1 C) D) E) 4 (fog) () = ( + ) + = (gof) () = ( + ) + = (fog) () = (gof) () = = 4 + = 1 dir. ÖRNEK 9 : f : RR + foksiyou içi f( + y) =. f(). f(y) olduğua göre f(0) ı değeri kaçtır? A) 1 B) C) D) 1 1 E) f(0 + 0) = f(0). f(0) f(0) [f(0)] = 0 f(0) = 0, f(0) = 1 Değerler kümesie baktığımızda f(0) = 1 dir. YANIT E

13 ÖRNEK 10 : t 1 biçimide taımlı y = f() foksiyou içi f -1 () i kuralı aşağıdakilerde y t 5 hagisidir? A) + 1 B) 5 C) + 4 D) 11 E) 4 = t 1 t = y = t + 5 = f() = = f -1 () = 1 = 11 dir. YANIT D ÖRNEK 11 : X, 1 R de bir f foksiyou f() = ile taımlıdır. (fof) () i değeri kaçtır? 5, 1 A) 11 B) 10 C) 8 D) 7 E) 5 (fof) () = f(f()) = f( 5) = f(-) = (-) + = 11 YANIT A ÖRNEK 1 : f : R R, f() = 5 g : R R, g() = 7 ise, (gof -1 ) () i kuralı aşağıdakilerde hagisidir? A) B) 5 C) X + D) X + 5 E) X

14 f() = 5 = 5 = y 5 y = f -1 () = + 5 (gof -1 ) () = g(f -1 ()) = g( + 5) = ( + 5) 7 = + YANIT C ÖRNEK 1 : f : A B, f() = m ve (5, ) f -1 ise, m i değeri kaçtır? 1 A) B) C) 4 D) 5 E) 7 (5, ) f -1 (, 5) f ve f() = 5 dir. f() = m =5 m = dür. 1 ÖRNEK 14 : f( 6-1 ) = +1 olduğua göre f -1 () i kuralı aşağıdakilerde hagisidir? A) - B) - C) -4 D) -5 E) -6 YANIT C

15 ÖRNEK 15 : f : R R, f() = g : R R, y = g() biçimide taımlaa f ve g foksiyoları içi (f.g) () = ise g -1 (5) i değeri kaçtır? A) B) 4 C) 5 D) 6 E) 7 (f.g) () = f().g() = ( ). g() = ( ) g() = ( ) ( ) g() = g -1 () = + g-1(5) = 5 + = 7 YANIT E ÖRNEK 16 : f : {(1, ), (, 5), (, ), (4, 6)} g : {(1, ), (, 1), (6, -1), (7, 1)} ise, (fog)() (gof)(4) ü değeri kaçtır? A) -1 B) C) D) 4 E) 6 (fog)() = f(g()) = f(1) = (gof) (4) = g(f(4)) = g(6) = -1 (fog)() (gof)(4) = (-1) = YANIT C ÖRNEK 17 :. f() = [f()] + ile verile y = f() foksiyou 1 1 ve örtedir. Bua göre f -1 () foksiyouu kuralı edir?

16 YANIT E ÖRNEK 18 : Taımlı olduğu değerler içi f( 1) =, g() = 1 ve (gof)() = -4 ise kaçtır? A) - B) -1 C) 1 D) E) f( 1) = y = 1 f() = ( +1) = + - = y 1 y = ( + 1) (gof) () =g(f()) = g( + ) = + 1 = + = = ( + 1) = 0 = -1 dir.

17 ÖRNEK 19 : f =, g = ve fog -1 aşağıdakilerde hagisie eşittir? A) B) C) D) E) fog -1 = o = YANIT C ÖRNEK 0 : f =, fog = ise g() + g(4) toplamı kaçtır? A) B) 4 C) 5 D) 6 E) fog = g = f -1 o g = g = o g() + g(4) = + 1 = 4

18 ÖRNEK 1 : Şekilde f() ve g() foksiyouu grafikleri çizilmiştir. KL // OX ve K oktasıı apsisi r ise L oktasıı apsisi aşağıdakilerde hagisidir? A) (f -1 og)(r) B) (f -1 og -1 ) (r) C) (gof -1 ) (r) D) (gof) (r) E) (fog) (r) g(r) = p olsu. L oktasıı apsisi ise f() = p = g(r) dir. f() = g(r) (f -1 of) () = (f -1 og) (r) YANIT A ÖRNEK : Şekilde f() ve g() foksiyolarıı grafikleri çizilmiştir. Bua göre (fog) () 4eşitsizliğii gerçeklediği aralık aşağıdakilerde gagisidir? A) 5 B) 4 C) 4 D) E)

19 içi g() 1 dir. 1 içi f() 4 tür. O halde içi (fog) () 4 tür. YANIT D ÖRNEK : Yukarıdaki grafik f-1() foksiyoua aittir. Bua göre, (fof) (0) kaçtır? A) - B) - C) 0 D) 1 E) Grafikte verilelere göre (-, 0) f -1 (0, -) f f(0) = - (-, -) f -1 (-, -) f f(-) = - (fof) (0) = f(f(0)) = f(-) = - tür. YANIT A

20 ÖRNEK 4 : Şekilde f() foksiyouu grafiği çizilmiştir. (gof) () = e ise, g () aşağıdakilerde hagisidir? A) B) 1 C) D) 1 E) f(0) = 1, f(1) = e olduğuda f() = e biçimide bir foksiyodur. (gof) () =. e -= (e ) = [f()] dir. O halde g() = dir. YANIT C ÖRNEK 5 : Yukarıdaki grafik f() foksiyoua aittir. Bua göre, ifadesii değeri aşağıdakilerde hagisidir? 10 A) 7 10 B) C) 5 D) 5 E) 0

21 Grafiğe göre, f(-1) = 5, f(0) =, f() = 0 dır. f(0) = f -1 () = 0 dır. Bua göre, = = dür. ÖRNEK 6 : f() = a + b olmak üzere f -1 (9) = f -1 (5) = olduğua göre a. b kaçtır? A) 1 B) 10 C) 8 D) 7 E) 6 f () a b 9 a = 4 b= - f () a b 5 a. b = 4. (-) = -1 dir. YANIT A

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri

( 1) ( ) işleminde etkisiz eleman e, tersi olmayan eleman t ise te kaçtır? a) 4/3 b) 3/4 c) -3 d) 4 e) Hiçbiri V MERSİN MATEMATİK OLİMPİYATI (ÜNV ÖĞR) I AŞAMA SINAV SORULARI ( Nisa 8) de ye taımlı, birebir ve örte f ve g foksiyoları her bir içi koşuluu sağlası g( a ) = ve f ( ) ( ) ( ) f = g a 4 = a ise a sayısı

Detaylı

FONKSİYONUN TANIMI ve FONKSİYON ÇEŞİTLERİ

FONKSİYONUN TANIMI ve FONKSİYON ÇEŞİTLERİ KONU: Fonksionlar FONKSİYONUN TANIMI ve FONKSİYON ÇEŞİTLERİ. A,, kümesinden B a, b, c, d kümesine tanımlanan aşağıdaki bağıntılardan hangisi bir fonksiondur?,a,,b,,c,,d,a,,d,,a,a,,b,,c,,d,b,, c,,d,a,,b,,c,,a.

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır.

2. Matematiksel kavramları organize bir şekilde sunarak, bu kavramları içselleştirmenizi sağlayacak pedagojik bir alt yapı ile yazılmıştır. Sevgili Öğreciler, Matematik ilköğretimde üiversiteye kadar çoğu öğrecii korkulu rüyası olmuştur. Bua karşılık, istediğiiz üiversitede okuyabilmeiz büyük ölçüde YGS ve LYS sıavlarıda matematik testide

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

DİZİLER - SERİLER Test -1

DİZİLER - SERİLER Test -1 DİZİLER - SERİLER Test -. a,,,,, dizisii altıcı terimi. Geel terimi, a ola dizii kaçıcı terimi dir? 6. Geel terimi, a! ola dizii dördücü terimi 8 8 6. Geel terimi, a k k ola dizii dördücü terimi 6 0 6

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak safası İÇİNDEKİLER. ÜNİTE FNKSİYNLARDA İŞLEMLER VE UYGULAMALARI Fonksionların Simetrileri ve Cebirsel Özellikleri... 4 Tek ve Çift Fonksionlar... 4 Fonksionlarda İşlemler... 6 Konu Testleri -...

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin

Detaylı

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10

OLİMPİYAT SINAVI. 9 x.sin x + 4 / x.sin x, 0 x π İfadesinin alabileceği en küçük tamsayı değeri kaçtır? A) 14 B) 13 C) 12 D) 11 E) 10 . ( ) ( ) 9 x.si x + 4 / x.si x, 0 x π İfadesii alabileceği e küçük tamsayı değeri A) 4 B) 3 C) D) E) 0. Yuvarlak bir masa etrafıda otura 5 şövalye arasıda rasgele seçile 3 taeside e az ikisii ya yaa oturma

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B

A) π B) 4 π C) 9 π D) 16 π E ) π 6. Çözüm: Yanıt:A. 5. ax +by+ 5 = 0 } denklemlerini aynı zamanda. Çözüm: Yanıt:B . +? + + işlemii soucu aşağıdakilerde xy } y 5,x 4 5x 4y Ç 6y +7x 6.5+7.4 58 cm Yaıt:C hagisie eşittir? A) 7 B) 4 C) 7 4 D) 7 7 E ) 7 4. Aşağıda alaları verile dairelerde hagisii alaı sayıca çevresie eşittir?

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

LYS YE DOĞRU MATEMATİK TESTİ

LYS YE DOĞRU MATEMATİK TESTİ MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 50 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 75 dakikadır.. a, b ve c birer rakam

Detaylı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı

Bir Rasgele Değişkenin Fonksiyonunun Olasılık Dağılımı 5.Ders Döüşümler Bir Rasgele Değişkei Foksiyouu Olasılık Dağılımı Bu kısımda olasılık dağılımı bilie bir rasgele değişkei foksiyoları ola rasgele değişkeleri olasılık dağılımlarıı buluması ile ilgileeceğiz.

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi

f n dµ = lim gerçeklenir. Gösteriniz (Bu teorem Monoton yakınsaklık teoreminde yakınsaklık f n = f ve (f n ) monoton artan dizi 4.2. Pozitif Foksiyoları İtegrali SOU : f ), M +, A) kümeside bulua foksiyoları mooto arta dizisi ve h.h.h. f = f ise f dµ = f dµ gerçekleir. Gösteriiz Bu teorem Mooto yakısaklık teoremide yakısaklık yerie

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2

10. SINIF MATEMATİK FONKSİYONLARDA İŞLEMLER-2 . SINIF MTEMTİK FONKSİYONLRD İŞLEMLER- ÇKEY NDOLU LİSESİ MTEMTİK ÖLÜMÜ . ÜNİTE.. FONKSİYONLRD DÖRT İŞLEM Neler öğreneceksiniz? Fonksiyonlarda dört işlem yani toplama çıkarma, çarpma ve bölmeyi öğreneceksiniz.

Detaylı

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b)

Bağıntı YILLAR ) AxB BxA. 2) Ax(BxC) = (AxB)xC. 4) s(axb) = s(bxa) = s(a).s(b) Bağıtı YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - - - - BAĞINTI ÖZELLĐKLER: SIRALI ĐKĐLĐ: (a,) şeklideki ifadeye ir sıralı ikili yada kısaca ikili deir (a,) sıralı ikiliside a ya irici

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden

8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerden MC TEST I Seriler ve Diziler www.matematikclub.com, 2006 Cebir Notları Gökha DEMĐR, gdemir2@yahoo.com.tr 8. Bir aritmetik dizide a 2 = 2, a 7 = 8 ise, ortak fark aşağıdakilerde hagisidir? A) 0,8 B) 0,9

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2

LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ-2 LİNEER OLMAYAN DENKLEMLERİN SAYISAL ÇÖZÜM YÖNTEMLERİ SABİT NOKTA İTERASYONU YÖNTEMİ Bu yötemde çözüme gitmek içi f( olarak verile deklem =g( şeklie getirilir. Bir başlagıç değeri seçilir ve g ( ardışık

Detaylı

Ü İ İ İ Ğ öğ İ İ öğ İ Ü İ ö ç ö ö Ü ö Ö ö ö ö ç ö ö ö ç ö ö ö İ ç ö ç ö ç ö ö ö ö ç ç ö ç ç ç ö Ç ç ç ö ö ç ç ö ö ç ö ç ö Ö ö ö ö ö Ç ö ç ç ç ö ö Ö Ö Ö ö ö ç Ç Ö ö ö ö ç ö ç ö ç ö ö ö ç ç ç ö ö ö Ü ç Ö

Detaylı

ğ Ş Öğ ğ Ş ğ Ş Ş ğ ğ ğ ğ ğ Ğ ğ ğğ Ş Ğ Ğ Ğ ğ ğ ğ ğ ğ Ç ğ ğ ğ ğ ğ ğ Ş ğ ğ ğ Ç ğ ğ Ç ğ ğ ğ Ç ğ ğ ğ ğ Öğ ğ ğ Ş ğ Ş ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Ş Ö ğ ğ ğ ğ ğ ğ Ğ Ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ ğ Öğ Ş ğ ğ ğ Ğ ğ Ş Ğ ğ ğ

Detaylı

Ş Ş ç ö Ç ö Ş Ü ö Öğ Ü ç ğ Ü öğ ç öğ Ü öğ Ü Ş ç ğ Ş Ş öğ ç ğ ç ç ğ ğ ğ Ç Ş ğ ğ ğ öö ö Ğ ğ Ş öğ Ş ç ç ğ ğ ğ ğ ğ ğ ğ ğ ğ ö öğ ç ç ç ğ Ü öğ ö öğ ö öğ öğ ö ç ö ç Ş ğ ğ ğ Ü ğ öğ Ş Ş ç Ç Ş ğ ğ ğ ğ ğ ğ ğ ğ ğ

Detaylı

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

11. SINIF KONU ÖZETLİ SORU BANKASI

11. SINIF KONU ÖZETLİ SORU BANKASI . SINIF MATEMATİK KONU ÖZETLİ SORU BANKASI Mil li Eği tim Ba ka lı ğı Ta lim ve Ter bi ye Ku ru lu Baş ka lı ğı ı 4.8. ta rih ve sa yı lı ka ra rı ile ka bul edi le ve - Öğ re tim Yı lı da iti ba re uy

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh. 129-138 Ocak 2004 CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ (SOLUTION OF HOMEGENEOUS DIFFERANTIAL

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

Ğ Ğ ç Ö ğ ğ ç ç ç ç Ö ğ ğ ç ç ğ ğ ö ğ ğ Ö ö ö ö ö ö Ö ö ç ç Ğ Ğ ç Ğ Ö ğ Ö ğ ğ ğ ğ ö ç ğ ğ ğ ö ç ğ ğ ö ğ ö ğ ğ ç ö ğ ğ ğ ğ Ğ Ğ Ğ ç Ö ğ ğ ğ Ö ğ ğ ğ ğ ç ğ ğ ğ ç Ö ç ç ç ğç Ö ğ ğ ğ ç ç Ğ Ğ ç Ğ ç Ö ğ ö ö Ö

Detaylı

öğ ç Ü ö ö ö ç ö ö ö ö ç ö Ö ö ç Ü ö ç ö ö Ö ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ç ç ö ç ç Ö ç ç Ö ç ç

öğ ç Ü ö ö ö ç ö ö ö ö ç ö Ö ö ç Ü ö ç ö ö Ö ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ç ç ö ç ç Ö ç ç Ö ç ç öğ Ğ Ö ö Ğ ç Ç Ğ ö Ğ Ğ ö öğ ç Ü ö ö ö ç ö ö ö ö ç ö Ö ö ç Ü ö ç ö ö Ö ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ç ç ö ç ç Ö ç ç Ö ç ç ö ç ç ç ö ö ç ç ç ç ö Ö Ö ö ö ö ö ç ç ö ö ö ö Ö ö ö ö Üç ç ç ç Ö ç ö Ö ö ö ç ç

Detaylı

Ü Ü öğ ç Ü ö ö ö ç ö ö ö Ç ö Ö ö ç İ İ ö ç ö ö Ö ç ç İ ç ç ç ç ö ç ç ç ç ç ç ö ö ç Ç ö ç ç Ö İ ç ç Ö ç ç

Ü Ü öğ ç Ü ö ö ö ç ö ö ö Ç ö Ö ö ç İ İ ö ç ö ö Ö ç ç İ ç ç ç ç ö ç ç ç ç ç ç ö ö ç Ç ö ç ç Ö İ ç ç Ö ç ç öğ Ğ Ö ö İ Ğ İ Ç Ğ Ü Ü İ İ Ü ç ç İ İ ç Ü Ü öğ ç Ü ö ö ö ç ö ö ö Ç ö Ö ö ç İ İ ö ç ö ö Ö ç ç İ ç ç ç ç ö ç ç ç ç ç ç ö ö ç Ç ö ç ç Ö İ ç ç Ö ç ç İ ö Ç ç ç İ İ ö ö ç ç ç ç ö Ö Ö ö ö ö ö İ ö ö ç ç ö ö ö ö

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n )

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n ) 5. Ders Yeterlilik Yeterlilik Ilkesi: Bir T(X ; X ; :::; X ) istatisti¼gi, hakk da yeterli bir istatistik olacaksa hakk da herhagi bir souç ç kar m T arac l ¼g ile (X ; X,...,X ) öreklemie ba¼gl olmal

Detaylı

TEMEL KAVRAMLAR Test -1

TEMEL KAVRAMLAR Test -1 TEMEL KAVRAMLAR Test -1 1. 6 ( ) 4 A) B) 3 C) 4 D) 5 E) 6 5. 4 [1 ( 3). ( 8)] A) 4 B) C) 0 D) E) 4. 48: 8 5 A) 1 B) 6 C) 8 D) 1 E) 16 6. 4 7 36:9 18 : 3 A) 1 B) 8 C) D) 4 E) 8 3. (4: 3 + 1):4 A) 3 B) 5

Detaylı

ğ Ü ö ç ö Ü ç ö ğ ğ Ü ç ö Ü ç ö ç ğ ö ğ ğ ğ Ş ç ç Ş «ç ç ç ç ç Ş ç ç Ö Ö ç

ğ Ü ö ç ö Ü ç ö ğ ğ Ü ç ö Ü ç ö ç ğ ö ğ ğ ğ Ş ç ç Ş «ç ç ç ç ç Ş ç ç Ö Ö ç ç ğ ç ç ç ç ğ ç Ç ö ğ Ç ğ ç ç ç ç ğ ç ç ğ ğ Ü ö ç ö Ü ç ö ğ ğ Ü ç ö Ü ç ö ç ğ ö ğ ğ ğ Ş ç ç Ş «ç ç ç ç ç Ş ç ç Ö Ö ç Ü ğ ğ ö ğ ğ ğ ğ Ü ğ ö ç ğ Ü ç ğ ö ç ğ ö ö ğ ğ ğ ğ ğ ğ ğ ö ğ Ü Ü Ü Ö Ü Ü Ş Ş Ğ ğ ç ğ

Detaylı

+ y ifadesinin en küçük değeri kaçtır?

+ y ifadesinin en küçük değeri kaçtır? PROBLEMLER: 9 Sıavı 5 a, a, a,..., a Z, 0 a k olmak üzere, 95 sayısı faktöriyel tabaıda 5. k 95 = a+ a.! + a.! +... + a.! biçimide yazılıyor. a kaçtır? (! =...( ) ) 0 ( B ) ( C ) ( D ) ( E ). Bir ABC üçgeide

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

kpss ÖABT PEGEM İ TERCİH EDENLER YİNE KAZANDI ÖNCE BİZ SORDUK LİSE MATEMATİK 50 Soruda SORU

kpss ÖABT PEGEM İ TERCİH EDENLER YİNE KAZANDI ÖNCE BİZ SORDUK LİSE MATEMATİK 50 Soruda SORU ÖABT kpss 0 8 PEGEM İ TERCİH EDENLER YİNE KAZANDI ÖNCE BİZ SORDUK LİSE MATEMATİK 50 Soruda 0 SORU ÖABT 07 PEGEM AKADEMİ YAYINLARINDAKİ 07 ÖABT'de SORULAN BENZER SORULAR Geel terimi a = + e - o ÖABT 07.

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

TMÖZ Türkiye Matematik Öğretmenleri Zümresi

TMÖZ Türkiye Matematik Öğretmenleri Zümresi YGS MATEMATİK DENEMESİ- Muharrem ŞAHİN TMÖZ Türkiye Matematik Öğretmenleri Zümresi Eyüp Kamil YEŞİLYURT Gökhan KEÇECİ Saygın DİNÇER Mustafa YAĞCI İ:K Ve TMÖZ üyesi 4 00 matematik ve geometri sevdalısı

Detaylı

2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK

2013 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK 03 BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI MATEMATİK A SORU : lim x 8x 9 (x 3) x ifadsii dğri aşağıdaki sçklrd hagisid vrilmiştir? 0 5 7 SORU : cosax x f x foksiyouu x=0 oktasıda sürkli olması içi f(0) ı dğri

Detaylı

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları...

FONKSİYONLAR FONKSİYONLAR... 179 198. Sayfa No. y=f(x) Fonksiyonlar Konu Özeti... 179. Konu Testleri (1 8)... 182. Yazılıya Hazırlık Soruları... ÜNİTE Safa No............................................................ 79 98 Fonksionlar Konu Özeti...................................................... 79 Konu Testleri ( 8)...........................................................

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1.

2016 YILI I.DÖNEM AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME. aşağıdaki seçeneklerden hangisinde verilmiştir? n exp 1. 06 YILI I.DÖNEM AKTÜERLİK SINAVLARI Soru Toplam hasar miktarı S i olasılık ürete foksiyou X x i PS ( t) = E( t ) = exp λi( t ) ise P S(0) aşağıdaki seçeeklerde hagiside verilmiştir? A) 0 B) C) exp λ i

Detaylı

ISBN - 978-605-5631-60-4 Sertifika No: 11748

ISBN - 978-605-5631-60-4 Sertifika No: 11748 ISBN - 978-605-563-60-4 Sertifia No: 748 GENEL KOORDİNATÖR: REMZİ ŞAHİN AKSANKUR REDAKTE: REMZİ ŞAHİN AKSANKUR SERDAR DEMİRCİ SABRİ ŞENTÜRK Basm Yeri: EVOS BASIM - ANKARA Bu itab tüm basm ve yay halar

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

2.2. Fonksiyon Serileri

2.2. Fonksiyon Serileri 2.2. Foksiyo Serileri Taım.. Herhagi bir ( u (x reel (gerçel değerli foksiyo dizisi verilsi. Bu m foksiyo dizisii tüm terimlerii toplamıa, yai u m (x + u m+ (x + u m+2 (x + u m+3 (x + + u m+ (x + = k=m

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P. 4. Ders tkilik Küçük varyasl olmak, tahmi edicileri vazgeçilmez bir özelli¼gidir. Bir tahmi edicii, yal veya yas z, küçük varyasl olmas isteir. Parametrei kedisi () veya bir foksiyou (g()) ile ilgili tahmi

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT TÜME VARIM ve DİZİLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT TÜME VARIM Tüme varım. Kazaım : Tüme varım yötemii açılar ve uygulamalar yapar. Toplam ve Çarpım Sembolü. Kazaım : Toplam sembolüü ve çarpım

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

ÜN TE I FONKS YONLAR

ÜN TE I FONKS YONLAR ÜN TE I FONKS YONLAR Fonksiyonlarla lgili Temel Kavramlar Eflit Fonksiyonlar Fonksiyon Türleri Birim Fonksiyon Sabit Fonksiyon Fonksiyonlar n Bileflkesi Bir Fonksiyonun Tersi Fonksiyonlarda fllemler Fonksiyonlar

Detaylı

GERC EL ANAL IZ H useyin IRMAK

GERC EL ANAL IZ H useyin IRMAK GERÇEL ANALİZ Hüseyi IRMAK Prof. Dr. Hüseyi IRMAK Çakırı Karateki Üiversitesi Fe Fakültesi Matematik Bölümü Öğretim Üyesi Çakırı 207 2 . BÖLÜM DİZİ KAVRAMI Dizi kavramı matematik bilimide oldukça kullaışlı

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

FONKSİYONLAR ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT Fonksionlar. Kazanım : Fonksion kavramı, fonksion çeşitleri ve ters fonksion kavramlarını açıklar.. Kazanım : Verilen bir fonksionun artan, azalan ve sabit

Detaylı

6. BÖLÜM VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR UZAYLARI -BOYUTLU (ÖKLİT) UZAYI Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a, a,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir.

AÇIK UÇLU SORULAR. h( 3) = 3 ise, f(1) değeri kaçtır? II. g(x) = 2x + 3. 5. f: R R, f nin grafiği y eksenine göre simetriktir. ÜNİTE FONKSİYONLARLA İŞLEMLER VE UYGULAMALAR Bölüm TEK FONKSİYON, ÇİFT FONKSİYON AÇIK UÇLU SORULAR. R den R e I. () = +. : R R, nin graiği orijine göre simetriktir. h() = ( + ) ( + ) + onksionu tanımlanıor.

Detaylı

TEMEL MATEMAT K TEST

TEMEL MATEMAT K TEST TEMEL MTEMT K TEST KKT! + u bölümde cevaplayaca n z soru say s 40 t r + u bölümdeki cevaplar n z cevap ka d ndaki "TEMEL MTEMT K TEST " bölümüne iflaretleyiniz. 1. 1 3 1 3 1 2 1 2. 5 + 7 iflleminin sonucu

Detaylı

ö ş ğ ö ğ öğ ş ş Ü İ ş ö öğ ş öğ ğ ş ğ ş ğ ğ Öğ öğ öğ Ö Ö ş ö ö ö ş Ü ö ğ öğ ş öğ ö ş ş ş ş Ü ş öğ ö ğ ş ö ö ş öğ ş ş ş ö ş öğ ş Ü ş Ü öğ Ö ş ğ ğ Ö öğ

ö ş ğ ö ğ öğ ş ş Ü İ ş ö öğ ş öğ ğ ş ğ ş ğ ğ Öğ öğ öğ Ö Ö ş ö ö ö ş Ü ö ğ öğ ş öğ ö ş ş ş ş Ü ş öğ ö ğ ş ö ö ş öğ ş ş ş ö ş öğ ş Ü ş Ü öğ Ö ş ğ ğ Ö öğ ş Ü ğ Öğ ö ğ İ ş ş ğ ş ğ ğ Ş Ü İ Ğ öğ ö İĞİ ş«ö ş Ü ğ öğ ö ö ş ş Ü ğ öğ ş öğ ğ Öğ ö ğ ş ş Ü ğ Öğ ö ğ ş ğ ş ş öğ ö ö öğ ö öğ ş ş Ü ğ ğ öğ ö öğ öğ ö ş ş ş ğ ş ş ğ ş ş ş ş ğ öğ öğ ş ş ö ş ğ ö ğ öğ ş ş Ü İ

Detaylı

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI

11. SINIF MATEMATİK ÜÇRENK SORU BANKASI . INIF MATEMATİK ÜÇRENK ORU BANKAI Mil lî E i tim Ba ka l Ta lim ve Ter bi ye Ku ru lu Ba ka l.8. ta rih ve sa y l ka ra r ile ka bul edi le ve - Ö re tim Y l da iti ba re uy gu la a cak ola prog ra ma

Detaylı

Ü Ğ Ş Ü Ğ İ ö İ ö öç Ğ ö İ Ü Ş ö Ö ç ç ğ ö ö ğ ö Ğ Ğ «Ü Ş ğ Ü Ş İ ğ İ ğ ğ ğ ö ö ç ç ğ ğ İ ğ Ç ğ ğ Ü Ş İ ğ İ Ç ğ ğ Ç ğ Ü Ş ğ ğ İ ğ ğ ğ ğ İ ö İ ğ İ Ü İ İ Ü Ü Ü Ü İ ğ Ü ğ ö ç ö ğ ğ İ ğ İ ç ç ç İ ğ ğ İ ğ İ

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

İ İ Ş İ İ İ İ İ Ö İ Ö İ Ü Ü İ Ü İ Ü Ü Ü Ü Ö Ö Ö İ İ Ö Ö Ü Ü Ü İ Ö Ö Ö İ Ö Ö Ü İ Ü Ü Ş Ş Ş Ü Ş Ş Ü Ş Ö Ö Ö Ü İ İ Ö İ Ş Ş Ş Ş Ş Ş Ş Ş Ş İ Ü Ü Ü Ü Ü İ Ü İ Ş Ş Ö İ Ş İ İ İ İ İ İ İ Ş İ İ İ İ İ İ İ İ

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Haziran Matematik I Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 15 Haziran 008 Matematik I Soruları ve Çözümleri 1. ( ).( 4 1 + ) 1 işleminin sonucu kaçtır? A) 7 B) 4 C) 1 D) 4 E) 7 Çözüm 1 ( ).( 4 1 + ) 1 = 7 ( 1).( ) = 1 7 1 = 7 ( ).

Detaylı

Ğ ö ğ ğ ö ğ ğ ö ğ ğ ö ğ ö ğ ç ğ ğ ğ ğ ğ ğ ö ç ö ğ ö ğ ğ ö ç ö ğ ö ğ ğ ğ ö ö ğ ğ ö ö ö ç ö ö ğ ç ğ ğ ğ ö ö ğ ç ğ ğ ğ ğ ğ ğ ö ğ ğ ö ğ ğ ç ğ ğ ğ ö İ ğ ç

Ğ ö ğ ğ ö ğ ğ ö ğ ğ ö ğ ö ğ ç ğ ğ ğ ğ ğ ğ ö ç ö ğ ö ğ ğ ö ç ö ğ ö ğ ğ ğ ö ö ğ ğ ö ö ö ç ö ö ğ ç ğ ğ ğ ö ö ğ ç ğ ğ ğ ğ ğ ğ ö ğ ğ ö ğ ğ ç ğ ğ ğ ö İ ğ ç ö Ö Ğ Ğ ö ğ İ ğ Ğ İ Ç Ş İ Ö ö ö ö İ ö İ Ç İ ö ğ ğ ö İ Ğ İ İ İ İ Ğ İ İ ğ İ Ç ç İ ö Ğ ö ğ ğ ö ğ ğ ö ğ ğ ö ğ ö ğ ç ğ ğ ğ ğ ğ ğ ö ç ö ğ ö ğ ğ ö ç ö ğ ö ğ ğ ğ ö ö ğ ğ ö ö ö ç ö ö ğ ç ğ ğ ğ ö ö ğ ç ğ ğ ğ ğ ğ

Detaylı