HİDROLİK. Ölçme, Birim Sistemleri ve Fiziksel Büyüklükler. Birimler ve Boyutlar. Ölçme

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HİDROLİK. Ölçme, Birim Sistemleri ve Fiziksel Büyüklükler. Birimler ve Boyutlar. Ölçme 17.2.2015"

Transkript

1 HİDROLİK Ölçme, Birim Sistemleri ve Fiziksel Büyüklükler Ölçme Herhangi bir fiziksel büyüklüğün ölçülmesi demek, o büyüklük cinsinden seçilen bir birimin ölçülecek büyüklük içinde kaç kez bulunduğunun sayılması demektir. Yani ölçme, bir sayma işlemidir. Örneğin çalışma masamızın uzunluğunu ölçmek isteyelim. Bunun için bir uzunluk birimi seçmemiz gerekir. Seçtiğimiz uzunluk birimimiz kendi karışımız olsun. Masayı karışladığımızda yedi karış geliyorsa, masamızın uzunluğu yedi karıştır. Bu örnekte bir uzunluğu kendi oluşturduğumuz bir birim cinsinden ölçmüş olduk. Çeşitli Ölçü Aletleri Herkes çeşitli büyüklükleri ölçmek için kafasına göre birimler seçerse nasıl anlaşacağız? Nasıl ticaret yapılacak? Bilim adamları nasıl anlaşacaklar? Birimler ve Boyutlar "Birim (Unit)" ve "Boyut (Dimension)" kelimeleri farklı kavramlardır. "Birim" kelimesi ise herhangi bir boyutun ölçümü için kullanılan referans büyüklüğü ifade eder. Örneğin, "metre" "uzunluk" boyutunu ölçmekte kullanılan bir referans büyüklüktür. İstersek aynı uzunluk boyutunu ölçmek için bir başka birimi de kullanabiliriz (örneğin, santimetre, kilometre gibi). Boyut: bir niceliğin fiziksel doğasını gösterir. Örnek: cetvelin uzunluğu [L], Birim: bir niceliğin fiziksel büyüklüğünü gösterir. Örnek cetvelin boyu 1.00 metre Birimler mühendisliğin alfabesidir. "Boyut", kalitatif bir kavram olup herhangi bir büyüklüğün "hangi türden" bir büyüklük olduğunu belirtir. Örneğin, "uzunluk" kelimesi iki nokta arasındaki uzaklığı herhangi kantitatif bir değer belirtmeksizin ifade eder ve bir boyuttur. Bunun gibi hacim, ağırlık, hız, sıcaklık vb. kelimeler de birer boyutu belirtirler.

2 Birim Sistemleri Genel olarak kullanılan beş önemli birim sistemi vardır. 1. FPS Birim Sistemi: İngiliz Birim Sistemi olarak da bilinen bu sistem; uzunluğun foot (ft) ile, ağırlığın pound (libre, lb) ile ve zamanın saniye (s) ile ölçüldüğü birim sistemidir. 2. MKS Birim Sistemi: Uzunluğun metre (m), ağırlığın kilogram kuvvet (kg-f) ve zamanın saniye (s) ile ölçüldüğü birim sistemidir. 3. CGS Birim Sistemi: Uzunluğun santimetre (cm), kütlenin gram (g) ve zamanın saniye (s) ile ölçüldüğü birim sistemidir. 4. MKSA Birim Sistemi: Giorgi sistemi de denilen bu sistem, uzunluğun metre (m) ile, kütlenin kilogram (kg) ile zamanın saniye (s) ile ve elektrik akımının amper(a) ile ölçüldüğü birim sistemidir. 5. SI Birim Sistemi: Uzunluğun metre (m), kütlenin kilogram (kg), zamanın saniye(s),maddemiktarının mole (mol), termodinamik sıcaklığın derece kelvin (K), aydınlanma şiddetinin candela (cd) ve elektrik akımının amper (A) ile ölçüldüğü birim sistemidir. Birim Sistemleri Bütün birim sistemlerinde bazı boyutlar "temel boyut" olarak seçilir, ve diğer bütün boyutlar da genellikle bu temel boyutlardan türetilerek, çoğu incelemelerde temel boyutlar cinsinden ifade edilirler. Birim sistemleri arasındaki temel farklılık "temel boyutların seçimi" konusundan kaynaklanmaktadır. MKS'de "uzunluk, zaman ve sıcaklık" SI sistemindeki gibi temel boyutlar olarak alınırken, dördüncü temel boyut olarak "kütle" yerine, SI sisteminde yardımcı bir boyut olarak geçen "kuvvet" alınmaktadır. Birim Sistemlerinin Karşılaştırılması BİRİM SİSTEMİ BÜYÜKLÜKLER Bir enerji santralinin gücü watt (W) ise biz bunu böyle ifade etmek yerine 500 megawatt (MW) olarak ifade ederiz.

3 Bazı fiziksel büyüklüklerin boyutları ve SI sistemindeki birimleri Bazı fiziksel büyüklüklerin boyutları ve SI sistemindeki birimleri MKS Sistemindeki bazı birimlerin SI 'daki karşılıkları SI Sistemi ve Diğer Sistemlerle Geçişler Örnek : MKS sistemindeki temel birimlerden 1 kgk in SI sistemindeki değerini bulunuz. Çözüm: 1 kgk in tarifi 1 kg lık kütleye yerçekimi ivmesiyle etkiyen kuvvet şeklinde olduğuna göre, bu kuvvetin SI sistemindeki değeri Newton kanunu yardımıyla hesaplanabilir. F = m.a = 1 kg 9.81 m/s 2 =9.81kgm/s 2 =9.81N

4 SI Sistemi ve Diğer Sistemlerle Geçişler SI Sistemi ve Diğer Sistemlerle Geçişler Örnek : SI sisteminde 9.81 m/s 2 olarak verilen yerçekimi ivmesinin İngiliz Birim sistemindeki değerini bulunuz. Çözüm: 1 ft = m 1 m = ft g = = ft/s 2 Örnek : Havanın deniz seviyesinde standart şartlarda kg/m 3 bilinen yoğunluğunu MKS sisteminde hesaplayınız. Çözüm: 1kgk=9.81N=9.81kgm/s 2 1 kg = 1/9.81 kgk s 2 /m ρ = / 9.81 = kgk s 2 /m 4 olarak Boyut Uyumu, Boyut Analizi Boyut Uyumu, Boyut Analizi Herhangi bir fiziksel olay için ortaya konan matematiksel modelde, yani bu olayı temsil eden denklem, formül vb. gibi bağıntılarda çeşitli fiziksel büyüklükler çarpma, toplama vb. aritmetiksel işlemler veya türevler, integraller halinde yer alırlar. Sözü edilen bu fiziksel büyüklükler öyle bir uyum içerisinde yer almalıdır ki, söz konusu olan bağıntıda her bir terimin boyutu aynı olsun. İşte bu kavrama "boyutların uyumu"adı verilir. Bir bağıntıdaki terimlerin boyutlarının araştırılması işine ise "boyut analizi" denilir. Örnek olarak Newton'un 2nci kanununu ifade eden formülü ele alalım: F = m a Bu formülde geçen sembollerin ifade ettikleri büyüklükler ve boyutları: F : Kuvvet [MLT -2 ] m : Kütle [M] a : İvme [LT -2 ] şeklindedir. Görüldüğü gibi kütle ile ivmenin çarpımı sonucu elde edilen terimin boyutu kuvvet ile aynı boyutta olup formüldeki terimlerin boyutları uyumlu durumdadır.

5 Boyut Uyumu, Boyut Analizi Boyut analizi yoluyla bir bağıntıda geçen herhangi bir fiziksel büyüklüğün boyutunun ne olduğunu tespit etmek mümkün olur. Örneğin bir uçak kanadının taşıma kuvvetiyle ilgili ifadesi göz önüne alınırsa, bu bağıntıdaki sembollerin belirttikleri büyüklükler ve boyutları: L : Kuvvet [MLT -2 ] ρ :Yoğunluk [ML -3 ] V:Hız [LT -1 ] S:Alan [L 2 ] olup, bunlar yardımıyla yapılacak bir boyut analizi sonucu "taşıma katsayısı" adı verilen "C L " büyüklüğünün "boyutsuz" bir büyüklük olduğunu görebiliriz. AKIŞKANLARIN ÖZELLİKLERİ Maddenin Halleri AKIŞKANLARIN ÖZELLİKLERİ Maddeler ihtiva ettikleri moleküllerin arasındaki bağların rijitliğine bağlı olarak katı, sıvı ve gaz gibi üç değişik halde bulunabilir. Katıların içerisindeki moleküler bağ çok rijit olup katının hacmi ve şekli sabittir. Sıvılarda moleküller arası bağ zayıf olup, hacim sabit olmakla birlikte şekil sabit değildir. Bir sıvı konulduğu kabın şeklini alır. Gazlarda ise moleküler bağ çok zayıftır. Dolayısıyla hacim de, şekil de değişebilir. Bir gaz konulduğu kabı doldurur. Akışkanların en önemli özellikleri akıcı olmalarıdır. Özel bazı haller dışında genel olarak sıvı ve gazları akışkan olarak görmek mümkündür. Akışkan en küçük kayma gerilmesinin etkisi altında dahi direnç gösteremez ve akışkan partikülleri sürekli olarak birbirlerine göre yer değiştirirler (deformasyon). Diğer taraftan katılar karşı direnç gösterirler ve sürekli bir deformasyon söz konusu olmaz. Akışkanlar mekaniği, herhangi bir kuvvetin etkisinde kalan akışkanların davranışlarını inceler.

6 AKIŞKANLARIN ÖZELLİKLERİ Sıvılar sıkışmaya karşı direnç gösterdikleri halde gazlar o kadar göstermezler. Aynı zamanda sıvılar sıcaklık değişmelerinden gazlar kadar etkilenmezler. Kısaca akışkanlar mekaniğibilimi;akışkanların denge ve hareket kanunlarını inceleyen ve modern bilimleri kullanarak, bu kanunların ve prensiplerin pratiğe uygulanmasını sağlayan bilimdir. AKIŞKANLARIN ÖZELLİKLERİ Şekil 1.1'den görüldüğü gibi: kuvvet karşısında katının deformasyonu küçüktür ve açısal deformasyon θ zamanın sürekli fonksiyonu değildir. Akışkanda ise deformasyon büyüktür ve θ zamanın sürekli fonksiyonudur. AKIŞKANLARIN ÖZELLİKLERİ Akışkanlar mekaniği ile ilgili kanunların ve akışkan özelliklerinin anlaşılması, uçak, roket, otomobil, tren, gemi, denizaltı, hidrolik yapılar (barajlar, köprüler, menfezler, limanlar... vs) ve hidrolik makineler (su pompaları, türbinler) gibi sistemlerin tasarımı için önem taşımaktadır. Örneğin Aerodinamik (hareket eden katı kütlenin hava ile etkileşimi) otomobillerin, uçakların, gemilerin ve roketlerin yakıt tasarrufu için önemlidir. Moleküler Yapı Moleküller katılarda birbirlerine çok yakın olduğu halde, akışkanlarda bu yapı daha gevşektir, sıvılarda moleküller gazlara göre daha yakındır. Katı Sıvı Gaz Rijit Sabit Şekilli Sabit Hacimli Rijit Değil Sabit Şekilli Değil Sabit Hacimli Rijit Değil Sabit Şekilli Değil Sabit Hacimli Değil Sıkıştırılamaz Sıkıştırılamaz Sıkıştırılabilir

7 Moleküler Yapı Moleküler Yapı Katılarda moleküller birbirlerine çok yakın olduklarından moleküler çekim kuvveti çok büyüktür. Bu nedenle dış kuvvetlere karşı oldukça fazla direnç gösterirler. Katılarda eğer dış kuvvet yeterince büyükse moleküller pozisyonunu değiştirebilirler fakat moleküller arasında oldukça büyük çekim kuvveti kalır ve dış kuvvet kalktığında bu çekim kuvveti molekülleri eski konumlarına döndürürler. Ancak bu dış kuvvet çok büyük ise bazı moleküllerin dış kuvvet kalktıktan sonra geriye dönmeleri mümkün olmayabilir. Bu durumda katı elastik limit geçildiğinden katı cisimde deformasyon meydana gelir. Akışkanların Moleküler Yapıları Yoğunluk (Density) Sıvıda, moleküler çekim kuvveti sadece sıvı kesin şeklini aldığında molekülleri bir arada tutacak kuvvete sahip olur. Dış kuvvet uygulandığında moleküller dış kuvvet kalkana kadar sürekli yer değiştirirler ve daha sonra eski hallerine dönmezler (Şekil 1.2). Gazlarda, moleküler çekim kuvveti ihmal edilecek mertebededir. Bu nedenden moleküller serbestçe birbirlerinden uzaklaşırlar. Örneğin kapalı bir hacmin içindeki gaz bu hacmi doldurana kadar genleşir. Şekil 1.2 Kuvvet uyguladıktan sonra sıvının A ve B molekülleri pozisyonlarını değiştirirler Bir sıvının yoğunluğu birim hacminin kütlesidir. Akışkanın içindeki bir noktada yoğunluğu; ρ = yoğunluk (kg/m 3 ) m = kütle (kg) V = hacim (m 3 ) yada ρ=m/v Density

8 Yoğunluk Genellikle sıvıların yoğunlukları sıcaklıkla değişmesine rağmen basınçla çok az değişir, buna karşın gazların yoğunlukları hem basınç hem de sıcaklıkla değişmektedir (hacim değişimi). Su +4 C de maksimum yoğunluğa sahiptir>>> 1000 kg/m 3 +4 C nin altıda azalır. Özel moleküler yapıya sahip olmasından dolayı, su donduğunda genleşen tek maddedir. Özgül Ağırlık (Specific Weight) Bir akışkanın özgülağırlığı, birim hacminin ağırlığıdır. burada ΔW; ΔV elemanter hacmin ağırlığıdır. γ =özgülağırlık (N/m 3 ) ρ =yoğunluk (kg/m 3 ) g = yerçekimi kuvveti (9.807 m/s 2 ) ΔW= Δmg γ=mg/v =(kg*m/sn 2 /m 3 )= N/m 3 İzafi Yoğunluk (Specific Gravity) +4 C'de su olmayan bir sıvının yoğunluğunun suyun yoğunluğuna oranıdır. SG= ρ s / ρ H2O ρ s :+4 C'desıvının yoğunluğu ρ H2O :+4 C'desuyunyoğunluğu İzafi Yoğunluğun (d<1) birden küçük olması sıvının sudan hafif, Birden büyük olması (d>1) isesıvının sudan ağır olduğunu gösterir, suyun yoğunluğu ise 1000 (kg/m 3 )yada1(t/m 3 ) dir. Sıkışabilirlik (Hacimsel Elastiktik Modülü) Akışkana basınç uygulandığında hacmi küçülür, basınç kaldırıldığında genleşir. Sıkışabilirlik bir akışkana uygulanan basınç miktarındaki değişim nedeniyle hacminde meydana gelebilecek değişimin ölçüsüdür. Sıkışabilirlik K ile gösterilir. Kısaca, akışkanın basınç altında uğradığı hacimsel deformasyona sıkışabilirlik denir.

9 Sıkışabilirlik (Hacimsel Elastiktik Modülü) P basıncı altında ve V hacmindeki akışkanın basıncı δp kadar arttırıldığında hacmi δv kadar azalıp V-δV oluyorsa, akışkanın elastikliği birim hacimdeki sıkışmayı sağlayan basınç artımı olarak: dv :akışkan hacmindeki değişim miktarı, V :akışkanın orijinalhacmi, δv/v oranı boyutsuz olduğundan elastiklik modülü de basınç boyutundadır. dp :basınç değişimini göstermektedir. Burada negatif işaret pozitif küçülmesinden dolayı gelmektedir. dp altında hacmin Sıkışabilirlik (Hacimsel Elastiktik Modülü) Suyun sıkışabilirlik veya hacimsel elastiklik modülü K=2.2x10 9 N/m 2 'dir. 1x10 6 N/m 2 'lik bir basınçta altında; dp/k=(1x10 6 N/m 2 )/(2.2x10 9 N/m 2 )= % 0,05 suyun hacminde %0.05 likbirdeğişime olur; Bu nedenden dolayı pratikte su sıkışamaz kabul edilir; Dolayısıyla suyun yoğunluğu sabitkabuledilir. Viskozite (Akışkanın Kayma Gerilmelerine Karşı Davranışı) Katıların kayma gerilmelerine karşı dirençlerinin oldukça büyük olmasına rağmen akışkanların gösterdiği direnç oldukça küçüktür, en küçük kayma gerilmesi etkisi altında dahi akışkan sürekli olarak şekil değiştirir. Durgun bir akışkana bir teğetsel kuvvet uygulanırsa bu akışkanın deforme olmasına sebep olur. Deformasyon, akışkanın içinde birbirine komşu akışkan tabakalanmanın, birbirleri üzerinde farklı hızlarda kaymasıdır. Viskozite Doğadaki bütün akışkanlarda, akışkan tabakalarının birbirleri üzerinde hareket etmelerine karşı dirençleri söz konusudur. Bu dirence akışkan viskozitesi denilmektedir. Viskozite, akışkanın kıvamını, yapışkanlığını ifade eder.

10 Viskozite Doğadaki bütün akışkanlarda, akışkan tabakalarının birbirleri üzerinde hareket etmelerine karşı dirençleri söz konusudur. Bu dirence akışkan viskozitesi denilmektedir. Viskozite Viskozite birbirine komşu tabakaların birbirlerine göre hareketlerinde içsel direncin ölçümü olan bir akışkan özelliğidir. Normal şartlar altında bal ve gliserin gibi akışkanlar su ve alkol gibi akışkanlara göre daha büyük bir direnç gösterirler. Akışkanın viskozitesiile yoğunluğu arasında bir ilişki yoktur. Gazlar da akışkan olduklarından sıvılara göre daha az da olsa viskoziteye sahiptirler. Viskozite Viscosity of Liquids What is Viscosity? Özetle Viskozite: Bir sıvının akmaya karşı gösterdiği direnç veya akışkanın akabilme özelliği viskozite olarak adlandırılır. Şekil 1.4 Kayma gerilmesinin etkisi altında akışkanın deformasyonu Şekil 1.4'de görüldüğü gibi birbirine y kadar mesafede paralel iki levha alalım, bu iki levhanın arası bir akışkanla dolu olsun ve üstteki levha F teğetsel kuvvetin etkisiyle u hızıyla hareket etsin ancak alttaki levha sabit halde kalsın. Hareketsiz levha üzerindekiler hariç bütün akışkan partikülleri üst levhanın hareketi doğrultusunda hareket ederler.

11 Viskozite Levhalar arasındaki akışkanın her bir tabakası akım boyunca hız gradyanına sebep olacak şekilde değişik hızlarda hareket ederler. BCDE elemanter hacminin hareket etmesiyle B'C'D'E' konumuna ulaşacaktır. Bu elemanın açısal deformasyonunu da θ ile verebiliriz. Viskozite Newton ( ) bu olaya etki eden bu farklı değişkenler arasındaki bağıntıyı aşağıdaki gibi belirlemiştir. 1. y mesafesinde A sabit alanına sahip hareketli levhanın u hızı levhaya etki eden F kuvvetiyle doğru orantılıdır; 2. y mesafesinde u sabit hızlı levhaya uygulanan F kuvveti A alanıyla doğru orantılıdır. 3. u hızı ile hareket eden A alanlı levhaya uygulanan F kuvveti, levhalar arasındaki y mesafesiyle ters orantılıdır. Viskozite Bu ilişkiler bir arada düşünülürse; elde edilir, burada F teğetsel kuvvetin A alanına oranı Ƭ kayma gerilmesi olduğuna göre Burada μ bir sabittir. μ Akışkan tabakaları arasındaki içsel akışkan direncinin bir ölçüsüdür, ve "dinamik viskozite katsayısı" olarak adlandırılır. Diğer bir viskozite katsayısı da "kinematik viskozite katsayısı" olarak adlandırılmaktadır. Newton'un viskozite kanununa göre, bir akışkanın molekülleri arasındaki kayma hızı veya deformasyon hızı (du/dy), kayma gerilmesi ile doğru orantılıdır. Ƭ=kayma gerilmesi μ=dinamik viskosite du/dy=kayma hızı (deformasyon hızı) Bu formülden şu özeti çıkarabiliriz: Sabit bir sıcaklıkta bir akışkan, uygulanan kayma gerilmesiyle doğru orantılı bir hızda şekil değiştirir. Hızlı bir kuvvet uygulanırsa akışkan özelliğini değiştirmez. Bu yasaya newton yasasına uygun akışkanlar denir.

12 Viskozitenin Sebepleri Viskozitenin en önemli sebebi "moleküler çekim kuvveti dir. Sıvıların molekülleri birbirlerini çekerler ve bu karşılıklı çekim kuvveti bir tabakanın diğeri üzerinde kaymasını engelleyeceği için viskozite etkisini artıracaktır. Sıcaklığın artmasıyla moleküler çekim zayıflayacağından, sıvının viskozitesisıcaklıkla azalır. Normal şartlarda basıncın moleküler çekim üzerine dolayısıyla viskoziteye bir etkisi yoktur. Viskozite birimleri bağıntısından dinamik viskozite birimi: N.s/m 2 =kg/m.s bağıntısından kinematik viskozite birimi: m 2 /s Viskozite birimleri AKIŞKANLARIN SINIFLANDIRILMASI Farklı birim sistemlerindeki viskozite birimleri: 1 kgf sn/m 2 =98.1 poise, burada kgf kilogram kuvvet, kg kilogram kütledir.

13 Newtonian akışkan (Viskozite sabit) Newtonian akışkan; formuna uyan, kayma gerilmesi ile kayma hızı arasındaki ilişkinin lineer olduğu akışkanlardır. Bu akışkanlarda Viskozite kayma gerilmesi veya kayma hızıyla değişmez, sıcaklık ve basınç ile değişir. Diğer bir değişle, Sabit sıcaklıktaki bir akışkan, uygulanan kayma gerilmesiyle doğru oranda bir hızla şekil değiştirir yani akışkanlık özelliklerini değiştirmez. Su, hava, benzin ve yağlar bu tip akışkanlardır. Non-Newtonian akışkan (Viskozite sabit değil) Non-Newtonian akışkan; Bu tip akışkanlarda kayma gerilmesi ile kayma hızı arasındaki ilişki nonlineerdir. Non-Newtonian akışkanlarda viskozite kayma hızına bağımlıdır. Bir Non-Newtonian akışkan Ƭ nin du/dy ile değişim tarzına bağlı olarak "pseudo-plastik" veya "dilatant (katılaşan)" olarak isimlendirilir. Newtonian ve Non-Newtonian Akışkanlar Dilatant (katılaşan) Akışkanlar Kayma hızı ile viskozitesi artan akışkanlardır. Non-Newtonian Fluids and Viscosity Şeker ve pirinç nişastasını sulu çözeltisi ise dilatant'a örnek verilebilir. How to Make and Play with a Non- Newtonian Fluid Mısır nişastasını suyla karıştırıp kıvamlı bir karışım elde edince kendi haline bırakılınca sıvı olan ama ani darbe karşısında katılaşan bir yapısı vardır.

14 Dilatant (katılaşan) Akışkanlar Bu akışkan tipinde ise kayma hızı arttıkça akışkanın viskozitesi artar. Nişasta solüsyonu buna çok iyi bir örnektir. Eğer evinizde mısır nişastasını su ile karıştırırsanız bırakılınca sıvı olan bu kıvamı karışım herhangi bir hızlı darbede katılaşan bir hal alır. Sporda koruma giysilerinde, motorsiklet koruma kasklarında kullanılırlar. Pseudo-Plastik Akışkanlar Kayma hızı ile viskozitesi azalan akışkanlardır. Yani yer değiştirme hızlandıkça direnci azalır. Boya, şampuan, ketçap vb. Örnek: Duvar boyası fırçadan akmaz durumdayken duvara uygulandığında rahatça sürülebilir. Pseudo-Plastik Akışkanlar İdeal akışkan Bu maddeler kayma hızı ile kayma gerilimleri lineer olmasına karşın, belli bir büyüklüğe kadar kayma gerilime karşı koyabilirler. Kısacası düşük bir gerilimde rijit bir özellik sergiler. Fakat yüksek gerilimde ise akışkan özelliğini gösterirler. Plastik kuvvet kalkınca eski haline dönemez. Örnek olarak diş macunu ve mayonez gelir. Viskozitesi sıfır olduğu kabul edilen akışkanlar "ideal akışkan" olarak isimlendirilirler, kayma deformasyon mukavemeti sıfırdır ve grafik x ekseni ile çakışır. Bu tür akışkan doğada mevcut olmamakla beraber bu kabul matematiksel işlemlerde büyük kolaylık sağlar.

15 İdeal veya Elastik katı-plastik İdeal veya Elastik katı; hiçbir yük şartında deformasyon göstermezler ve grafik y ekseni ile çakışır. Plastik; şekil değiştirmeden bir miktar kayma gerilmesi alır, belli bir limitten sonra kayma gerilmesi deformasyon ile orantılı olarak hızla değişir. YÜZEYSEL GERİLME Bu olayı Şekil 1.9'da içi su dolu bir tank verilmiştir. A noktasındaki bir molekül her doğrultuda eşit moleküler çekim kuvveti etkisindedir. Buna karşın B noktasındaki molekül içeri doğru dengelenmemiş kuvvetlerin etkisi altındadır. Yüzeysel gerilim: iki karışmayan akışkanın ara yüzeyinde veya sıvı ve gaz ara yüzeyinde veya bir sıvı ile katı yüzey arasında gelişen bir yüzey kuvvetidir. (σ,n/m) KOHEZYON VE ADEZYON Moleküller arasında çekim kuvvetleri söz konusudur. Aynı tür moleküller arasındaki çekime "kohezyon", Farklı moleküller arasındaki çekime ise "adezyon" denir. Katılarda kohezyon çok büyüktür ve katının belli şekli korumasını sağlar. İki molekül arasındaki çekim uzaklık arttıkça azalır ve 10 6 cm'den sonra yok sayılabilir. KOHEZYON ADEZYON ÖRNEKLERİ KOHEZYON: Yağmur sularının damlacık şeklini alması Civanın küreşeklini alması ADEZYON: Yağmur damlalarının cama yapışması, denizden çıkan bir insanın vücudunun ıslak kalması, durgun bir su üzerinde hareket eden yaprağın suyu sürüklemesi

16 KAPİLARİTE (KILCALLIK) Sıvıya daldırılan küçük bir borudaki sıvı yükselmesi yada alçalması olayına kapilarite denilmektedir. Bu olaya adezyon, kohezyon ve yüzeysel gerilme etkileri sebep olur. BUHARLAŞMA BASINCI Bir cismin sıvı halden gaz hale geçmesine buharlaşma denir. Katı veya sıvı bir maddenin dış ortamla temas eden yüzeyinde bulunan ve bu maddeyi oluşturan moleküllerin buharlaşması sonucu oluşan gazın basıncına buhar basıncı denir. Su Cam Su Su Cıva Cam Cıva Cıva VİDEO PROBLEM ÇÖZÜMLERİ Sıvılarda Kılcallık ve Yüzey Gerilimi

17 Problem mm çaplı 20 cm uzunluklu bir piston 52 mm çaplı silindir yuva içinde hareket etmektedir. Piston ile silindir arası dinamik viskozitesi 0.09 Ns/m 2 olan yağ ile doludur. Hızın lineer değiştiğini kabul ederek, pistonun 1 m/s hızla hareket edebilmesi için gerekli kuvveti hesaplayınız. Problem m 2 alanlı iki plaka arasına yoğunluğu olan ham yağ konmuştur, bu yağın kalınlığı 0.07 mm'dir (yağın sıcaklığı 10 C). a) Eğer üsteki plakaya 50 N'luk bir kuvvet etkirse bu plakanın hızı ne olur? b) Bu hız için yağın 60 C olması halinde gerekli kuvvet ne olur? Çözüm 2. Problem 3. Bir blok u = 1.8 m/s'lik hızla aşağı doğru kayıyor. Blok ile yağın temas alanı 1000 cm 2 'dir, bu durumda yağın dinamik viskozitesini bulunuz.

18 Problem 4. Aralarında 1.5 cm mesafe bulunan birbirine paralel iki levha arasına dinamik viskozitesi μ = 0.05 kg/ms olan yağ konmuştur. Üsteki levhadan 0.50 cm alttaki levhadan 1.00 cm mesafede olmak üzere yerleştirilen 30x60 cm boyutlarında çok ince bir levha 0.40 m/s hızla çekilebilmesi için gerekli kuvveti bulunuz. Problem 5. Viskoziteleri birbirlerinden farklı iki yağın arasına yerleştirilen 5 m 2 'lik yüzey alanına sahip bir levha 150 N'luk bir kuvvet uygulanarak çekiliyor. Bu levhanın hızını bulunuz, (μ= 0.10Ns/m 2 )

AKIŞKANLAR MEKANİĞİ. Prof. Dr. Mehmet ARDIÇLIOĞLU 1. Kaynaklar. Prof. Dr. M. S. Kırkgöz, Kare Yayınları.

AKIŞKANLAR MEKANİĞİ. Prof. Dr. Mehmet ARDIÇLIOĞLU 1. Kaynaklar. Prof. Dr. M. S. Kırkgöz, Kare Yayınları. AKIŞKANLAR MEKANİĞİ Prof. Dr. Mehmet ARDIÇLIOĞLU 1 Kaynaklar 1. Akışkanlar Mekaniği Prof. Dr. M. S. Kırkgöz, Kare Yayınları. 2. Akışkanlar Mekaniği ve Hidrolik Prof. Dr. Yalçın Yüksel, Beta Basım Yayın,

Detaylı

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ. Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 2 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir otomobile lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır. Hava sıcaklığı

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

BÖLÜM 7. BİRİM SİSTEMLERİ VE BİRİM DÖNÜŞÜMLERİ

BÖLÜM 7. BİRİM SİSTEMLERİ VE BİRİM DÖNÜŞÜMLERİ BÖLÜM 7. BİRİM SİSTEMLERİ VE BİRİM DÖNÜŞÜMLERİ 7.1. Birim Sistemleri Genel Kimya, Akışkanlar Mekaniği, Termodinamik, Reaksiyon Mühendisliği gibi birçok temel ve mühendislik derslerinde karşılaşılan problemlerde,

Detaylı

DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ

DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ DERS-3 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ Reoloji Yunanca da rheos akış demektir. Yunan filozofu Heraclitus reolojiyi panta rei akan herşey olarak tanımlamıştır. Bir maddenin bir zorlayıcı kuvvet karşısında

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Dr. Hilmi ZENK Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Doğru ve Alternatif

Detaylı

BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ

BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ BÖLÜM 6 PROSES DEĞİŞKENLERİNİN İNCELENMESİ Kimya Mühendisi, bir prosesin belirlenen koşullarda çalışıp çalışmadığını denetlemek için, sıcaklık, basınç, yoğunluk, derişim, akış hızı gibi proses değişkenlerini

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Dr. Ahmet KÜÇÜKER Sakarya Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü M6/6318 Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Doğru

Detaylı

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü

Bölüm 2: Akışkanların özellikleri. Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Bölüm 2: Akışkanların özellikleri Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü Giriş Bir sistemin herhangi bir karakteristiğine özellik denir. Bilinenler: basınç P, sıcaklıkt,

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Akışkanlar Mekaniği Ders Notları, Prof.Dr. Ercan KAHYA, İTÜ Akışkanlar Mekaniği Ders Notları,

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008

HİDROLİK-PNÖMATİK. Prof. Dr. İrfan AY. Makina. Prof.Dr.İrfan AY. Arş.Gör.T.Kerem DEMİRCİOĞLU. Balıkesir - 2008 Makina * Prof. Dr. İrfan AY Arş.Gör.T.Kerem DEMİRCİOĞLU * Balıkesir - 008 1 HİDROLİK VE PNÖMATİK 1.BÖLÜM HİDROLİK VE PNÖMATİĞE GİRİŞ TARİHÇESİ: Modern hidroliğin temelleri 1650 yılında Pascal ın kendi

Detaylı

REOLOJĐ. GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ

REOLOJĐ. GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ REOLOJĐ GERĐLME, ŞEKĐL DEĞĐŞĐMĐ ve ZAMAN ĐLĐŞKĐLERĐ 36 REOLOJĐ VE VĐSKOELASTĐSĐTE Reoloji cisimlerin gerilme altında zamana bağlı şekil değişimini (deformasyon) inceleyen bilim dalıdır. Genel olarak katıların

Detaylı

Akışkanlar Mekaniği Ders Notları

Akışkanlar Mekaniği Ders Notları Akışkanlar Mekaniği Ders Notları Prof. Dr. Akdeniz Üniversitesi Ziraat Fakültesi Tarım Makinaları Bölümü 2 Akışkanlar Mekaniği Ders Notları AKIŞKANLAR MEKANİĞİ DERSİ İÇERİĞİ BOYUTLAR ve BİRİMLER AKIŞKANLARIN

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 DERS İÇERİĞİ TEMEL KAVRAMLAR VE AKIŞKANLARIN ÖZELLİKLERİ Temel Kavramlar, Akışkanların Özellikleri

Detaylı

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır.

Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Akışkanlar Mekaniği Yoğunluk ve Basınç: Bir maddenin yoğunluğu, birim hacminin kütlesi olarak tanımlanır. Basıncın derinlikle değişimi Aynı derinlikteki bütün noktalar aynı basınçta y yönünde toplam kuvvet

Detaylı

1. AKIŞKANLARIN TEMEL ÖZELLİKLERİ

1. AKIŞKANLARIN TEMEL ÖZELLİKLERİ 1. AKIŞKANLARIN TEMEL ÖZELLİKLERİ 1.8. Ses Hızı ve Mach Sayısı Ses hızı basınçtaki ve özgül kütledeki değişimle ifade edilmektedir (Giles 1980). C dp d Ev Burada; C: Ses hızı (m/s), dp: Basınçtaki değişim

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SINIR TABAKA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN ÖĞRETİM ELEMAN

Detaylı

Sistem Özellikleri 10/7/2014. Basınç, P Sıcaklık, T. Hacim, V Kütle, m Vizkozite Isıl İletkenlik Elastik Modülü

Sistem Özellikleri 10/7/2014. Basınç, P Sıcaklık, T. Hacim, V Kütle, m Vizkozite Isıl İletkenlik Elastik Modülü 2. AKIŞKANLARIN ÖZELLİKLERİ Doç.Dr. Özgül GERÇEL Doç.Dr. Serdar GÖNCÜ (Eylül 2012) Sistem Özellikleri Basınç, Sıcaklık, emel Özellikler Hacim, V Kütle, m Vizkozite Isıl İletkenlik Elastik Modülü Diğer

Detaylı

ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI

ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI 2008 ANKARA ÖĞRETĐM TEKNOLOJĐLERĐ VE MATERYAL GELĐŞTĐRME DERSĐ GAZLAR KONU ANLATIMI DERS SORUMLUSU:Prof. Dr. Đnci MORGĐL HAZIRLAYAN:Derya ÇAKICI 20338451 GAZLAR Maddeler tabiatta katı, sıvı ve gaz olmak

Detaylı

Enerji var veya yok edilemez sadece biçim değiştirebilir (1.yasa)

Enerji var veya yok edilemez sadece biçim değiştirebilir (1.yasa) Termodinamik: Enerjinin bilimi. Enerji: Değişikliklere sebep olma yeteneği. Termodinamik sözcüğü, Latince therme (ısı) ile dynamis (güç) sözcüklerinden türemiştir. Enerjinin korunumu prensibi: Bir etkileşim

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

TEMEL KAVRAMLAR. Öğr. Gör. Adem ÇALIŞKAN

TEMEL KAVRAMLAR. Öğr. Gör. Adem ÇALIŞKAN KÜTLE: Yeryüzünde hacim kaplayan cisimlerin değişmez madde miktarıdır. ( sıcaklığa, basınca, çekim ivmesine bağlı olarak değişmez. ) Terazi ile ölçülür. Kütle birimi SI birim sisteminde Kg dır. Herhangi

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

VİSKOZİTE SIVILARIN VİSKOZİTESİ

VİSKOZİTE SIVILARIN VİSKOZİTESİ VİSKOZİTE Katı, sıvı veya gaz halinde bütün cisimler, kitlelerinin bir bölümünün birbirine göre şekil ya da göreceli yer değiştirmelerine karşı bir mukavemet arz ederler. Bu mukavemet değişik türlerde

Detaylı

SAKARYA ÜNİVERSİTESİ SAKARYA MESLEK YÜKSEKOKULU

SAKARYA ÜNİVERSİTESİ SAKARYA MESLEK YÜKSEKOKULU TERMODİNAMİK Öğr. Gör. SAKARYA ÜNİVERSİTESİ SAKARYA MESLEK YÜKSEKOKULU ISI Maddenin kütlesine, cinsine ve sıcaklık farkına bağımlı olarak sıcaklığını birim oranda değiştirmek için gerekli olan veri miktarına

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Yüzey gerilimi. Hidayet TERECİ www.fencebilim.com

Yüzey gerilimi. Hidayet TERECİ www.fencebilim.com Yüzey gerilimi Yüzey gerilimi, fizikokimyada bir sıvının yüzey katmanının esnek bir tabakaya benzer özellikler göstermesinden kaynaklanan etkiye verilen addır. Bu etki bazı böceklerin su üzerinde yürümesine

Detaylı

Bölüm 8: Borularda sürtünmeli Akış

Bölüm 8: Borularda sürtünmeli Akış Bölüm 8: Borularda sürtünmeli Akış Laminer ve Türbülanslı Akış Laminer Akış: Çalkantısız akışkan tabakaları ile karakterize edilen çok düzenli akışkan hareketi laminer akış olarak adlandırılır. Türbülanslı

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

Prof. Dr. Osman SİVRİKAYA Zemin Mekaniği I Ders Notu

Prof. Dr. Osman SİVRİKAYA Zemin Mekaniği I Ders Notu HAFTALIK DERS PLANI Hafta Konular Kaynaklar 1 Zeminle İlgili Problemler ve Zeminlerin Oluşumu [1], s. 1-13 2 Zeminlerin Fiziksel Özellikleri [1], s. 14-79; [23]; [24]; [25] 3 Zeminlerin Sınıflandırılması

Detaylı

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5. MALZEME BİLİMİ (DERS NOTLARı) Bölüm 5. Mekanik Özellikler ve Davranışlar Doç. Dr. Özkan ÖZDEMİR ÇEKME TESTİ: Gerilim-Gerinim/Deformasyon Diyagramı Çekme deneyi malzemelerin mukavemeti hakkında esas dizayn

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

DENEY 1. İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi

DENEY 1. İncelenmesi. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi DENEY 1 Düzgün Doğrusal Hareketin İncelenmesi Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü Isparta - 2018 Amaçlar 1. Tek boyutta hareket kavramının incelenmesi. 2. Yer değiştirme ve

Detaylı

Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir.

Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir. GAZLAR Maddeler tabiatta katı, sıvı ve gaz olmak üzere üç halde bulunurlar. Gaz hali genel olarak molekül ve atomların birbirinden uzak olduğu ve çok hızlı hareket ettiği bir haldir. Gaz molekülleri birbirine

Detaylı

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1.

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. SORULAR - ÇÖZÜMLER 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Bahar Yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru

Detaylı

Maddelerin Fiziksel Özellikleri

Maddelerin Fiziksel Özellikleri Maddelerin Fiziksel Özellikleri 1 Sıvıların Viskozluğu Viskozluk: Gazlar gibi sıvılar da akmaya karşı bir direnç gösterirler. Akışkanların gösterdiği bu dirence viskozluk denir ve ƞ ile simgelenir. Akıcılık:

Detaylı

Birimler. Giriş. - Ölçmenin tanımı. - Birim nedir? - Birim sistemleri. - Uluslararası (SI) birim sistemi

Birimler. Giriş. - Ölçmenin tanımı. - Birim nedir? - Birim sistemleri. - Uluslararası (SI) birim sistemi Birimler Giriş - Ölçmenin tanımı - Birim nedir? - Birim sistemleri - Uluslararası (SI) birim sistemi 1 Ölçme: Değeri bilinmeyen bir büyüklüğün birim olarak isimlendirilen ve özelliği bilinen başka bir

Detaylı

SIVILAR VE ÖZELLİKLERİ

SIVILAR VE ÖZELLİKLERİ SIVILAR VE ÖZELLİKLERİ Sıcaklık düşürüldükçe kinetik enerjileri azalan gaz molekülleri sıvı hale geçer. Sıvı haldeki tanecikler birbirine temas edecek kadar yakın olduğundan aralarındaki çekim kuvvetleri

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 13 Parçacık Kinetiği: Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 13 Parçacık

Detaylı

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( )

AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI ( ) 1 3 4 5 6 T AKIŞKANLAR MEKANİĞİ 1. YILİÇİ SINAVI (13.11.008) Ad-Soad: No: Grup: 1) a) İdeal ve gerçek akışkan nedir? Hız dağılımlarını çiziniz. Pratikte ideal akışkan var mıdır? Açıklaınız. İdeal Akışkan;

Detaylı

(p = osmotik basınç)

(p = osmotik basınç) EK II RAOULT KANUNU OSMOTİK BASINÇ Şek- 1 Bir cam kap içine oturtulmuş gözenekli bir kabın içinde şekerli su, cam kapla da saf su bulunsun ve her iki kapta düzeyler aynı olsun (şek. 1). Bu koşullar altında

Detaylı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net

MALZEME BİLGİSİ DERS 7 DR. FATİH AY. www.fatihay.net fatihay@fatihay.net MALZEME BİLGİSİ DERS 7 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA KRİSTAL KAFES NOKTALARI KRİSTAL KAFES DOĞRULTULARI KRİSTAL KAFES DÜZLEMLERİ DOĞRUSAL VE DÜZLEMSEL YOĞUNLUK KRİSTAL VE

Detaylı

AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ

AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ 8 AKIŞKAN STATİĞİNİN TEMEL PRENSİPLERİ 2 2.1 BİR NOKTADAKİ BASINÇ Sıvı içindeki bir noktaya bütün yönlerden benzer basınç uygulanır. Şekil 2.1 deki gibi bir sıvı parçacığını göz önüne alın. Anlaşıldığı

Detaylı

Maddenin Mekanik Özellikleri

Maddenin Mekanik Özellikleri Gaz Sıvı Katı Bölüm 1 Maddenin Mekanik Özellikleri Prof. Dr. Bahadır BOYACIOĞLU Maddenin Mekanik Özellikleri Maddenin Halleri Katı Sıvı Gaz Plazma Yoğunluk ve Özgül Ağırlık Hooke Kanunu Zor ve Zorlama

Detaylı

Bölüm 3: Basınç ve Akışkan Statiği

Bölüm 3: Basınç ve Akışkan Statiği Basınç Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvettir. Basıncın birimi pascal (Pa) olarak adlandırılan N/m 2 dir. Basınç birimi Pa,uygulamada çok küçük olduğundan daha çok kilopascal

Detaylı

TAŞINIMIN FİZİKSEL MEKANİZMASI

TAŞINIMIN FİZİKSEL MEKANİZMASI BÖLÜM 6 TAŞINIMIN FİZİKSEL MEKANİZMASI 2 or Taşınımla ısı transfer hızı sıcaklık farkıyla orantılı olduğu gözlenmiştir ve bu Newton un soğuma yasasıyla ifade edilir. Taşınımla ısı transferi dinamik viskosite

Detaylı

AKIŞKANLAR MEKANİĞİ. Doç. Dr. Tahsin Engin. Sakarya Üniversitesi Makine Mühendisliği Bölümü

AKIŞKANLAR MEKANİĞİ. Doç. Dr. Tahsin Engin. Sakarya Üniversitesi Makine Mühendisliği Bölümü AKIŞKANLAR MEKANİĞİ Doç. Dr. Tahsin Engin Sakarya Üniversitesi Makine Mühendisliği Bölümü İLETİŞİM BİLGİLERİ: Ş Ofis: Mühendislik Fakültesi Dekanlık Binası 4. Kat, 413 Nolu oda Telefon: 0264 295 5859 (kırmızı

Detaylı

SIVILAR YÜZEY GERİLİMİ. Bir sıvı içindeki molekül diğer moleküller tarafından sarılmıştır. Her yöne eşit kuvvetle çekilir.daha düşük enerjilidir.

SIVILAR YÜZEY GERİLİMİ. Bir sıvı içindeki molekül diğer moleküller tarafından sarılmıştır. Her yöne eşit kuvvetle çekilir.daha düşük enerjilidir. SIVILAR YÜZEY GERİLİMİ Bir sıvı içindeki molekül diğer moleküller tarafından sarılmıştır. Her yöne eşit kuvvetle çekilir.daha düşük enerjilidir. Yüzeydeki molekül için durum farklıdır Her yönde çekilmediklerinden

Detaylı

Katı ve Sıvıların Isıl Genleşmesi

Katı ve Sıvıların Isıl Genleşmesi Katı ve Sıvıların Isıl Genleşmesi 1 Isınan cisimlerin genleşmesi, onları meydana getiren atom ve moleküller arası uzaklıkların sıcaklık artışı ile artmasındandır. Bu olayı anlayabilmek için, Şekildeki

Detaylı

5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE)

5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE) 5.NEWTONIAN VE NEWTONIAN OLMAYAN AKIŞKANLARIN VİSKOZİTESİNİN BELİRLENMESİ (ROTASYONEL REOMETRE) Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1 1. Amaç Yapılacak olan deneyin temel amacı, akışkanların

Detaylı

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii

İ çindekiler. xvii GİRİŞ 1 TEMEL AKIŞKANLAR DİNAMİĞİ BERNOULLİ DENKLEMİ 68 AKIŞKANLAR STATİĞİ 32. xvii Last A Head xvii İ çindekiler 1 GİRİŞ 1 1.1 Akışkanların Bazı Karakteristikleri 3 1.2 Boyutlar, Boyutsal Homojenlik ve Birimler 3 1.2.1 Birim Sistemleri 6 1.3 Akışkan Davranışı Analizi 9 1.4 Akışkan Kütle

Detaylı

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ

MUKAVEMET DERSİ. (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ MUKAVEMET DERSİ (Temel Kavramlar) Prof. Dr. Berna KENDİRLİ Ders Planı HAFTA KONU 1 Giriş, Mukavemetin tanımı ve genel ilkeleri 2 Mukavemetin temel kavramları 3-4 Normal kuvvet 5-6 Gerilme analizi 7 Şekil

Detaylı

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları

9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI. MEV Koleji Özel Ankara Okulları 9. SINIF FİZİK YAZ TATİLİ ÖDEV KİTAPÇIĞI MEV Koleji Özel Ankara Okulları Sevgili öğrenciler; yorucu bir çalışma döneminden sonra hepiniz tatili hak ettiniz. Fakat öğrendiklerimizi kalıcı hale getirmek

Detaylı

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 1) Suyun ( H 2 O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 10 6 m 3 olduğuna göre, birbirine komşu su moleküllerinin arasındaki uzaklığı Avagadro sayısını kullanarak hesap ediniz. Moleküllerin

Detaylı

(b) Model ve prototipi eşleştirmek için Reynolds benzerliğini kurmalıyız:

(b) Model ve prototipi eşleştirmek için Reynolds benzerliğini kurmalıyız: AKM 205 BÖLÜM 7 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Askeri amaçlı hafif bir paraşüt tasarlanmaktadır. Çapı 7.3 m, deney yükü, paraşüt ve donanım ağırlığı

Detaylı

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti

ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç. Kaldırma Kuvveti ÖĞRENME ALANI: Kuvvet ve Hareket 2.ÜNİTE: Kaldırma Kuvveti ve Basınç Kaldırma Kuvveti - Dünya, üzerinde bulunan bütün cisimlere kendi merkezine doğru çekim kuvveti uygular. Bu kuvvete yer çekimi kuvveti

Detaylı

DERS-4 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ

DERS-4 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ DERS-4 -REOLOJİ- VİSKOZİTE VE AKIŞ TİPLERİ Görünür viskozite Görünür viskozite için η (eta) sembolü, Newtonsal akışkanların vizkozitesinden µ ayırmak için kullanılır. Kayma geriliminin kayma oranına bölünmesiyle,

Detaylı

Ders Notları 3 Geçirimlilik Permeabilite

Ders Notları 3 Geçirimlilik Permeabilite Ders Notları 3 Geçirimlilik Permeabilite Zemindeki mühendislik problemleri, zeminin kendisinden değil, boşluklarında bulunan boşluk suyundan kaynaklanır. Su olmayan bir gezegende yaşıyor olsaydık, zemin

Detaylı

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V

CĠSMĠN Hacmi = Sıvının SON Hacmi - Sıvının ĠLK Hacmi. Sıvıların Kaldırma Kuvveti Nelere Bağlıdır? d = V 8.SINIF KUVVET VE HAREKET ÜNİTE ÇALIŞMA YAPRAĞI /11/2013 KALDIRMA KUVVETİ Sıvıların cisimlere uyguladığı kaldırma kuvvetini bulmak için,n nı önce havada,sonra aynı n nı düzeneği bozmadan suda ölçeriz.daha

Detaylı

Kütlesel kuvvetlerin sadece g den kaynaklanması hali;

Kütlesel kuvvetlerin sadece g den kaynaklanması hali; KDN03-1 AKIŞKANLARIN STATİĞİ: HİDROSTATİK Basınç kavramı z σ a dz ds σx α x dx y σz Hidrostatikte ise olduğundan i = 0; Hidrostatik problemlerde sadece 1, 2, 3 olabilir. İnceleme kolaylığı için 2-boyutlu

Detaylı

Bölüm 5: Sonlu Kontrol Hacmi Analizi

Bölüm 5: Sonlu Kontrol Hacmi Analizi Bölüm 5: Sonlu Kontrol Hacmi Analizi Reynolds Transport Teoremi (RTT) Temel korunma kanunları (kütle,enerji ve momentumun korunumu) doğrudan sistem yaklaşımı ile türetilmiştir. Ancak, birçok akışkanlar

Detaylı

Sıvılar ve Katılar. Maddenin Halleri. Sıvıların Özellikleri. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN

Sıvılar ve Katılar. Maddenin Halleri. Sıvıların Özellikleri. MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Sıvılar ve Katılar MÜHENDİSLİK KİMYASI DERS NOTLARI Yrd. Doç. Dr. Atilla EVCİN Sıcaklık düşürülürse gaz moleküllerinin kinetik enerjileri azalır. Bu nedenle, bir gaz yeteri kadar soğutulursa moleküllerarası

Detaylı

INM 305 Zemin Mekaniği

INM 305 Zemin Mekaniği Hafta_8 INM 305 Zemin Mekaniği Zeminlerde Gerilme ve Dağılışı Yrd.Doç.Dr. İnan KESKİN inankeskin@karabuk.edu.tr, inankeskin@gmail.com Haftalık Konular Hafta 1: Zeminlerin Oluşumu Hafta 2: Hafta 3: Hafta

Detaylı

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =.

5 kilolitre=..lt. 100 desilitre=.dekalitre. 150 gram=..dag. 1. 250 g= mg. 0,2 ton =..gram. 20 dam =.m. 2 km =.cm. 3,5 h = dakika. 20 m 3 =. 2014 2015 Ödevin Veriliş Tarihi: 12.06.2015 Ödevin Teslim Tarihi: 21.09.2015 MEV KOLEJİ ÖZEL ANKARA OKULLARI 1. Aşağıda verilen boşluklarara ifadeler doğru ise (D), yanlış ise (Y) yazınız. A. Fiziğin ışıkla

Detaylı

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI

DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI DÜZENLİ AKIMLARDA ENERJİ DENKLEMİ VE UYGULAMALARI, iş yapabilme yeteneği olarak tanımlanır(kg.m yada Kwh). Bir sıvının enerjisi, sıvı birim ağırlığının sahip olduğu iş yapabilme yeteneğidir. 1. Potansiyel

Detaylı

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1)

SORU #1. (20 p) (İlişkili Olduğu / Ders Öğrenme Çıktısı: 1,5,6 Program Çıktısı: 1) Süre 90 dakikadır. T.C. SAKARYA ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ DERSİ 2015-2016 GÜZ FİNAL SINAVI (Prof.Dr. Tahsin ENGİN - Doç.Dr. Nedim Sözbir - Yrd.Doç.Dr. Yüksel KORKMAZ Yrd.Doç.Dr.

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru

Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler. İçerik: Jet Motoru AKI KAN MÜHENDİSİĞİ Uçak Aerodinamiği: Akışkanın uçak uygulamasındaki rolleri Jet Motoru Y.O Yakıt K T 1 İçerik: Akışkanlar Mühendisliği 1. Giriş ve genel bilgiler -Giriş ve genel bilgiler -Akışkan özellikleri

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

2: MALZEME ÖZELLİKLERİ

2: MALZEME ÖZELLİKLERİ İÇİNDEKİLER Önsöz III Bölüm 1: TEMEL KAVRAMLAR 11 1.1.Mekanik, Tanımlar 12 1.1.1.Madde ve Özellikleri 12 1.2.Sayılar, Çevirmeler 13 1.2.1.Üslü Sayılarla İşlemler 13 1.2.2.Köklü Sayılarla İşlemler 16 1.2.3.İkinci

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

İnstagram:kimyaci_glcn_hoca GAZLAR-1.

İnstagram:kimyaci_glcn_hoca GAZLAR-1. GAZLAR-1 Gazların Genel Özellikleri Maddenin en düzensiz hâlidir. Maddedeki molekül ve atomlar birbirinden uzaktır ve çok hızlı hareket eder. Tanecikleri arasında çekim kuvvetleri, katı ve sıvılarınkine

Detaylı

E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik

E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik Enerji (Energy) Enerji, iş yapabilme kabiliyetidir. Bir sistemin enerjisi, o sistemin yapabileceği azami iştir. İş, bir cisme, bir kuvvetin tesiri ile yol aldırma, yerini değiştirme şeklinde tarif edilir.

Detaylı

ISI VE SICAKLIK. 1 cal = 4,18 j

ISI VE SICAKLIK. 1 cal = 4,18 j ISI VE SICAKLIK ISI Isı ve sıcaklık farklı şeylerdir. Bir maddeyi oluşturan bütün taneciklerin sahip olduğu kinetik enerjilerin toplamına ISI denir. Isı bir enerji türüdür. Isı birimleri joule ( j ) ve

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi

Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN. İstanbul Üniversitesi Fen Fakültesi Vakum Teknolojisi * Prof. Dr. Ergun GÜLTEKİN İstanbul Üniversitesi Fen Fakültesi Giriş Bilimsel amaçla veya teknolojide gerekli alanlarda kullanılmak üzere, kapalı bir hacim içindeki gaz moleküllerinin

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-8 SIVI AKIŞKANLARDA BASINÇ. Akışkanlar sıvı ve gaz olarak ikiye ayrılırlar.

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-8 SIVI AKIŞKANLARDA BASINÇ. Akışkanlar sıvı ve gaz olarak ikiye ayrılırlar. Bölüm-8 SIVI AKIŞKANLARDA BASINÇ 8.1. Sıvı Akışkanlarda Basınç Akışkanlar sıvı ve gaz olarak ikiye ayrılırlar. Sıvı akışkanlar sıkıştırılamayan, gaz akışkanlar ise sıkıştırılabilen akışkanlar olarak isimlendirilirler.

Detaylı

< 2100 Laminer Akım > 4000 Türbülent Akım Arası : Kararsız durum (dönüşüm)

< 2100 Laminer Akım > 4000 Türbülent Akım Arası : Kararsız durum (dönüşüm) Sıvıların Viskozluğu Viskozluk : η (Gazlarda sıvılar gibi akmaya karşı direnç gösterirler, bu dirence viskozluk denir) Akıcılık : φ (Viskozluğun tersi olan niceliğe akıcılık denir, viskozitesi yüksek olan

Detaylı

MALZEMELERİN MEKANİK ÖZELLİKLERİ

MALZEMELERİN MEKANİK ÖZELLİKLERİ MALZEMELERİN MEKANİK ÖZELLİKLERİ Farklı üretim yöntemleriyle üretilen ürünler uygulama koşullarında üzerlerine uygulanan kuvvetlere farklı yanıt verirler ve uygulanan yükün büyüklüğüne bağlı olarak koparlar,

Detaylı

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ Giriş Isı değiştiricileri (eşanjör) değişik tiplerde olup farklı sıcaklıktaki iki akışkan arasında ısı alışverişini temin ederler. Isı değiştiricileri başlıca yüzeyli

Detaylı

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır. SORU 1) Şekildeki (silindir+piston) düzeni vasıtası ile kolunda luk bir kuvvet elde edilmektedir. İki piston arasındaki hacimde yoğunluğu olan bir akışkan varıdr. Verilenlere göre büyük pistonun hareketi

Detaylı

Uluslararası Yavuz Tüneli

Uluslararası Yavuz Tüneli Uluslararası Yavuz Tüneli (International Yavuz Tunnel) Tünele rüzgar kaynaklı etkiyen aerodinamik kuvvetler ve bu kuvvetlerin oluşturduğu kesme kuvveti ve moment diyagramları (Aerodinamic Forces Acting

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

Maddelerin ortak özellikleri

Maddelerin ortak özellikleri On5yirmi5.com Maddelerin ortak özellikleri Maddelerin ortak özellikleri, ayırt edici özelliklerinin incelenip hallerine göre sınıflandırılmasının yapılması... Yayın Tarihi : 30 Ekim 2012 Salı (oluşturma

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. kışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

İş, Güç ve Enerji. Fiz Ders 7. Sabit Bir Kuvvetin Yaptığı İş. Değişen Bir Kuvvetin Yaptığı İş. Güç. İş-Kinetik Enerji Teoremi

İş, Güç ve Enerji. Fiz Ders 7. Sabit Bir Kuvvetin Yaptığı İş. Değişen Bir Kuvvetin Yaptığı İş. Güç. İş-Kinetik Enerji Teoremi Fiz 1011 - Ders 7 İş, Güç ve Enerji Sabit Bir Kuvvetin Yaptığı İş Değişen Bir Kuvvetin Yaptığı İş Güç İş-Kinetik Enerji Teoremi http://kisi.deu.edu.tr/mehmet.tarakci/ Günlük yaşamda iş kavramı bir çok

Detaylı

MADDE VE ÖZELIKLERI. Katı, Sıvı ve Gazlarda Basınç 1

MADDE VE ÖZELIKLERI. Katı, Sıvı ve Gazlarda Basınç 1 MADDE VE ÖZELIKLERI Katı, Sıvı ve Gazlarda Basınç 1 Katılar, sıvılar ve gazlar ağırlıkları nedeni ile dokundukları her yüzeye bir kuvvet uygular. Birim yüzeye dik olarak etki eden kuvvete basınç, bütün

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER

Alınan Puan NOT: Yalnızca 5 soru çözünüz, çözmediğiniz soruyu X ile işaretleyiniz. Sınav süresi 90 dakikadır. SORULAR ve ÇÖZÜMLER Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Bahar yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru Çözümleri 30.05.2017 Adı- Soyadı: Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

Termodinamik Termodinamik Süreçlerde İŞ ve ISI

Termodinamik Termodinamik Süreçlerde İŞ ve ISI Termodinamik Süreçlerde İŞ ve ISI Termodinamik Hareketli bir pistonla bağlantılı bir silindirik kap içindeki gazı inceleyelim (Şekil e bakınız). Denge halinde iken, hacmi V olan gaz, silindir çeperlerine

Detaylı

Termodinamik İdeal Gazlar Isı ve Termodinamiğin 1. Yasası

Termodinamik İdeal Gazlar Isı ve Termodinamiğin 1. Yasası İdeal Gazlar Isı ve Termodinamiğin 1. Yasası İdeal Gazlar P basıncında, V hacmindeki bir kaba konulan kütlesi m ve sıcaklığı T olan bir gazın özellikleri ele alınacaktır. Bu kavramların birbirleriyle nasıl

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ AKIŞKANLARIN ÖZELLİKLERİ Bölüm 2. Yrd. Doç. Dr. Güray Doğan Güz

ÇEV207 AKIŞKANLAR MEKANİĞİ AKIŞKANLARIN ÖZELLİKLERİ Bölüm 2. Yrd. Doç. Dr. Güray Doğan Güz ÇEV207 AKIŞKANLAR MEKANİĞİ AKIŞKANLARIN ÖZELLİKLERİ Bölüm 2 Yrd. Doç. Dr. Güray Doğan 2017-2018 Güz 1 Akışkanların Temel Özelliklerini Sürekli Ortamı Sürtünmenin Akışa Olan Etkilerini Yüzey Gerilimini

Detaylı

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi

BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi BÜLENT ECEVİT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK490 Makine Laboratuarı Dersi Akışkanlar Mekaniği Deneyi 1. Genel Bilgi Bazı akışlar oldukça çalkantılıyken bazıları düzgün ve düzenlidir. Düzgün

Detaylı

Pamukkale Üniversitesi. Makine Mühendisliği Bölümü. MENG 219 Deney Föyü

Pamukkale Üniversitesi. Makine Mühendisliği Bölümü. MENG 219 Deney Föyü Pamukkale Üniversitesi Makine Mühendisliği Bölümü MENG 219 Deney Föyü Deney No: Deney Adı: Deney Sorumluları: Deneyin Amacı: X Basınç Ölçümü Doç. Dr. Kadir Kavaklıoğlu ve Araş. Gör. Y Bu deneyin amacı

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı