Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Save this PDF as:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi"

Transkript

1 Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda basıncının yada potansiyel enerjisinin azalacağını söyler. Bu prensibe Bernoulli prensibi adı 1738 yılında Hydrodynamica kitabında akışkanlar mekaniği prensiplerini yazan Alman-İsveç matematikçi Daniel Bernoulli den sonra verilmiştir. Bernoulli prensibi, enerjinin korunumu yasasından çıkarılabilir. Buna göre sabit bir akımda, bir yolda hareket eden akışkanın sahip olduğu tüm mekanik enerjilerin toplamı yine bu yol üzerindeki her noktada eşittir. Bu ifade kinetik ve potansiyel enerji toplamlarının sabit olduğunu ifade eder. Bu yüzden akışkanın hızındaki herhangi bir artış, akışkanın dinamik basıncını ve kinetik enerjisini orantılı olarak artırırken statik basıncını ve potansiyel enerjisini düşürür. Bernoulli prensibi, direkt olarak Newton'un 2'nci yasasından da elde edilebilir. Eğer küçük hacimli bir akışkan yatay olarak yüksek basınçlı bölgeden düşük basınçlı bölgeye doğru ilerliyorsa, arkada; önde olduğundan daha fazla basınç var demektir. Bu, akışkan üzerinde net bir kuvvet uygulayarak akım çizgisi boyunca hızlanmasını sağlar Bernoulli Denkleminin Enerjinin Korunumu Yasası ile Çıkarılması Aşağıda şematik olarak verilen m kütlesindeki sıvının t=0 anında bulunduğu pozisyondan sağa doğru hareket edip t=t 1 anında yeni pozisyonuna geldiğini düşünelim.

2 Bu durumda sitemde yapılan iş W aşağıdaki denklemde verilmiştir. W 1 işi A 1 alanına etkiyen P 1 basıncının oluşturduğu F 1 kuvveti ile m kütlesindeki sıvının x 1 kadar yol almasıyla oluşan iştir. W 2 işi A 2 alanına etkiyen P 2 basıncının oluşturduğu F 2 kuvveti ile m kütlesindeki sıvının x 2 kadar yol almasıyla oluşan iştir. İkinci iş ifadesi kuvvet ile alınan yolun bir birine zıt yönlerde olmasından dolayı eksi işaretlidir. Tüm bilinenler yerine yazıldığında denklem yukarıdaki son halini alır. Yer değiştiren sıvının hacmi V kesit alanı A ile genişlik x!in çarpımına eşittir. Eğer akışkan sıkışamaz bir akışkan ise bu hacim değişme sabit kalır. İş denklemi ve hacim denklemi birlikte düşünülecek olursa

3 Yapılan iş akım kesitindeki mekanik enerjinin değişimine eşittir. Sistemin mekanik enerjisi yukarıda verilen şekil yardımıyla elde edilebilir. İlk ve son hal arasındaki enerji değişimi aşağıdaki ifade de verilmiştir. Burada K m kütlesinde u hızı ile hareket eden sıvının kinetik enerjisidir. U ise aynı kütledeki sıvının g yer çekimi ivmesine maruz h yüksekliğinde iken sahip olduğu potansiyel enerjidir. İş enerji teoremi bize sistem üzerinde yapılan iş o sistemde oluşan enerji değişimine eşit olduğunu söyler, buna göre; Eşitlikte denklemler yerine konulacak olursa Elde edilir. Eğer denklemin her iki yanını V hacmine bölecek olursa sonuç aşağıdaki gibi olacaktır. Burada Akışkan kütlesinin yoğunluğudur. Çıkarımımızı tamamlayacak olursak;

4 Denklemini elde ederiz. Denklem sürtünmesiz ve sıkışmayan akışkanlar için akım içindeki her hangi iki noktada geçerlidir. Bernoulli Denkleminin Diferansiyel Enerji Denklemi ile Çıkarılması Prof.Dr. Cahit Çıray Akışkanlar Mekaniğine Giriş (Mühendislik Yaklaşımı) kitabında Bernoulli Denklemine diferansiyel enerji denklemi ile ulaşmıştır. Sıkışamayan sürtünmesiz ve zamanla değişmeyen bir akım için diferansiyel enerji denklemi yazıldığında: D P 1 + U 2 + gz = 0 Dt ρ 2 olduğu görülür. Toplam türevin parantez içindeki büyüklüğün akışkanın hareketi boyunca zamana bağlı türevi ve olduğu ve değişmediği sonucuna varılabilir. Dolayısıyla akım daneciğinin yörüngesi her noktasında parantez içindeki terim değişmez ve sabit bir değere sahiptir. P 1 + U 2 + gz = sabit ρ 2 u eşitlikteki her bir terim birim kütledeki enerjidir. Dolayısıyla terimler sırasıyla birim kütledeki basınç enerjisi, kinetik enerji ve potansiyel enerji ve tamamı birim kütledeki toplam enerjidir. P 1 + U 2 + z = sabit ρg 2g Eğer denklemdeki bütün terimler g ile bölünürse eşitlikteki her bir terim akışkanın birim ağırlığındaki enerjiyi gösterir. Dolayısıyla terimler sırasıyla birim ağırlıktaki basınç enerjisi, kinetik enerji ve potansiyel enerji ve tamamı birim kütledeki toplam enerjidir. Terimlerin boyutu uzunluk olup her bir terim için yük kelimesi kullanılır. Basınç yükü, kinetik yük potansiyel yük ve tamamı toplam yük olur. P 1 2 H = + U + z, H= sabit veya H1 = H ρg 2g H bir akışkanın birim ağırlığındaki yüktür. 2

5 Enerjinin korunumu yasasının çok özel bir hali olan Bernoulli denkleminin temel şekli yukarıda verilen denklemlerdir. Şekilde I ve II noktalarında z ile noktaların referans düzlemine göre yükseklikleri, P/ρg ile potansiyel yükleri ve U 2 /2g ile noktaların kinetik yükleri verilmiştir. Şekil a ile bir akım iplikçiği temsil edilmiş ve I noktasından II noktasına giderken akım iplikçiği gösterilmiştir. Buna göre I noktasında II noktasına giderken akım iplikçiğinin yüksekliği artmaktadır ve hızı dolayısıyla kinetik yükü artmaktadır. Buna karşılık toplam yükü sabit olduğu için potansiyel yükü ise azalmaktadır. Şekil b ile ise kesiti ve yüksekliği değişen bir boru içinde 1 boyutlu akım için Bernoulli Denklemi uygulaması görülmektedir. Borunun yüksekliği I noktasından II noktasına giderken artmaktadır. Aynı zamanda boru kesit alanı ise azalmaktadır. Süreklilik denklemi gereği 1 boyutlu akımlarda kesit alanı azaldığında hız artacaktır. Dolayısıyla akımın kinetik yükü de artmaktadır. Akımın sürtünmesiz olduğu varsayımı ile toplam yükü değişmeyecektir. Kinetik enerjideki bu artış potansiyel yükte azalmaya neden olacaktır.

6 Piezometre deliği: Her hangi bir borunun üst kısmına açılacak küçük bir delik ile borunun o noktasındaki statik basıncın ölçülmesi için kullanılabilir. Bu deliğe piezometre deliği denir. Boru çeperinde akım boru yüzeyine teğet olduğu için bu noktada okunacak basınç sadece o noktadaki statik basınç olacaktır. Bu noktaya eğer ince bir saydam tüp bağlanacak olursa boru içinde yükselen sıvını yüksekliği ise tam olarak P/ρg kadar olacaktır. Yukarıda şekillerde sürekli kırmızıçizgi ile gösterilen toplam enerji çizgisidir buna karşılık kesikli kırmızıçizgi ile gösterilen ise o noktadaki piyezometrik yüklerdir. Basınç Yükü, Hız Yükü, Potansiyel Yük ve Toplam Yük Rezervuara bağlı kesiti ve yükseklikleri değişen boru siteminde bu yüklerin nasıl değiştiğine bakacak olursak Rezervuar ve bağlantı borusu Bu boru akımını analiz etmek için Bernoulli Denklemini rezervuar su yüzeyi ile buru üzerinde her hangi bir nokta arasında yazabiliriz. Rezervuardaki toplam yük H, rezervuar atmosfere açık olduğu için basıncı, ve rezervuar hacmi çok büyük olduğu için rezervuar içindeki su hızı toplam yük H=z 1 rezervuardaki su yüksekliğine eşit olacaktır., sonuç olarak

7 Eğer boru içinde akım yoksa boru üzerine bağlanan piyezometrik tüplerde su seviyesi boru boyunca rezervuar seviyesi kadar olacaktır. Bu yük çizgisi ile piyezometrik yük çizgisi üst üste aşağıdaki şekilde gösterildiği gibi olacaktır. Toplam enerji ve Piezometrik seviyesi akım olmadığı zaman Boru içindeki akım hızı u = 0 Boru içinde bir akıma izin verilirse yani u 0 ise bu durumda toplam enerji çizgisi değişmezken u 2 /2g 0 olduğu için piezometre çizgisi hız yüksekliği kadar toplan enerji çizgisi altında kalacak. Toplam enerji ve Piezometrik seviyesi akım olduğu zaman

8 Eğer boru çapı bölgesel olarak değiştirilecek olursa çapın değiştiği bölgedeki hız diğer kısımdan farklı olacak dolayısıyla hız yükleri de farklılık gösterecektir. Toplam enerji ve piezometrik seviyeler farklı boru çapları olduğu zaman. Venturimetre Bir venturimetre nin şematik görünümü aşağıdaki Şekilde gösterilmiştir. Akım, ucu konik olarak kesilmiş silindirik yapıdaki flanşlı A kısmından girer, B boğazından geçer ve konik kesimli uzun C bölümünden çıkar. Giren akım (üst akım) silindirik ve konik kısmın bağlantı noktasında üzerinde küçük delikler (E) bulunan dairesel bir halkadan (D) geçerken basıncı düzenlenir; D ve E ler den oluşan bu kısma "piezometre (basınçölçer)" denir. Giriş akımının basıncı F tapasından ölçülür. İkinci bir piezometre G boşluğu ve H delikleri ile boğazda bulunur; delikler çok hassas yapılmıştır ve işlenmiştir. Boğazdaki basınç I tapasıyla kontrol edilir. F ve I tapaları arasına uygun bir basınçölçer (bir manometre gibi) bağlanarak giriş ve çıkış akımları arasındaki basınç farkı ölçülür Şekil Venturimetre

9 Venturimetrede giriş konisinde hız artar, basınç düşer. Giriş konisindeki basınç düşüşü, sistem boyunca olan akış hızının ölçülmesine olanak verir. Sonra hız azalır ve C konisinin çıkışına doğru akım orijinal basıncına döner. Düşen basıncın tümüyle geri kazanılması için C deki konikliğin açısı küçük tutularak sınır tabakası ayrılması önlenir ve sürtünme en aza indirilir. Venturimetreler gazların ölçülmesinde kullanılan ölçü aletleri olmasına karşın, özellikle su gibi bazı sıvılar için de uygundur. Sıkıştırılamayan akışkanlar için venturimetre temel denklemi, Bernoulli eşitliğinden çıkarılır. D ve G iki basınç noktası arasında Bernoulli denklemi yazılır. Sürtünme olmadığı, metrenin yatay durduğu edilir. V a ve V b, ortalama üst (giriş) ve alt (boğazdaki) akım hızları, ρ akışkanın yoğunluğudur. Denklemde Debi ise Denklemde C v düzeltme faktörü olarak deneysel olarak saptanır; buna, "venturi katsayısı" denilmektedir. İyi dizayn edilmiş venturimetreler için, C v 0.98, daha büyüklerde C v 0.99 dolayındadır

10 Venturi Borusu Bernoulli Denkleminin Uygulaması Deney Sistemi Deney sistemi iki rezervuar arasına yerleştirilmiş dikdörtgen değişken kesitli bir borudan oluşmaktadır. Giriş rezervuarına bağlanmış akım borusu ile siteme su alınmaktadır. Çıkış rezervuarının seviye kontrol borusu ile sistemden geçen debi ayarlanmaktadır. Bu sırada değişken kesitli boru üzerine yerleştirilen piyezometre uçlarından boru boyunca oluşan piyezometrik yükseklikler gözlenmektedir.

11 Dikdörtgen kesitli boru kesit alanları Ölçüm noktaları Kesit alanları mm Deney Prosedürü Deney için giriş tankına bağı olan vana açılarak sisteme su verilecektir. Çıkış rezervuarındaki seviye ayarlandıktan sonra akımın zamanla değişmeyen duruma gelmesi için uygun süre beklenecektir. Hacim tankı yardımıyla belirli bir süre içinde dolacak uygun hacim gözlenerek debi bulunacaktır. Ardından 11 piezometre borusundaki yükseklikler okunacak ve kaydedilecektir. Elde edilen veriler ile aşağıda raporda istenilen değerler hesaplanacaktır. Deney Raporunda Yapılması İstenilenler 1. Debiyi rotametre ve hacim tankını kullanarak bulunuz. 2. Tüm noktalarda piyezometrik yükseklikleri okuyunuz 3. 1 ve 6 noktalarının piyezometrik yüksekliklerini ve venturi denklemini kullanarak debiyi hesaplayınız. 4. Ölçüm yapılan tüm noktalardaki hızları kullanarak hız yüksekliklerini bulunuz 5. Piezometerik yük çizgisini ve buna hız yükseklikleri ekleyerek bulacağınız toplam enerji çizgilerini grafik olarak çiziniz. Hazırlayan: Onur Dündar

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

KBM0308 Kimya Mühendisliği Laboratuvarı I BERNOLLİ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 BERNOLLİ DENEYİ Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Yapılacak olan Bernoulli deneyinin temel amacı, akışkanlar mekaniğinin en önemli denklemlerinden olan, Bernoulli (enerjinin

Detaylı

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI, iş yapabilme yeteneği olarak tanımlanır(kg.m yada Kwh). Bir sıvının enerjisi, sıvı birim ağırlığının sahip olduğu iş yapabilme yeteneğidir. 1. Potansiyel

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ TC ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ DEBİ ÖLÇÜM DENEYİ Hazırlayan DoçDr Bahattin TOPALOĞLU SAMSUN DEBİ ÖLÇÜM DENEYİ DENEYİN AMACI Bu deneyin amacı dört farklı

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

VENTURİMETRE DENEYİ 1. GİRİŞ

VENTURİMETRE DENEYİ 1. GİRİŞ VENTURİMETRE DENEYİ 1. GİRİŞ Genellikle herhangi bir akış esnasında akışkanın tabakaları farklı hızlarda hareket ederler ve akışkanın viskozitesi, uygulanan kuvvete karşı direnç gösteren tabakalar arasındaki

Detaylı

Proses Tekniği 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK

Proses Tekniği 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK Proses Tekniği 3.HAFTA 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK Sürekli Akışlı Açık Sistemlerde Enerji Korunumu de = d dt Sistem dt eρdv + eρ V b n A Bu denklemde e = u + m + gz Q net,g + W net,g = d dt eρdv

Detaylı

MANOMETRELER 3.1 PİEZOMETRE

MANOMETRELER 3.1 PİEZOMETRE 18 3 MANOMETRELER Düşük sıvı basınçlarını hassas olarak ölçmek için yaygın bir metot, bir veya birden fazla denge kolonu kullanan piezometre ve manometrelerin kullanılmasıdır. Burada çeşitli tipleri tartışılacaktır,

Detaylı

Bu amaçlarla kullanılan çeşitli ölçme cihazları bulunur; bunlardan bazıları, (a) Doğrudan ağırlık veya hacim ölçmeye dayanan cihazlar

Bu amaçlarla kullanılan çeşitli ölçme cihazları bulunur; bunlardan bazıları, (a) Doğrudan ağırlık veya hacim ölçmeye dayanan cihazlar 1 7. AKIŞKANLARIN ÖLÇÜLMESİ (Ref. e_makaleleri Endüstriyel prosesin kontrol edilebilmesi için prosese giren ve çıkan madde miktarlarının bilinmesi gerekir. Maddelerin akışkan olması halinde bir boruda

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I BERNOULLİ DENEYİ FÖYÜ 2014 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6 Şube NÖ-A NÖ-B Adı- Soyadı: Fakülte No: Kimya Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz. Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, 2. Ara Sınavı Soruları 10.12.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER

İnşaat Mühendisliği Bölümü Uygulama VIII ÇÖZÜMLER Soru 1 : Şekildeki hazne boru sisteminde sıkışmaz ve ideal akışkanın (su) permanan bir akımı mevcuttur. Su yatay eksenli ABC borusu ile atmosfere boşalmaktadır. Mutlak atmosfer basıncını 9.81 N/cm 2 ve

Detaylı

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1 SORU 1) Şekildeki sistemde içteki mil dönmektedir. İki silindir arasında yağ filmi vardır. Sistemde sızdırmazlık sağlanarak yağ kaçağı önlenmiştir. Verilen değerlere göre sürtünme yolu ile harcanan sürtünme

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI BORULARDA VE HİDROLİK ELEMANLARDA SÜRTÜNME KAYIPLARI DENEY FÖYÜ 1. DENEYİN AMACI Borularda

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI SU JETİ DENEYİ FÖYÜ 2 1. GENEL BİLGİLER Akışkan hareketi sonucu kuvvet oluşması bilinen

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ T.C. GAZİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUVARI BERNOULLİ DENEYİ FÖYÜ 1. GENEL BİLGİLER Bernoulli denklemi basınç, hız ve yükseklik arasındaki

Detaylı

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır. SORU 1) Şekildeki (silindir+piston) düzeni vasıtası ile kolunda luk bir kuvvet elde edilmektedir. İki piston arasındaki hacimde yoğunluğu olan bir akışkan varıdr. Verilenlere göre büyük pistonun hareketi

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

elde edilir. Akışkan dinamiğinde değişik akım tipleri vardır. Bunlar aşağıdaki gibi tanımlanabilir (Ayyıldız 1983).

elde edilir. Akışkan dinamiğinde değişik akım tipleri vardır. Bunlar aşağıdaki gibi tanımlanabilir (Ayyıldız 1983). 3. AKIŞKAN DİNAMİĞİ 3.. Newton un İkinci Kanunu Bir akışkan taneciği bir noktadan başka bir noktaya giderken pozitif ya da negatif ivmeyle hareket etmekte ve bu süreçte, üzerine F m. a kuvveti etkimektedir.

Detaylı

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No:

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No: Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 05.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

Pamukkale Üniversitesi. Makine Mühendisliği Bölümü. MENG 219 Deney Föyü

Pamukkale Üniversitesi. Makine Mühendisliği Bölümü. MENG 219 Deney Föyü Pamukkale Üniversitesi Makine Mühendisliği Bölümü MENG 219 Deney Föyü Deney No: Deney Adı: Deney Sorumluları: Deneyin Amacı: X Basınç Ölçümü Doç. Dr. Kadir Kavaklıoğlu ve Araş. Gör. Y Bu deneyin amacı

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR-II BORU ve DİRSEKLERDE ENERJİ KAYBI DENEYİ 1.Deneyin Adı: Boru ve dirseklerde

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi

VANTİLATÖR DENEYİ. Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi VANTİLATÖR DENEYİ Deneyin amacı Pitot tüpü ile hız ve debi ölçümü; Vantilatör karakteristiklerinin devir sayısına göre değişimlerinin belirlenmesi Deneyde vantilatör çalışma prensibi, vantilatör karakteristiklerinin

Detaylı

Açık hava basıncını ilk defa 1643 yılında, İtalyan bilim adamı Evangelista Torricelli keşfetmiştir. Yaptığı deneylerde Torriçelli Deneyi denmiştir.

Açık hava basıncını ilk defa 1643 yılında, İtalyan bilim adamı Evangelista Torricelli keşfetmiştir. Yaptığı deneylerde Torriçelli Deneyi denmiştir. GAZ BASINCI 1)AÇIK HAVA BASINCI: Dünyanın çevresindeki hava tabakası çeşitli gazlardan meydana gelir. Bu gaz tabakasına atmosfer denir. Atmosferdeki gazlar da, katı ve sıvılarda ki gibi ağırlığından dolayı

Detaylı

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ

YILDIZ TEKNİK ÜNİVERSİTESİ YILDIZ TEKNİK ÜNİVERSİTESİ Makine Fakültesi Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Akışkanlar Mekaniği Genel Laboratuvar Föyü Güz Dönemi Öğrencinin Adı Soyadı : No : Grup

Detaylı

İnstagram:kimyaci_glcn_hoca GAZLAR-1.

İnstagram:kimyaci_glcn_hoca GAZLAR-1. GAZLAR-1 Gazların Genel Özellikleri Maddenin en düzensiz hâlidir. Maddedeki molekül ve atomlar birbirinden uzaktır ve çok hızlı hareket eder. Tanecikleri arasında çekim kuvvetleri, katı ve sıvılarınkine

Detaylı

DEBİ ÖLÇÜM DENEYİ. Bu deneyin amacı dört farklı yöntem ile sıkıştırılamaz bir akışkanın (suyun) debisini ölçmektir. Bu yöntemler

DEBİ ÖLÇÜM DENEYİ. Bu deneyin amacı dört farklı yöntem ile sıkıştırılamaz bir akışkanın (suyun) debisini ölçmektir. Bu yöntemler DEBİ ÖLÇÜM DENEYİ 1. DENEYİN AMACI Bu deneyin amacı dört farklı yöntem ile sıkıştırılamaz bir akışkanın (suyun) debisini ölçmektir. Bu yöntemler 1) Venturi ile debi ölçümü 2) Orifis ile debi ölçümü 3)

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SINIR TABAKA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMAN

Detaylı

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008 Makina * Prof. Dr. İrfan AY Arş.Gör.T.Kerem DEMİRCİOĞLU * Balıkesir - 008 1 HİDROLİK VE PNÖMATİK 1.BÖLÜM HİDROLİK VE PNÖMATİĞE GİRİŞ TARİHÇESİ: Modern hidroliğin temelleri 1650 yılında Pascal ın kendi

Detaylı

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 AKIŞ ÖLÇÜMLERİ Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 Akış ölçümleri neden gereklidir? Akış hız ve debisinin ölçülmesi bir çok biyolojik, meteorolojik olayların incelenmesi, endüstrinin çeşitli işlemlerinde

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

Taşınım Olayları II MEMM2009 Akışkanlar Mekaniği ve Isı Transferi bahar yy. borularda sürtünmeli akış. Prof. Dr.

Taşınım Olayları II MEMM2009 Akışkanlar Mekaniği ve Isı Transferi bahar yy. borularda sürtünmeli akış. Prof. Dr. Taşınım Olayları II MEMM009 Akışkanlar Mekaniği ve Isı Transferi 07-08 bahar yy. borularda sürtünmeli akış Prof. Dr. Gökhan Orhan istanbul üniversitesi / metalurji ve malzeme mühendisliği bölümü Laminer

Detaylı

ÇÖZÜMLER ( ) ( ) ( ) ( ) ( ) ( ) ( ) İnşaat Mühendisliği Bölümü Uygulama VII

ÇÖZÜMLER ( ) ( ) ( ) ( ) ( ) ( ) ( ) İnşaat Mühendisliği Bölümü Uygulama VII Soru 1 : Şekildeki hazne boru sisteminde; a- 1, 2, 3 noktalarındaki akışkanın basınçlarını bulunuz. b- Rölatif enerji ve piyezometre çizgilerini çiziniz. Sonuç: p 1=28.94 kn/m 2 ; p 2=29.23 kn/m 2 ; p

Detaylı

DENEY FÖYÜ BALIKESİR-2015

DENEY FÖYÜ BALIKESİR-2015 DENEY FÖYÜ BALIKESİR-2015 2 İçindekiler DEVRE ŞEMASI... 3 DENEY SETİNDE KULLANILAN MALZEMELER... 3 TEORİK BİLGİ... 4 BOYLE-MARİOTTE KANUNU... 4 GAY-LUSSAC KANUNU... 7 DENEYLER... 10 Deney TE 680-01...

Detaylı

Hareket Kanunları Uygulamaları

Hareket Kanunları Uygulamaları Fiz 1011 Ders 6 Hareket Kanunları Uygulamaları Sürtünme Kuvveti Dirençli Ortamda Hareket Düzgün Dairesel Hareket http://kisi.deu.edu.tr/mehmet.tarakci/ Sürtünme Kuvveti Çevre faktörlerinden dolayı (hava,

Detaylı

Bölüm 5: Sonlu Kontrol Hacmi Analizi

Bölüm 5: Sonlu Kontrol Hacmi Analizi Bölüm 5: Sonlu Kontrol Hacmi Analizi Reynolds Transport Teoremi (RTT) Temel korunma kanunları (kütle,enerji ve momentumun korunumu) doğrudan sistem yaklaşımı ile türetilmiştir. Ancak, birçok akışkanlar

Detaylı

P u, şekil kayıpları ise kanal şekline bağlı sürtünme katsayısı (k) ve ilgili dinamik basınç değerinden saptanır:

P u, şekil kayıpları ise kanal şekline bağlı sürtünme katsayısı (k) ve ilgili dinamik basınç değerinden saptanır: 2.2.2. Vantilatörler Vantilatörlerin görevi, belirli bir basınç farkı yaratarak istenilen debide havayı iletmektir. Vantilatörlerde işletme karakteristiklerini; toplam basınç (Pt), debi (Q) ve güç gereksinimi

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB-305 KİMYA MÜHENDİSLİĞİ LABORATUVARI I DENEY 2 : BORULARDA BASINÇ KAYBI VE SÜRTÜNME DENEYİ (AKIŞKANLAR MEKANİĞİ) DENEYİN AMACI:

Detaylı

İdeal Akışkanların 2 ve 3 Boyutlu Akımları

İdeal Akışkanların 2 ve 3 Boyutlu Akımları AKM 204 / Kısa Ders Notu H11-S1 İdeal Akışkanların 2 ve 3 Boyutlu Akımları Kütlenin Korunumu Prensibi : Süreklilik Denklemi Gözönüne alınan ortam ve akışkan özellikleri; Permanan olmayan akım ortamında

Detaylı

Termodinamik Termodinamik Süreçlerde İŞ ve ISI

Termodinamik Termodinamik Süreçlerde İŞ ve ISI Termodinamik Süreçlerde İŞ ve ISI Termodinamik Hareketli bir pistonla bağlantılı bir silindirik kap içindeki gazı inceleyelim (Şekil e bakınız). Denge halinde iken, hacmi V olan gaz, silindir çeperlerine

Detaylı

VENTURİ, ORİFİS VE ROTAMETRE İLE DEBİ ÖLÇÜMÜ

VENTURİ, ORİFİS VE ROTAMETRE İLE DEBİ ÖLÇÜMÜ VENTURİ, ORİFİS VE ROTMETRE İLE DEİ ÖLÇÜMÜ Ölçüm Cihazı Deney cihazı debi ölçümünü sağlayan bir cihazdır metre gittikçe daralan ve bunu takiben bir boğaz ve gittikçe genişleyen uzun bir bölümden meydana

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 3 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. 70 kg gelen bir bayanın 400 cm 2 toplam ayak tabanına sahip olduğunu göz önüne alınız. Bu bayan

Detaylı

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1

AKIŞ ÖLÇÜMLERİ. Harran Üniversitesi Makina Mühendisliği Bölümü. Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 AKIŞ ÖLÇÜMLERİ Dr.M.Azmi AKTACİR-2010-ŞANLIURFA 1 Akış ölçümleri neden gereklidir? Akış hız ve debisinin ölçülmesi bir çok biyolojik, meteorolojik olayların incelenmesi, endüstrinin çeşitli işlemlerinde

Detaylı

KBM0308 Kimya Mühendisliği Laboratuvarı I HAVA AKIŞ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

KBM0308 Kimya Mühendisliği Laboratuvarı I HAVA AKIŞ DENEYİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 HAVA AKIŞ DENEYİ Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Hava akış deneyinin amacı sıkıştırılabilen bir akışkan olan havanın, akış debisinin ölçülmesi ve orifismetre için K

Detaylı

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Yoğunluğu 850 kg/m 3 ve kinematik viskozitesi 0.00062 m 2 /s olan yağ, çapı 5 mm ve uzunluğu 40

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları

4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları 4.Sıkıştırılamayan Akışkanlarda Sürtünme Kayıpları Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Sıkıştırılamayan bir akışkan olan suyun silindirik düz bir boru içerisinde akarken

Detaylı

AKIġKANLAR MEKANĠĞĠ LABORATUARI 1

AKIġKANLAR MEKANĠĞĠ LABORATUARI 1 AKIġKANLAR MEKANĠĞĠ LABORATUARI 1 Deney Sorumlusu ve Uyg. Öğr. El. Prof. Dr. İhsan DAĞTEKİN Prof. Dr. Haydar EREN Doç.Dr. Nevin ÇELİK ArĢ.Gör. Celal KISTAK DENEY NO:1 KONU: Su jeti deneyi. AMAÇ: Su jetinin

Detaylı

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN İstanbul Üniversitesi Fen Fakültesi Giriş Bilimsel amaçla veya teknolojide gerekli alanlarda kullanılmak üzere, kapalı bir hacim içindeki gaz moleküllerinin

Detaylı

DENEY-6 Akış Ölçme Deneyi - 2

DENEY-6 Akış Ölçme Deneyi - 2 YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I DENEY-6 Akış Ölçme Deneyi - HAZIRLIK SORULARI: Deneye gelmeden önce aşağıda belirtilen

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ

BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ Kimya Mühendisi, bir prosesin belirlenen koşullarda çalışıp çalışmadığını denetlemek için, sıcaklık, basınç, yoğunluk, derişim, akış hızı gibi proses değişkenlerini

Detaylı

DEN 322. Pompa Sistemleri Hesapları

DEN 322. Pompa Sistemleri Hesapları DEN 3 Pompa Sistemleri Hesapları Sistem karakteristiği B h S P P B Gözönüne alınan pompalama sisteminde, ve B noktalarına Genişletilmiş Bernoulli denklemi uygulanırsa: L f B B B h h z g v g P h z g v g

Detaylı

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1.

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. SORULAR - ÇÖZÜMLER 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Bahar Yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Kütlenin korunumu: Kütle de enerji gibi korunum yasalarına uyar; başka bir deyişle, var veya yok edilemez. Kapalı sistemlerde: Sistemin kütlesi

Detaylı

HİDROLİK - PNÖMATİK BÖLÜM 1 HİDROLİĞE GİRİŞ. Öğr.Gör. Dr. Ömer ERKAN

HİDROLİK - PNÖMATİK BÖLÜM 1 HİDROLİĞE GİRİŞ. Öğr.Gör. Dr. Ömer ERKAN HİDROLİK - PNÖMATİK BÖLÜM 1 HİDROLİĞE GİRİŞ Öğr.Gör. Dr. Ömer ERKAN 2 HİDROLİĞİN TANIMI Eski Yunanca da su anlamına gelen hydro ile boru anlamına gelen aulis kelimelerinin birleştirilmesinden türetilmiştir.

Detaylı

Bölüm 3: Basınç ve Akışkan Statiği

Bölüm 3: Basınç ve Akışkan Statiği Basınç Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvettir. Basıncın birimi pascal (Pa) olarak adlandırılan N/m 2 dir. Basınç birimi Pa,uygulamada çok küçük olduğundan daha çok kilopascal

Detaylı

Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir.

Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir. GAZLAR Maddeler tabiatta katı, sıvı ve gaz olmak üzere üç halde bulunurlar. Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir. Gaz molekülleri birbirine

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 2015-2016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ FAN SİSTEMİ EĞİTİM ÜNİTESİ FAN

ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ FAN SİSTEMİ EĞİTİM ÜNİTESİ FAN ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ FAN SİSTEMİ EĞİTİM ÜNİTESİ FAN Döner bir pervane kanatları tarafından hava veya gazları hareket ettiren basit makinalardır. Eksenel fan: Döner bir mil üzerine pervane

Detaylı

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ

BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ BÖLÜM 6 GERÇEK AKIŞKANLARIN HAREKETİ Gerçek akışkanın davranışı viskoziteden dolayı meydana gelen ilave etkiler nedeniyle ideal akışkan akımlarına göre daha karmaşık yapıdadır. Gerçek akışkanlar hareket

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

İletim, taşınım ve ışınım ile ısı geçişi

İletim, taşınım ve ışınım ile ısı geçişi GİRİŞ İletim, taşınım ve ışınım ile ısı geçişi İletim ile ısı geçişinin, moleküler faaliyete bağlı olan enerji yayılımı ile ilişkisi İletimle bir boyutlu ısı geçişi Fourier Yasası dt T2 T 1 dx L q x k

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ MÜKEMMEL GAZ DENEY FÖYÜ 1.Deneyin Adı: Mükemmel bir gazın genişlemesi

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10 Öğrenci Numarası Adı ve Soyadı İmzası: CEVAP ANAHTARI Açıklama: Sınavda ders notları ve dersle ilgili tablolar serbesttir. SORU. Tersinir ve tersinmez işlemi tanımlayınız. Gerçek işlemler nasıl işlemdir?

Detaylı

AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ

AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ 8 AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ 2 2.1 BİR NOKTADAKİ BASINÇ Sıvı içindeki bir noktaya bütün yönlerden benzer basınç uygulanır. Şekil 2.1 deki gibi bir sıvı parçacığını göz önüne alın. Anlaşıldığı

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam)

UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam) UÇUŞ MEKANİĞİ ve UÇAK PERFORMANSI Güç Sistemi Kuvvetleri (Devam) Hazırlayan Prof. Dr. Mustafa CAVCAR Güç Sistemi Kuvvetleri Türbojet ve Türbofan Motorlar Türbojet Türbofan Türbojet ve türbofan motorlar,

Detaylı

T.C. ÇEVRE VE ORMAN BAKANLIĞI ÇEVRE YÖNETİMİ GENEL MÜDÜRLÜĞÜ ÖLÇÜM VE DENETİM DAİRE BAŞKANLIĞI BACA GAZINDA HIZ TAYİNİ (TS ISO 10780) SONER OLGUN

T.C. ÇEVRE VE ORMAN BAKANLIĞI ÇEVRE YÖNETİMİ GENEL MÜDÜRLÜĞÜ ÖLÇÜM VE DENETİM DAİRE BAŞKANLIĞI BACA GAZINDA HIZ TAYİNİ (TS ISO 10780) SONER OLGUN T.C. ÇEVRE VE ORMAN BAKANLIĞI ÇEVRE YÖNETİMİ GENEL MÜDÜRLÜĞÜ ÖLÇÜM VE DENETİM DAİRE BAŞKANLIĞI BACA GAZINDA HIZ TAYİNİ (TS ISO 10780) SONER OLGUN Şube Müdürü Ekim 2010 Kastamonu 1 Hız: Baca içerisinde

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

EDUCATIONAL MATERIALS

EDUCATIONAL MATERIALS PROBLEM SET 1. (2.1) Mükemmel karıştırılmış, sabit hacimli tank, aynı sıvıyı içeren iki giriş akımına sahiptir. Her akımın sıcaklığı ve akış hızı zamanla değişebilir. a) Geçiş işlemini ifade eden dinamik

Detaylı

AKIŞKANLAR MEKANİĞİ-II

AKIŞKANLAR MEKANİĞİ-II AKIŞKANLAR MEKANİĞİ-II Şekil 1. Akışa bırakılan parçacıkların parçacık izlemeli hızölçer ile belirlenmiş cisim arkasındaki (iz bölgesi) yörüngeleri ve hızlarının zamana göre değişimi (renk skalası). Akış

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Hidroliğin Tanımı. Hidrolik, akışkanlar aracılığıyla kuvvet ve hareketlerin iletimi ve kumandası anlamında kullanılmaktadır.

Hidroliğin Tanımı. Hidrolik, akışkanlar aracılığıyla kuvvet ve hareketlerin iletimi ve kumandası anlamında kullanılmaktadır. HİDROLİK SİSTEMLER Hidroliğin Tanımı Hidrolik, akışkanlar aracılığıyla kuvvet ve hareketlerin iletimi ve kumandası anlamında kullanılmaktadır. Enerji Türleri ve Karşılaştırılmaları Temel Fizik Kanunları

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

(p = osmotik basınç)

(p = osmotik basınç) EK II RAOULT KANUNU OSMOTİK BASINÇ Şek- 1 Bir cam kap içine oturtulmuş gözenekli bir kabın içinde şekerli su, cam kapla da saf su bulunsun ve her iki kapta düzeyler aynı olsun (şek. 1). Bu koşullar altında

Detaylı

ISI DEĞİŞTİRİCİLERİ (EŞANJÖR)

ISI DEĞİŞTİRİCİLERİ (EŞANJÖR) 1 / 13 ISI DEĞİŞTİRİCİLERİ (EŞANJÖR) Giriş Isı değiştiricileri (eşanjör) değişik tiplerde olup farklı sıcaklıktaki iki akışkan arasında ısı alışverişini temin ederler. Isı değiştiriciler, evlerdeki ısıtma

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM ÖNSÖZ İÇİNDEKİLER III Bölüm 1 DAİRESEL HAREKET 11 1.1. Dairesel Hareket 12 1.2. Açısal Yol 12 1.3. Açısal Hız 14 1.4. Açısal Hız ile Çizgisel Hız Arasındaki Bağıntı 15 1.5. Açısal İvme 16 1.6. Düzgün Dairesel

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1 ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 305 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 1 AKIŞKANLAR MEKANİĞİ DENEY FÖYÜ (BORULARDA SÜRTÜNME KAYIPLARI) Hazırlayan: Araş. Gör.

Detaylı

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ Giriş Isı değiştiricileri (eşanjör) değişik tiplerde olup farklı sıcaklıktaki iki akışkan arasında ısı alışverişini temin ederler. Isı değiştiricileri başlıca yüzeyli

Detaylı

ÇÖZÜMLER. γ # γ + z A = 2 + P A. γ + z # # γ # = 2 + γ # γ + 2.

ÇÖZÜMLER. γ # γ + z A = 2 + P A. γ + z # # γ # = 2 + γ # γ + 2. Soru : Şekildeki hazne boru sisteminde; a-, 2, 3 noktalarındaki akışkanın basınçlarını bulunuz. b- Rölatif enerji ve piyezometre çizgilerini çiziniz. Sonuç: p =28.9 kn/m 2 ; p 2=29.23 kn/m 2 ; p 3=26.98

Detaylı

KALDIRMA KUVVETİ. A) Sıvıların kaldırma kuvveti. B) Gazların kaldırma kuvveti

KALDIRMA KUVVETİ. A) Sıvıların kaldırma kuvveti. B) Gazların kaldırma kuvveti KALDIRMA KUVVETİ Her cisim, dünyanın merkezine doğru bir çekim kuvvetinin etkisindedir. Buna rağmen su yüzeyine bırakılan, tahta takozun ve gemilerin batmadığını, bazı balonların da havada, yukarı doğru

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 015-016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V 8.SINIF KUVVET VE HAREKET ÜNİTE ÇALIŞMA YAPRAĞI /11/2013 KALDIRMA KUVVETİ Sıvıların cisimlere uyguladığı kaldırma kuvvetini bulmak için,n nı önce havada,sonra aynı n nı düzeneği bozmadan suda ölçeriz.daha

Detaylı

Orifis, Nozul ve Venturi Tip Akışölçerler

Orifis, Nozul ve Venturi Tip Akışölçerler Orifis, Nozul ve Venturi Tip Akışölçerler Bu tür akışölçerlerde, akışta kısıtlama yapılarak yaratılan basınç farkı (fark basınç), Bernoulli denkleminde işlenerek akış miktarı hesaplanır. Bernoulli denkleminin

Detaylı