İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN"

Transkript

1 İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız. R n, P n (R), M nxn uzaylarında bir vektörün uzunluğu ve iki vektör arasındaki açı kavramlarını öğreneceksiniz. İki vektörün ortogonal olmasını, Bir kümenin ortogonal ve ortonormal olmasını, Sonlu boyutlu bir vektör uzayının Gram-Schmidt yöntemi ile daima bir ortonormal tabanının bulunabileceğini öğreneceksiniz. İçindekiler Giriş 7 Vektörlerin Ortogonalliği, Ortonormal Vektör Kümeleri 7 Değerlendirme Soruları 33

2 Çalışma Önerileri Vektör uzayları ünitesini yeniden gözden geçiriniz. ANADOLU ÜNİ VERSİ TESİ

3 İ Ç-ÇARPIM UZAYLARI 7. Giriş R ve R 3 vektör uzaylarında bir vektörün uzunluğu, iki vektör arasındaki açı kavramlarını ve bu kavramların bu uzaylara kazandırdığı kimi önemli özellikleri Analitik Geometri derslerinden biliyorsunuz. Eğer sadece R ve R 3 uzayındaki vektörleri incelemiş olsaydık orada verilen uzunluk ve açı tanımları yeterli olurdu. Fakat daha önce gördüğümüz P n (R) vektör uzayındaki iki polinom arasındaki açıdan veya M mxn vektör uzayındaki bir matrisin uzunluğundan söz edilebilir mi? Daha genel olarak, herhangi bir vektör uzayına bu kavramlar genelleştirilebilir mi? Bu tür sorulara yanıt verebilmek için bir vektör uzayı içinde iç çarpım kavramını tanımlıyacağız... İç Çarpım Uzayları V bir vektör uzayı olsun. x, y V için < x, y > ile gösterilen ve aşağıdaki koşulları sağlayan <, > : V x V R, (x, y) < x, y > fonksiyonuna V üzerinde bir iç çarpım V ye de iç çarpım uzayı denir. Bu iç çarpım uzayı (V, <, >) ile gösterilir. (i) Her x, y V için < x, y > = < y, x > (ii) Her x, y, z V için < x, y + z> = < x, y > + < x, z > (iii) Her x, y V, c R için < cx, y > = c< x, y > = < x, cy > iv) Her x V için < x, x > ; < x, x > = x =.. Örnek R n de iç çarpım: x, y R için x = (x, x,..., x n ), y = (y, y,..., y n ) olsun. x ve y vektörlerinin iç çarpımı < x, y > = x y + x y x n y n biçiminde tanımlanır. Bu tanımın iç çarpımın tüm koşullarını sağladığı kolayca doğrulanabilir. Aşağıdaki teorem ile n = 3 için kanıt verilmektedir. R n ne bu iç çarpımla öklid uzayı adı verilir..3. Teorem R 3 içindeki x = ( x, x, x 3 ), y = ( y, y, y 3 ) vektörleri için < x, y > = x y + x y + x 3 y 3 bir iç çarpımdır. AÇIKÖĞ RETİ M FAKÜLTESİ

4 8 İ Ç-ÇARPIM UZAYLARI Kanıt < x, y > nin bir iç çarpım olduğunu göstermek için iç çarpım tanımındaki i-iv koşullarının sağlandığını göstermeliyiz. (i) < x, y > = x y + x y + x 3 y 3 = y x + y x + y 3 x 3 = < y, x > (ii) < x, y + z > = < ( x, x, x 3 ), ( y + z, y + z, y 3 + z 3 ) > = x ( y + z ) + x ( y + z ) + x 3 ( y 3 + z 3 ) = x y + x z + x y + x z + x 3 y 3 + x 3 z 3 = x y + x y + x 3 y 3 + x z + x z + x 3 z 3 = < x, y > + < x, z > iii) < cx, y > = < ( cx, cx, cx 3 ), ( y, y, y 3 ) > = cx y + cx y + cx 3 y 3 = c( x y + x y + x 3 y 3 ) = c < x, y > iv) < x, x > = < ( x, x, x 3 ), ( x, x, x 3 ) > = x + x x 3 Böyle bir toplamın sıfır olması her terimin ayrı ayrı sıfır olmasıyla sağlanacağından x = x = x 3 = dır. < x, x > = x = Böylece R 3 de < x, y > = x y + x y + x 3 y 3 bir iç çarpım olduğu kanıtlanmış olur..4. Örnek R 3 teki x = (, -3, ), y = (, 5, -6) vektörlerinin iç çarpımını hesaplayınız. Çözüm < x, y > = x y + x y + x 3 y 3 =. + (-3).5 + (.(-6) = = -9 ANADOLU ÜNİ VERSİ TESİ

5 İ Ç-ÇARPIM UZAYLARI 9.5. Örnek P n (R) de iç çarpım: P n (R), derecesi n veya n den küçük olan polinomların uzayında iç çarpım; p(x), q(x) P n (R) için < p(x), q(x) > = p(x). q(x) dx biçiminde tanımlanır. Bu tanımın iç çarpım koşullarını sağladığını kolayca doğrulayabilirsiniz..6. Örnek P (R) de p(x) = 3x + x + 5, q(x) = x + vektörlerinin iç çarpımlarını hesaplayınız. Çözüm < p(x), q(x) > = < 3x + x + 5, x + > = (3x + x + 5). (x + ) dx = (3x 3 + 5x + 7x + 5) dx = 3 4 x x3 + 7 x + 5x.7. Örnek M nxn uzayında iç çarpım: A, B M nxn, A = (a ij ) nxn, B = (b ij ) nxn olmak üzere n < A, B > = i = n j = a ij b ij = = 3 biçiminde tanımlanır. Bu tanımın iç çarpım koşullarını sağladığının gösterilmesini alıştırma olarak bırakıyoruz. AÇIKÖĞ RETİ M FAKÜLTESİ

6 İ Ç-ÇARPIM UZAYLARI.8. Örnek M x de A = 3 4, B = -3 vektörlerinin iç çarpımlarını hesaplayınız. < A, B > = i = j = a ij b ij = i = a i b i + a i b i buna göre, = (-3) = -7 bulunur. = a b + a b + a b + a b.9. Tanım A = (a ij ) nxn matrisi verilsin. a a a n A = a a a n a n a n a nn A matrisinin köşegeni üzerindeki sayıların toplamı olan a + a a nn sayısına A matrisinin izi denir iz (A) = a + a a nn = biçiminde gösterilir. n i = M nxn vektör uzayındaki A, B M nxn için iç çarpım a ii < A, B > = iz ( AB t n ) = i n a ij b ij j dir. Çünkü AB t çarpımında köşegen üzerindeki elemanların toplamı iz (A B t n ) = i dir. Buradan, n j = t a ij b ij ANADOLU ÜNİ VERSİ TESİ

7 İ Ç-ÇARPIM UZAYLARI iz ( AB t n ) = i n j t a ij b ij n = i n a ij b ij j = < A, B > elde edilir..8 Örnekteki A = hesaplayalım. 3 4, B = -3 matrislerinin iz iç çarpımını < A, B > = iz ( AB t ) AB t = = iz ( AB t ) = - 9 = -7 = < A, B > bulunur... Tanım V bir iç çarpım uzayı, x V olsun. x vektörünün uzunluğu x = < x, x > biçiminde tanımlanan bir sayıdır... Örnek R 3 deki x = (, 3, 5) vektörünün uzunluğunu hesaplayınız. x = < (, 3, 5), (, 3, 5) > = = 35.. Örnek P (R) deki p(x) = x + vektörünün uzunluğunu hesaplayınız. x = < (x + ), (x + ) > = (x + ) dx = (x 4 + x + ) dx = 5 x5 + 3 x3 + x) = = 8 5 AÇIKÖĞ RETİ M FAKÜLTESİ

8 İ Ç-ÇARPIM UZAYLARI.3. Teorem Cauchy - Schwarz Eşitsizliği V bir iç çarpım uzayı, x, y V olsun. dir. < x, y > x y Burada sol taraf bir gerçel sayının salt değerini, sağ taraf ise vektörlerin uzunlukları çarpımını verir. Kanıt x = olması durumunda < x, y > = x y = olduğundan eşitsizlik sağlanır. x olsun. Keyfi bir r R, r için < rx + y, rx + y > değerini alalım. < rx + y, rx + y > = < rx, rx + y > + < y, rx + y > tanımdan = < rx, rx > + < rx, y > + < y, rx > + < y, y > = r < x, x > + r < x, y > + r < x, y > + < y, y > = r < x, x > + r < x, y > + < y, y > olur. Burada a = < x, x >, b = < x, y >, c = < y, y > ile gösterirsek p (r) = ar + br + c r ye göre ikinci dereceden polinom elde edilir. Bu polinomun bir parabol denklemi olduğuna dikkat ediniz. p (r) = ar + br + c polinomunun r nin her değeri için ar + br + c olması için aşağıdaki iki koşuldan birinin sağlanması gerekir. (i) ar + br + c = ın gerçel köklerinin olmaması yani olması, b - 4ac < ANADOLU ÜNİ VERSİ TESİ

9 İ Ç-ÇARPIM UZAYLARI 3 y r (ii) ar + br + c = ın iki katlı gerçel kökünün olmasıdır. y r Uyarı: Eğer ar + br + c = ın r ve r gibi farklı iki kökü olsaydı, a > olduğu için r ve r kökleri arasında p(r) < olurdu. O halde b - 4ac olmalıdır. Buradan b - 4ac 4 < x, y > 4 < x, x > < y, y > < x, y > < x, x > < y, y > ve böylece < x, y > x y eşitsizliği elde edilir..4. Örnek P n (R) de p(x) ve q(x) vektörleri için Cauch-Schwarz eşitsizliği < p(x), q(x) > = p(x), q(x) dx p (x) dx q (x) dx = p(x) q(x) dir. Bu eşitsizliği AÇIKÖĞ RETİ M FAKÜLTESİ

10 4 İ Ç-ÇARPIM UZAYLARI p(x) = x + ve q(x) = x - x - vektörleri için doğrulayalım: (x + ) (x - x - ) dx x + dx x - x - dx işlemler yapılırsa, x 6-4x 4 - x 3 + 4x + 4x + dx x x + dx eşitsizliğin doğruluğu sağlanır. x 4 - x 3 - x + x + dx.5. Teorem Üçgen Eşitsizliği V bir iç çarpım uzayı, x, y V olsun. x + y x + y dir. Kanıt x + y = < x + y, x + y > = < x, x + y > + < y, x + y > = < x, x > + < x, y > + < y, x > + < y, y > = < x, x > + < x, y > + < y, y > x + x y + y = ( x + y ) x + y ( x + y ) olur. Her iki tarafın pozitif karekökü alınırsa x + y x + y bulunur. Bu eşitsizlik adını bir üçgenin bir kenarının uzunluğunun diğer iki kenarın uzunlukları toplamından küçük oluşundan almaktadır. Çünkü düzlemde kenarları x, y, x + y vektörleri olan bir üçgende x + y nin uzunluğu x ve y nin uzunlukları toplamından küçüktür. x + y y x ANADOLU ÜNİ VERSİ TESİ

11 İ Ç-ÇARPIM UZAYLARI 5.6. Tanım V bir iç çarpım uzayı olsun. x, y V, x, y olmak üzere bu iki vektör arasındaki açı cos θ = < x, y > x y eşitliği ile tanımlanır. θ π Cauchy - Schwarz eşitsizliğinden < x, y > x y < x, y > x y buradan böylece - < x, y > x y - cos θ olur. Buna göre herhangi bir çarpım uzayında sıfır olmayan iki vektör arasında yukarıdaki biçimde tanımlanan θ açısı anlamlıdır. () eşitliğinden < x, y > = x y cos θ yazabiliriz. Bu eşitlik R ve R 3 deki x ve y vektörlerinin iç çarpımıdır. Böylece cos θ = < x, y > x y şeklinde ifade ettiğimiz açı kavramını herhangi bir iç çarpım uzayına genişletmiş olduk..7. Örnek R 3 deki x = (,, ), y = (,, ) vektörleri arasındaki açıyı bulunuz. Çözüm cos θ = < (,, ), (,, ) > = cos θ = AÇIKÖĞ RETİ M FAKÜLTESİ

12 6 İ Ç-ÇARPIM UZAYLARI buradan θ = π 4 = 45 bulunur..8. Örnek R (R) deki p(x) = + x, q(x) = x vektörleri arasındaki açıyı bulunuz. Çözüm < p(x), q(x) > cos θ = p(x) q(x) cos θ = < + x, x > < + x, + x > < x, x > cos θ = x + x dx + x dx x dx = = cos θ = 5 7 olur..9. Örnek M x vektör uzayındaki A = arasındaki açıyı bulunuz. -, B = - 3 vektörleri Çözüm AB t = = i z AB t = = - 4 i z AA t = i z i z BB t = i z olarak bulunur cos θ = = = 6 = 4 ANADOLU ÜNİ VERSİ TESİ

13 İ Ç-ÇARPIM UZAYLARI 7. Vektörlerin Ortogonalliği, Ortonormal Vektör Kümeleri (Gram-Schmidt ortonormalleştirme yöntemi).. Tanım V iç çarpım ve x, y V olsun. Eğer < x, y > = ise x ve y ye ortogonal (dik) vektörler denir. İki vektör arasındaki açı, cos θ = < x, y > x y ifadesinde cos θ = ise x, y ortogonal vektörler, cos θ = ± yani < x, y > = ± x y ise x ve y vektörleri paralel vektörlerdir... Örnek R de x = (, 3), y = (- 3, ) vektörleri için < x, y > = < (, 3), (- 3, ) > =. (- 3) + 3. = olduğundan vektörler ortogonaldir..3. Tanım V bir iç çarpım uzayı. E V olsun. E içindeki farklı her vektör çifti ortogonal ise E ye ortogonal vektör kümesi denir. Ayrıca ortogonal E kümesindeki her vektörün uzunluğu ise E ye ortonormal bir küme denir..4. Örnek R 3 teki x = (,, 3), x = (,, ), x 3 = (- 3,, ) vektörlerinin ortogonal olduğunu gösteriniz. Ayrıca ortonormal kümeyi bulunuz. AÇIKÖĞ RETİ M FAKÜLTESİ

14 8 İ Ç-ÇARPIM UZAYLARI Çözüm < x, x > = < (,, 3), (,, ) > = < x, x 3 > = < (,, 3), (- 3,, ) > = < x, x 3 > = < (,, ), (- 3,, ) > = O halde x, x, x 3 vektörleri ortogonal vektörlerdir. { (x = (,, 3), x = (,, ), x 3 = (- 3,, ) } kümesi de ortogonal kümedir. x, x, x 3 vektörlerinin birim vektörlerini bulalım. x = < x, x > = <,, 3,,, 3 > = = x =,, 3 =,, 3 x ni birim vektörüdür. Benzer şekilde, x =,, =,,, x 3 ' = - 3,, = - 3,, birim vektörlerdir.,, 3,,,, - 3,, kümesi ortonormal bir kümedir.5. Teorem V n boyutlu iç çarpım uzayı olsun. V de sıfırdan farklı ortogonal vektörlerin E = { x, x,..., x n } kümesi lineer bağımsızdır. Kanıt E = { x, x,..., x n } V içinde ortogonal bir küme olsun. < x i, x j > = i j i, j =,,..., n dır. Şimdi c x + c x c n x n = ise, i n için < x i, > olduğundan ANADOLU ÜNİ VERSİ TESİ

15 İ Ç-ÇARPIM UZAYLARI 9 = < x i, c x + c x c n x n > = c < x i, x > + c < x i, x >... + c i < x i, x i > + c n < x i, x n >, = c. + c c i < x i, x i > c n. = c i < x i, x i > elde edilir. x i olduğu için c i =, i =,,..., n. Buna göre E kümesi lineer bağımsızdır. Sonuç Sonlu boyutlu V iç çarpım uzayında ortonormal bir küme lineer bağımsızdır..6. Tanım V, n boyutlu bir vektör uzayı olsun. V de sıfırdan farklı x, x,..., x n vektörleri ortogonal ise bu vektörlerin kümesi V için bir ortogonal tabandır. Eğer x, x,..., x n vektörleri ortonormal ise bu vektörlerin kümesi V için bir ortonormal tabandır..7. Örnek E = { (,, 5), (-,, ), (,, ) } vektör kümesi R 3 ün ortogonal bir tabanı mıdır? Çözüm Bir vektör uzayı için ortogonal taban olması demek tabandaki vektörlerin ortogonal olması demektir. E = { (,, 5), (-,, ), (,, ) } kümesi R 3 için bir tabandır (R 3 te lineer bağımsız üç vektör). Bu tabanın ortogonal olup olmadığını araştıralım: < (,, 5), (-,, ) > =. (-) = olduğu için E kümesi R 3 ün bir ortogonal tabanı değildir..8. Örnek E = { x, + x } kümesi P (R) nin ortogonal bir tabanı mıdır? AÇIKÖĞ RETİ M FAKÜLTESİ

16 3 İ Ç-ÇARPIM UZAYLARI E kümesi P (R) için bir tabandır. Ortogonal taban olması için E nin ortogonal bir küme olması gerekir yani < x, + x > = olmalıdır. < x, + x > = x + x dx = x + x dx = x + 3 x3 = 5 6 olduğundan E kümesi P (R) nin ortogonal bir tabanı değildir..9. Teorem V, n boyutlu bir iç çarpım uzayı olsun. V nin bir E = { x, x,..., x n } tabanı ortonormal bir tabana dönüştürülebilir. Kanıt Teoremin kanıtını vermeyeceğiz. Uygulamasını yapacağız. Sonlu boyutlu V vektör uzayının, herhangi bir tabanından yararlanarak bir ortonormal tabanını bulmak için izlenen yönteme Gram - Schmidt ortonormalleştirme yöntemi denir. E = { x, x,..., x n } kümesi V nin herhangi bir tabanı ise E kümesini, Gram - Schmidt ortonormalleştirme yöntemini kullanarak V için ortonormal bir taban bulalım: E = { x, x,..., x n } V nin bir tabanı olmak üzere i) y = x alalım. ii) y n = x n - < x n, y > < y, y > y - < x n, y > < y, y > y < x n, y n - > < y n -, y n - > y n - formülünden sırasıyla y, y 3,..., y n vektörleri bulunur. { y, y,..., y n } kümesi V nin ortogonal bir tabanıdır. iii) y, y,..., y n vektörlerinin birim vektörleri sırasıyla z, z,..., z n ise S = { z, z,..., z n } kümesi V nin bir ortonormal tabanıdır. ANADOLU ÜNİ VERSİ TESİ

17 İ Ç-ÇARPIM UZAYLARI 3.. Örnek Gram-Schmidt ortonormalleştirme yöntemiyle R 3 için bir ortonormal taban bulunuz. Çözüm R 3 ün herhangi bir tabanını alalım: E = { (,, ), (,, ), (,, 3) } kümesi R 3 için bir tabandır (Kontrol ediniz). y = x = (,, ) alalım. y = x - < x, y > < y, y > y < (,, ), (,, ) > = (,, ) - < (,, ), (,, ) > (,, ) y = (,, ) - 3 (,, ) = (, -, ) 3 y 3 = x 3 - < x 3, y > < y, y > y - < x 3, y > < y, y > y < (,, 3), (,, ) > = (,, 3) - < (,, ), (,, ) > = (,, 3) (,, ) - (, -, ) (,, ) - < (,, 3), (, -, ) > < (, -, ), (, -, ) > (, -, ) = (,, 3) - (,, ) -, -, = -, - +, = -,, Böylece, (,, ), (, -, ), -,, kümesi R 3 için ortogonal bir tabandır. Bu tabanın bir ortonormal taban olması için her vektörün birim vektörü bulunur. 3 (,, ), (, -, ), 6 -,, vektörleri sırasıyla (,, ), (, -, ), -,, vektörlerinin birim vektörleridir. Dolayısıyla 3, 3, 3,, -,, - 6, 6, 6 kümesi R 3 için bir ortonormal tabandır. AÇIKÖĞ RETİ M FAKÜLTESİ

18 3 İ Ç-ÇARPIM UZAYLARI Siz de Gram-Schmidt ortonormalleştirme yöntemi ile P (R) için bir ortonormal taban bulunuz... Örnek P (R) nin {, + x} tabanını kullanarak P (R) için bir ortonormal taban bulunuz. Çözüm {, + x} kümesi P (R) nin bir tabanı olduğuna göre y = x = alalım. y = x - < x, y > < y, y > y = + x - < + x, > <, > ( + x) dx = + x - dx = + x - 5 = + x - 5 = - + x, - + x kümesi ortogonal bir tabandır. - + x vektörünün birim vektörünü bulalım. - + x = < - + x, - + x > = - + x dx = = - + x = x, x kümesi ortonormal bir tabandır. ANADOLU ÜNİ VERSİ TESİ

19 İ Ç-ÇARPIM UZAYLARI 33 Değerlendirme Soruları. R 4 deki (, 4, 5, -3) vektörünün uzunluğu aşağıdakilerden hangisidir? A. 7 B. 6 C. 5 D. 7 E.. P (R) de tanımlı iç çarpıma göre p(x) = x + 3x vektörünün uzunluğu aşağıdakilerden hangisidir? A. 47 B. 3 C. D. E M x de tanımlı iç çarpımına göre vektörünün uzunluğu aşağıdakilerden hangisidir? 3 4 A. B. C. 3 D. 4 E R 3 deki (, 3, 5) (-, 4, 7) vektörleri arasındaki açının kosinüsü aşağıdakilerden hangisidir? A. 4 B. C D. 46 E P (R) de tanımlı iç çarpıma göre p(x) =, q(x) = + x vektörleri arasındaki açının kosünüsü aşağıdakilerden hangisidir? A. 5 B C. D. 5 E AÇIKÖĞ RETİ M FAKÜLTESİ

20 34 İ Ç-ÇARPIM UZAYLARI 6. Aşağıdaki kümelerden hangisi ortogonaldir? A. { (,, ), (, -, ), (,, -) } B. { (,, ), (3, 4, 5), (,, )} C. { (,, -), (, -, ), (,, ) } D. { (,, 3), (,, 3), (,, )} E. { (,, ), (,,), (,, ) (,, ) } 7. P (R) de aşağıdaki kümelerden hangisi ortogonaldir? A. {, 3, + x + x } B. {, x, x, x + n } C. {, D. - x, 3 - x } {, x -, x - x + 6 E. {, x } 8. R 3 nin V = { (x, y, z) x + y + z =, x, y, z R } alt uzayının ortogonal tabanı aşağıdakilerden hangisidir? A. B. { (,, -), (, -, ) }, -,, -,, C. { (,, ), (,, ) } D. { (,, ), (,, ) } E., 3, 4, (,, ) 9. R için aşağıdakilerden hangisi bir ortonormal tabandır? A. { (, ), (, ) } B. { (, ), (, ) } C. { (, ), (, ) } D. { (, ), (, 3) } E. { (-4, 5), (, ), (-, ) } Değerlendirme Sorularının Yanıtları. C. A 3. C 4. E 5. A 6. A 7. D 8. B 9. B ANADOLU ÜNİ VERSİ TESİ

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Özdeğer ve Özvektörler

Özdeğer ve Özvektörler Özdeğer ve Özvektörler Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; bir lineer dönüşümün ve bir matrisin özdeğer ve özvektör kavramlarını anlayacak, bir dönüşüm matrisinin

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Lineer. Cebir. Ünite 6. 7. 8. 9. 10 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Lineer Cebir Ünite 6. 7. 8. 9. 10 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

. [ ] vektörünü S deki vektörlerin bir lineer

. [ ] vektörünü S deki vektörlerin bir lineer 11.Gram-Schmidt metodu 11.1. Ortonormal baz 11.1.Teorem: { }, V Öklid uzayı için bir ortonormal baz olsun. Bu durumda olmak üzere. 1.Ö.: { }, de bir ortonormal baz olsun. Burada. vektörünü S deki vektörlerin

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

13. Karakteristik kökler ve özvektörler

13. Karakteristik kökler ve özvektörler 13. Karakteristik kökler ve özvektörler 13.1 Karakteristik kökler 1.Tanım: A nxn tipinde matris olmak üzere parametrisinin n.dereceden bir polinomu olan şeklinde gösterilen polinomuna A matrisin karakteristik

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Cebir 1. MIT Açık Ders Malzemeleri

Cebir 1. MIT Açık Ders Malzemeleri MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math Lineer Cebir Dersi Final Sınavı 8 Ocak 8 Hazırlayan: Yamaç Pehlivan Başlama saati: 4: Bitiş Saati: 5:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu KUADRATİK FORMLAR KUADRATİK FORM Tanım: Kuadratik Form Bir q(x,x,,x n ) fonksiyonu q x : n şeklinde tanımlı ve x i x j bileşenlerinin doğrusal kombinasyonu olan bir fonksiyon ise bir kuadratik formdur.

Detaylı

Lineer Denklem Sistemleri

Lineer Denklem Sistemleri Lineer Denklem Sistemleri Yazar Yrd. Doç.Dr. Nezahat ÇETİN ÜNİTE 3 Amaçlar Bu üniteyi çalıştıktan sonra; Lineer Denklem ve Lineer Denklem Sistemleri kavramlarını öğrenecek, Lineer Denklem Sistemlerinin

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 8 Ocak 28 Hazırlayan: Yamaç Pehlivan Başlama saati: 4: Bitiş Saati: 5:5 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LYS YE DOĞRU MATEMATİK TESTİ

LYS YE DOĞRU MATEMATİK TESTİ MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 50 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 75 dakikadır.. a, b ve c birer rakam

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Matrisler ve matris işlemleri

Matrisler ve matris işlemleri 2.Konu Matrisler ve matris işlemleri Kaynaklar: 1.Uygulamalı lineer cebir. 7.baskıdan çeviri.bernhard Kollman, David R.Hill/çev.Ed. Ömer Akın, Palma Yayıncılık, 2002 2.Lineer Cebir. Feyzi Başar.Surat Universite

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

3. BÖLÜM MATRİSLER 1

3. BÖLÜM MATRİSLER 1 3. BÖLÜM MATRİSLER 1 2 11 21 1 m1 a a a v 12 22 2 m2 a a a v 1 2 n n n mn a a a v gibi n tane vektörün oluşturduğu, şeklindeki sıralanışına matris denir. 1 2 n A v v v Matris A a a a a a a a a a 11 12

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı

9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı 9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

Math 103 Lineer Cebir Dersi Ara Sınavı

Math 103 Lineer Cebir Dersi Ara Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Ara Sınavı 6 Kasım 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 3: Bitiş Saati: 4: Toplam Süre: 6 Dakika Lütfen adınızı ve soyadınızı

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

Cahit Arf Matematik Günleri 10

Cahit Arf Matematik Günleri 10 Cahit Arf Matematik Günleri 0. Aşama Sınavı 9 Mart 0 Süre: 3 saat. Eğer n, den büyük bir tamsayı ise n 4 + 4 n sayısının asal olamayacağını gösteriniz.. Çözüm: Eğer n çiftse n 4 +4 n ifadesi de çift ve

Detaylı

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN LİNEER CEBİR Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU Ders Notu: Prof. Dr. Şaban EREN 1.BOLUM DOGRUSAL CEBIR VE DIFERANSIYEL DENKLEMLER LİNEER EŞİTLİKLER 1.1. LİNEER EŞİTLİKLERİN TANIMI x 1, x 2,...,

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik 1. BÖLÜM: POLİNOMLAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın sınıf

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31 SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.

Detaylı

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/

1 Vektör Uzayları 2. Lineer Cebir. David Pierce. Matematik Bölümü, MSGSÜ mat.msgsu.edu.tr/~dpierce/ Vektör Uzayları Lineer Cebir David Pierce 5 Mayıs 2017 Matematik Bölümü, MSGSÜ dpierce@msgsu.edu.tr mat.msgsu.edu.tr/~dpierce/ Bu notlarda, alıştırma olarak her teorem, sonuç, ve örnek kanıtlanabilir;

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler

Lineer Cebir. Doç. Dr. Niyazi ŞAHİN TOBB. İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Lineer Cebir Doç. Dr. Niyazi ŞAHİN TOBB İçerik: 1.1. Lineer Denklemlerin Tanımı 1.2. Lineer Denklem Sistemleri 1.3. Matrisler Bölüm 1 - Lineer Eşitlikler 1.1. Lineer Eşitliklerin Tanımı x 1, x 2,..., x

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

Ders 8: Konikler - Doğrularla kesişim

Ders 8: Konikler - Doğrularla kesişim Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu

Detaylı

Prof.Dr.F.Nejat EKMEKCİ, Prof. Dr. Yusuf YAYLI, BAHAR

Prof.Dr.F.Nejat EKMEKCİ, Prof. Dr. Yusuf YAYLI, BAHAR MAT 114 LİNEER CEBİR ( İSTATİSTİK, ASTRONOMİ ve UZAY BİLİMLERİ) Hafta 8: İç Çarpım Prof.Dr.F.Nejat EKMEKCİ, Prof. Dr. Yusuf YAYLI, Doç.Dr.İsmail GÖK 2017-2018 BAHAR İç Çarpım Tanım 23: V bir reel vektör

Detaylı

MATEMATİK 1 - FÖY İZLEME TESTLERİ. ÜNİTE 1: TEMEL KAVRAMLAR Temel Kavramlar. 4. a.b + a b 10 = x ve y farklı birer pozitif tam sayı,

MATEMATİK 1 - FÖY İZLEME TESTLERİ. ÜNİTE 1: TEMEL KAVRAMLAR Temel Kavramlar. 4. a.b + a b 10 = x ve y farklı birer pozitif tam sayı, MATEMATİK - FÖY İZLEME TESTLERİ 0/U UYGULAMA ÜNİTE : TEMEL KAVRAMLAR Temel Kavramlar. x, y, z birer rakam ve x < y < 6 < z olmak üzere, x + 3y z ifadesinin en büyük değeri A) B) 3 C) 6 D) 0 E) 9 4. a.b

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

POLİNOMLARIN TANIMI. ÖĞRENCİNİN ADI SOYADI: KONU: POLİNOMLAR NUMARASI: SINIFI:

POLİNOMLARIN TANIMI.  ÖĞRENCİNİN ADI SOYADI: KONU: POLİNOMLAR NUMARASI: SINIFI: ÖĞRENCİNİN ADI SOYADI: Dersin Adı POLİNOMLARIN TANIMI 1. Aşağıdaki fonksiyonlardan polinom belirtir? I. Dersin Konusu 1 5. P x x n 1 7 x 4 n 5 ifadesi bir polinom belirttiğine göre, bu polinomun derecesi

Detaylı

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz.

2 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var ise bulunuz. ANALİZ 1.) a) sgn. sgn( 1) = 1 denkleminin çözüm kümesini b) f ( ) 3 1 fonksiyonu veriliyor. olacak şekilde ortalama değer teoremini sağlayacak bir c sayısının var olup olmadığını araştırınız. Eğer var

Detaylı

Polinomlar. Rüstem YILMAZ

Polinomlar. Rüstem YILMAZ Polinomlar Rüstem YILMAZ 546 550 86 48 matematikklinigi@gmail.com 26 Aralık 2016 0.1 Tanımı a, b, c, d reel sayılar ve n N olmak üzere, P (x) = ax n + bx n 1 + + cx + d ifadesine reel katsayılı ve bir

Detaylı

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.

Detaylı

Ayrık Fourier Dönüşümü

Ayrık Fourier Dönüşümü Ayrık Fourier Dönüşümü Tanım: 0 n N 1 aralığında tanımlı N uzunluklu bir dizi x[n] nin AYRIK FOURIER DÖNÜŞÜMÜ (DFT), ayrık zaman Fourier dönüşümü (DTFT) X(e jω ) nın0 ω < 2π aralığında ω k = 2πk/N, k =

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

Yönlü doğru parçası: Zıt yönlü doğru parçaları: Eş yönlü doğru parçaları: Örnek-1. Paralel yönlü doğru parçaları:

Yönlü doğru parçası: Zıt yönlü doğru parçaları: Eş yönlü doğru parçaları: Örnek-1. Paralel yönlü doğru parçaları: Yönlü doğru parçası: Zıt yönlü doğru parçaları: Eş yönlü doğru parçaları: Örnek-1 Paralel yönlü doğru parçaları: 1 Örnek-2 Vektör: Örnek-3 Sıfır vektörü: Eşit vektörler: Örnek-4 Bir vektörü bir reel sayı

Detaylı

MATEMATİK ÖĞRETMENLİĞİ

MATEMATİK ÖĞRETMENLİĞİ T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1074 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 589 MATEMATİK ÖĞRETMENLİĞİ Lineer Cebir Yazar: Yrd.Doç.Dr. Nezahat ÇETİN Öğr.Grv.Dr. Nevin ORHUN Editör: Prof.Dr. Orhan

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik

ÖSYM. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz AYT/Matematik MATEMATİK TESTİ 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz. 1. 2. a bir gerçel sayı olmak üzere, karmaşık sayılarda eşitliği veriliyor.

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Parametrik doğru denklemleri 1

Parametrik doğru denklemleri 1 Parametrik doğru denklemleri 1 A noktasından geçen, doğrultman (doğrultu) vektörü w olan d doğrusunun, k parametresine göre parametrik denklemi: AP k w P A k w P A k w P A k W (P değişken nokta) A w P

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1.

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1. Bölüm 7 Karmaşık Sayılar Karmaşık sayılar gerçel sayıların genişlemesiyle elde edilen daha büyük bir kümedier. Genişleme şu gereksemeden doğmuştur: x 2 = +1 denklemimin çözümü +1, 1 sayılarıdır ve R içindedir.

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

ÖABT Lineer Cebir KONU TESTİ Matris Cebiri

ÖABT Lineer Cebir KONU TESTİ Matris Cebiri ÖB Lineer Cebir KONU ESİ Matris Cebiri. i, j,, i için j i j a j i j a. j i j a. i için j i j a 4 6 j i j a 4 j i j a. 6. 0 0 0 4 0 0 0. 4 6 n 0 0 n 6 Cevap: D Cevap:. I. I I I 0 I 0 0 0..I I I 00 0 0 0

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

Normal Alt Gruplar ve Bölüm Grupları...37

Normal Alt Gruplar ve Bölüm Grupları...37 İÇİNDEKİLER Ön Söz...2 Gruplar...3 Alt Gruplar...9 Simetrik Gruplar...13 Devirli Alt Gruplar...23 Sol ve Sağ Yan Kümeler (Kosetler)...32 Normal Alt Gruplar ve Bölüm Grupları...37 Grup Homomorfizmaları...41

Detaylı

Konik Kesitler ve Formülleri

Konik Kesitler ve Formülleri Konik Kesitler ve Formülleri Konik Kesitler ve Formülleri B 1 (0, b) P (x, y) A 2 ( a, 0) F 2 ( c, 0) F 1 (c, 0) A 1 (a, 0) B 2 (0, b) Şekil 1: Elips x2 a 2 + y2 b 2 = 1. Konik Kesitler ve Formülleri B

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

Özdeşlikler, Denklemler ve Eşitsizlikler

Özdeşlikler, Denklemler ve Eşitsizlikler Özdeşlikler, Denklemler ve Eşitsizlikler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; temel özdeşlikleri ve binom açılımını, birinci ve ikinci dereceden denklem çözümlerini

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı