MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z"

Transkript

1 MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z z x x nin argümenti denir ve argz ile gösterilir. Burada < θ < olduğu açıktır. Eğer π < θ π kısıtlaması yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. Buna göre olur. argz Argz + nπ, n Z x r cos θ y r sin θ olmak üzere z sayısı kutupsal olarak z x + iy r(cos θ + i sin θ) z (cos θ + i sin θ) şeklinde yazılır. Euler Formülü. θ R olmak üzere e iθ cosθ + i sin θ formülüne Euler formülü denir. Euler formülü yardımıyla z sayısı üstel olarak Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 1

2 MAT355 Kompleks Fonksiyonlar Teorisi I Hafta şeklinde yazılır. z z (cos θ + i sin θ) r(cos θ + i sin θ) re iθ (cos θ + i sin θ) n cosnθ + isinnθ (n Z) ifadesine de Moivre formülü denir. Soru i sayısını kutupsal formda yazınız. Çözüm. z 1 + ( 3) ve cosθ x 1, sinθ y 3 ve z z buradan 1 + 3i kompleks sayısı kutupsal formda 1 + 3i (cos π 3 + isinπ 3 ) biçiminde ifade edilir. Burada θ π +nπ, n Z nin herhangi bir değerinin 3 kullanılabileceğine dikkat edilmelidir. olur. Örneğin n 1 için z [cos( 5π3 ] ) + isin( 5π3 ) 1 + 3i Soru. z 1 1 3i ve z 3 + i olmak üzere z 1 z yi kutupsal formda yazınız. Çözüm. z 1 kompleks sayısını kutupsal formda z 1 r 1 (cosθ 1 + isinθ 1 ) ve z kompleks sayısını kutupsal formda z r (cosθ + isinθ ) şeklinde gösterelim. Bu durumda z ve tanθ 1 3 olur ve buradan θ 1 π π 5π radyandır. 3 3 Benzer şekilde z ve tanθ 1 3 olur ve buradan θ π 6 radyandır. O halde z 1 e 5πi 3 ve z e πi 6 dir. Ankara Üniversitesi Açık Ders Malzemeleri Sayfa

3 MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Dolayısıyla z 1 z e 5πi 3 e πi 6 e 11πi 6 3 i bulunur. Soru 3. 5i +i sayısını kutupsal formda yazınız. Çözüm. z 1 5i ve z + i diyelim. Bu durumda z 1 5i 5 ve tanθ 1 olur ve θ 1 π dir. Benzer şekilde z + i ve tanθ 1 olur ve θ π bulunur. Buradan 5i +i z 1 z 5 ei( π π ) 5 ei π bulunur. Soru. z (1 + i) 16 + (1 i) 16 sayısının reel olduğunu gösteriniz. Çözüm. 1 + i e i π ve 1 i e i π olur ve buradan (1 + i) 16 ( e i π ) 16 8 e πi 8 ve (1 i) 16 ( e i π ) 16 8 e πi 8 bulunur. Böylece z (1 + i) 16 + (1 i) elde edilir. Soru 5. (1+i) 7 (1 i) i eşitliğini elde ediniz. Çözüm. 1+i 1/ (cos π +isin π) olur ve buradan (1+i)7 7/ (cos 7π + isin 7π) şeklindedir. Benzer şekilde 1 i 1/ (cos( π π ) + isin( )) olur ve buradan (1 i) 10 5 (cos( 10π ) + isin( 10π )) şeklindedir. Dolayısıyla (1 + i) 7 (1 i) 7/ (cos 7π + isin 7π) 10 5 (cos( 10π ) + isin( 10π )) 3 17π (cos + isin17π ) 3 π (cos + isinπ ) ( i ) elde edilir. 1 + i Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 3

4 MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Soru 6. n pozitif bir tamsayı ve x n + iy n (1 + i) n olsun. Bu durumda x n + y n n olduğunu gösteriniz. Çözüm. w 1 + i diyelim. Bu durumda w (cos π + isin π) olur. w n ( ) n (cos nπ + isin nπ ) elde edilir. İki kompleks sayının eşitliği tanımından x n n cos nπ ve y n n sin nπ elde edilir. Buradan x n n cos nπ ve y n n sin nπ bulunur. Sonuç olarak ( ( nπ ) ( nπ )) x n + yn n cos + sin n elde edilir. Soru 7. z denkleminin köklerini bulunuz. Not. Genel olarak bir c 0 kompleks sayısının n.(n 1, n tamsayı) kökleri z n c ise z e iθ, ve c ρe iφ olmak üzere kökler z k ρ 1/n φ+kπ i( ) e n ( ) ( )) φ + kπ φ + kπ ρ (cos 1/n + isin, k 0, 1,,..., (n 1) n n biçimindedir. Çözüm. z z 1 ve 1 cosπ + isinπ dir. ( 1) 1 π + kπ cos( ) + isin( π + kπ ), (k 0, 1,, 3) bulunur. Kökler, z 0 cos π + isinπ 1 + i z 1 cos 3π + isin3π 1 + i z cos 5π + isin5π 1 i Ankara Üniversitesi Açık Ders Malzemeleri Sayfa

5 MAT355 Kompleks Fonksiyonlar Teorisi I Hafta z 3 cos 7π + isin7π 1 i şeklindedir. Soru 8. ( ) 3 + i sayısının tüm köklerini bulunuz. Çözüm. + i (cos π + isin π ) yazılabilir ve buradan ( + ) 3 ( ( 3π 3 i cos + kπ ) ( 3π + isin + kπ )), k 0, 1 bulunur. Buradan kökler z 0 8(cos 3π 8 + isin3π 8 ) olarak elde edilir. z 1 8(cos 11π 8 + isin7π 8 ) Soru 9. z + (1 + i)z + 5i 0 denkleminin köklerini bulunuz. ve Çözüm. b ac (1 + i).1.5i 1 + i + i 0i 18i olur 1 18i ( 18i) ( π 3 ( 3 3+3i cos ( 1 + i ) + kπ ) ( π + isin + kπ )), k 0, 1 şeklinde bulunur. yazıldığında Bulunan değerler z b+ a denkleminde yerlerine Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 5

6 MAT355 Kompleks Fonksiyonlar Teorisi I Hafta ve z 1 b + a (1 + i) + 3 3i 1 i + 3 3i i 1 i z b a (1 + i) (3 3i) 1 i 3 + 3i + i + i elde edilir, o halde kökler şeklindedir. {1 i, + i} Alıştırmalar 1) Aşağıdaki sayıları kutupsal gösterimle yazınız. a) + 3i b) 5i ) Aşağıdaki sayıları kutupsal gösterimden yararlanarak hesaplayınız. a) 1+ 3i 1 3i b)( 1 + i) 5 3) Aşağıdaki denklemlerin köklerini bulunuz. a) z 1 + i b)z 3 + i 0 ) (1 + 3i) 6 ( 3 + i) 5 10 ( 3 + i) eşitliğini elde ediniz. 5) w birimin 1 den farklı olan bir n. kökü ise, olduğunu gösteriniz. 1 + w + w w n 1 0 6) Aşağıdaki köklerden herbirinin değerini bulunuz ve bu değerleri grafikle belirtiniz. Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 6

7 MAT355 Kompleks Fonksiyonlar Teorisi I Hafta a) a)( 1 + i) 1/3 b) ( 3 i) 1/ c)( 1) 3/ 7) De Moivre formülünü kullanarak a) sin 3 θ 3 sinθ 1 sin3θ b) cos θ 1 8 cosθ + 1 cosθ eşitliklerini ispatlayınız. Ankara Üniversitesi Açık Ders Malzemeleri Sayfa 7

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ

BÖLÜM 1 1- KOMPLEKS (KARMAŞIK) SAYILAR 1-1 KARMAŞIK SAYILAR VE ÖZELLİKLERİ BÖLÜM - KOMPLEKS (KARMAŞIK) SAYILAR - KARMAŞIK SAYILAR VE ÖELLİKLERİ ax + bx +c ikinci derece denkleminin < iken reel köklerinin olmadığını biliyoruz. Örneğin x + denkleminin reel sayılar kümesinde çözümü

Detaylı

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i

θ x Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 3 Alıştırmalar KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ 1) z = 1 + i 2) z = 1 i KARMAŞIK SAYININ KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ z = a + bi y karmaşık sayısının kartezyen bi koordinatları z=(a, b) dir. Ya da görüntüsü A noktasıdır. A Alıştırmalar Karmaş ık sa yıs ın ın kutupsal

Detaylı

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1.

7.1 Karmaşık Sayılar. x 2 = 1. denkleminin çözümü olarak +i ve i sayıları tanımlanır. Tanım 7.1. Bölüm 7 Karmaşık Sayılar Karmaşık sayılar gerçel sayıların genişlemesiyle elde edilen daha büyük bir kümedier. Genişleme şu gereksemeden doğmuştur: x 2 = +1 denklemimin çözümü +1, 1 sayılarıdır ve R içindedir.

Detaylı

+ i. i. i. Z =, Z 1 olarak verilmiştir. A B grafiğini çizin. Z 2 = Z sistemini sağlayan. = ise. Argz. B = Z olduğuna göre, Arg

+ i. i. i. Z =, Z 1 olarak verilmiştir. A B grafiğini çizin. Z 2 = Z sistemini sağlayan. = ise. Argz. B = Z olduğuna göre, Arg ĐFL Karmaşık Sayılar Çalışma Soruları: (Ekim 7) (+i) -(-i) +(+i) +(+i) + i + i +? + i i i + i?? i (+i) +(x-yi) +y ise x+y bir karmaşık sayı olmak üere, -ii(i-) olduğuna göre, Re() 7 Şekildeki kompleks

Detaylı

FİZ Titreşimler ve Dalgalar

FİZ Titreşimler ve Dalgalar FİZ-217-01 Titreşimler ve Dalgalar 2014-2015 Güz dönemi ders notları* Prof. Dr. Hüseyin Çelik *Bu ders notları esas olarak aşağıda verilen kaynak kitaplar kullanılarak hazırlanmıştır. 1. Titreşimler ve

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ

DERSİN ADI: MATEMATİK II MAT II (12) KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR 2. EĞRİ ÇİZİMLERİ DERSİN ADI: MATEMATİK II MAT II (1) ÜNİTE: KUTUPSAL KOORDİNATLAR VE UYGULAMALARI 1. KUTUPSAL KOORDİNATLAR. EĞRİ ÇİZİMLERİ GEREKLİ ÖN BİLGİLER 1. Trigonometrik fonksiyonlar. İntegral formülleri KONU ANLATIMI

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik. BÖLÜM: KARMAŞIK SAYILAR ALIŞTIRMALAR Bu başlık altında her bölüm kaanımlara ayrılmış, kaanımlar tek tek çöümlü temel alıştırmalar ve sorular ile taranmıştır. Öellikle bu kısmın sınıf

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 3 1.3. Kompleks Düzlemin Topolojisi Tanım 1. D ε (z 0 ) = {z C : z z 0 < ε} kümesine z 0 ın bir ε komşuluğu denir. Tanım 2. Bir A C kümesi verilsin. z 0 ın sadece A nın elemanlarından oluşan bir komşuluğu

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri 1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 13 4. İNTEGRALLER 4.1. Kompleks İntegrasyon Tanım 1. f : [a, b] R fonksiyonu f(t) u(t) + iv(t) biçiminde olsun. Eğer u ve v, [a, b] aralığı üzerinde integrallenebilirse, olarak tanımlanır. b f(t)dt b u(t)dt

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir.

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir. .7. Analitik ve Harmonik Fonksiyonlar Tanım 1. f(z) nin z 0 da f (z 0 ) türevi mevcut ve z 0 ın bir D ε (z 0 ) = {z : z z 0 < ε} komşuluğundaki her noktada türevi varsa bu durumda f ye z 0 da analitiktir

Detaylı

Aralıklar, Eşitsizlikler, Mutlak Değer

Aralıklar, Eşitsizlikler, Mutlak Değer ARALIKLAR Gerçel sayıların, aralık olarak adlandırılan bazı kümeleri kalkülüste sık sık kullanılır ve geometrik olarak doğru parçalarına karşılık gelir. Örneğin, a < b ise, a dan b ye açık aralık, a ile

Detaylı

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR,

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR, , 00 M ebir Notları Gökhan EMĐR, gdemir@yahoo.com.tr Trigonometri. TEST I π 'ün esas ölçüsü kaçtır? ) p ) p ) p ) π p. tanθ = ) ) olduğuna göre, sinθ değeri kaçtır? ) ). 0 'nin esas ölçüsü kaçtır?. θ

Detaylı

KARMAŞIK SAYILAR Test -1

KARMAŞIK SAYILAR Test -1 KARMAŞIK SAYILAR Test -. i olmak üere, i olduğuna göre, Re() kaçtır? B) C) 0 D) E). i olmak üere, 00 0 06 i i i işleminin sonucu aşağıdakilerden hangisine i B) i C) i + D) E) i. i olmak üere, i olduğuna

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR,  2006 MC Karmaşık saılar www.matematikclub.cm, 006 Cebir Ntları Gökhan DEMĐR, gdemir@ah.cm.tr TEST I. i 897 + i 975 + i 997 i 995 tplamının snucu i B) i C) i D) i E) 5i 8. Z = i nin kutupsal biçimi (cs0 + isin0)

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

1 (c) herhangi iki kompleks sayı olmak üzere

1 (c) herhangi iki kompleks sayı olmak üzere KOMPLEKS FONKSİYONLAR TEORİSİ UYGULAMA SORULARI- Problem. Aşağıdaki (a) ve (b) de olmak üere (a) olduklarını gösterini. (b) (c) Imi Re Çöüm (a) i olsun. i i (b) i olsun. i i i i i i i i i i Im i Re i (c)

Detaylı

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin MAK 308 MAKİNA DİNAMİĞİ 017-018 Bahar Dr. Nurdan Bilgin EŞDEĞER ATALET MOMENTİ Geçen ders, hız ve ivme etki katsayılarını elde ederek; mekanizmanın hareketinin sadece bir bağımsız değişkene bağlı olarak

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

( t) ( ) ( ) ( ) ( ) ( )

( t) ( ) ( ) ( ) ( ) ( ) İİ DDDDD IIII NN NN A MM MM KKK KK DD DD II NNN NN AAA MMM MMM İİİİ KK KK DD DD II NNNN NN AA AA MMMMMMM İİ KK KK DD DD II NNNNNNN AA AA MMMMMMM İİ KK KK DD DD II NN NNNN AA AA MM M MM İİ KKKK DD DD II

Detaylı

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir.

Sunum ve Sistematik. Bu başlıklar altında uygulamalar yaparak öğrenciye yorum, analiz, sentez yetisinin geliştirilmesi hedeflenmiştir. Sunum ve Sistematik. BÖLÜM: KARMAŞIK SAYILAR ALIŞTIRMALAR Bu başlık altında her bölüm kazanımlara ayrılmış, kazanımlar tek tek çözümlü temel alıştırmalar ve sorular ile taranmıştır. Özellikle bu kısmın

Detaylı

Diverjans teoremi ise bir F vektörüne ait hacim ve yüzey İntegralleri arasındaki ilişkiyi ortaya koyar ve. biçiminde ifade edilir.

Diverjans teoremi ise bir F vektörüne ait hacim ve yüzey İntegralleri arasındaki ilişkiyi ortaya koyar ve. biçiminde ifade edilir. Maxwell denklemlerini intagral bicimlerinin elde edilmesinde Stokes ve Diverjans Teoremlerinden yararlanilir. Stokes Teoremiaşağıdaki gibi ifade edilir, bir F vektörüne ait yüzey integrali ile çizgi integrali

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

DERS: MATEMATİK I MAT101(04)

DERS: MATEMATİK I MAT101(04) DERS: MATEMATİK I MAT0(0) ÜNİTE: FONKSİYONLAR KONU:. TRİGONOMETRİK FONKSİYONLAR Öncelikle açı ölçü birimlerine göz atalım: Bilindiği gibi bir tam açının ölçüsü 0 derecedir. Diğer bir açı ölçü birimi de

Detaylı

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin

MAK 308 MAKİNA DİNAMİĞİ Bahar Dr. Nurdan Bilgin MAK 308 MAKİNA DİNAMİĞİ 2017-2018 Bahar Dr. Nurdan Bilgin Virtüel İş Yöntemi-Giriş Bu zamana kadar Newton yasaları ve D alambert prensibine dayanarak hareket özellikleri her konumda bilinen bir makinanın

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.112 Kompleks Değişkenli Fonksiyonlar 2008 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms http://tuba.acikders.org.tr

Detaylı

Cahit Arf Matematik Günleri 10

Cahit Arf Matematik Günleri 10 Cahit Arf Matematik Günleri 0. Aşama Sınavı 9 Mart 0 Süre: 3 saat. Eğer n, den büyük bir tamsayı ise n 4 + 4 n sayısının asal olamayacağını gösteriniz.. Çözüm: Eğer n çiftse n 4 +4 n ifadesi de çift ve

Detaylı

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1.

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1. BİR KARMAŞIK SAYININ MUTLAK DEĞERI (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın (A noktasının), başlangıç noktasına uzaklığına bu sayının mutlak değeri (modülü) denir ve z şeklinde

Detaylı

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi

FİZİK 4. Ders 10: Bir Boyutlu Schrödinger Denklemi FİZİK 4 Ders 10: Bir Boyutlu Schrödinger Denklemi Bir Boyutlu Schrödinger Denklemi Beklenen Değer Kuyu İçindeki Parçacık Zamandan Bağımsız Schrödinger Denklemi Kare Kuyu Tünel Olayı Basit Harmonik Salınıcı

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy

denklemini sağlayan tüm x kompleks sayılarını bulunuz. denklemini x = 64 = 2 i şeklinde yazabiliriz. Bu son kompleks sayıları için x = 2iy Ders Sorumlusu: Doç. Dr. Necp ŞİMŞEK Problem. deklem sağlaya tüm kompleks sayılarıı buluu. Çöüm deklem şeklde yaablr. Bu so y kompleks sayıları ç y yaalım. Bu taktrde deklemde, baı y ( ) y elde edlr. Burada

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması KUTUPLANMA (Polarizasyon) Kutuplanma enine dalgaların bir özelliğidir. Ancak burada mekanik dalgaların kutuplanmasını ele almayacağız. Elektromanyetik dalgaların kutuplanmasını inceleyeceğiz. Elektromanyetik

Detaylı

2.2 Bazıözel fonksiyonlar

2.2 Bazıözel fonksiyonlar . Bazıözel fonksionlar Kuvvet fonksionu, polinomlar ve rasonel fonksionlar, mutlak değer ve tam değer fonksionları, pratik grafik çizimleri. 1-) Lineer fonksionlar: m ve n sabit saılar olmak üzere f()

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz.

sonlu altörtüsü varsa bu topolojik uzaya tıkız diyoruz. Ders 1: Önbilgiler Bu derste türev fonksiyonunun geometrik anlamını tartışıp, yalnız R n nin bir açık altkümesinde değil, daha genel uzaylarda tanımlı bir fonksiyonun türevi ve özel noktalarının nasıl

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Öğrenci Yerleştirme Sınavı (Öys) / 23 Haziran Matematik Soruları Ve Çözümleri

Öğrenci Yerleştirme Sınavı (Öys) / 23 Haziran Matematik Soruları Ve Çözümleri Öğrenci Yerleştirme Sınavı (Öys) / Haziran 996 Matematik Soruları Ve Çözümleri. Bir sınıftaki örencilerin 5 nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır?

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

V cn V ca. V bc. V bn. V ab 30. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri

V cn V ca. V bc. V bn. V ab 30. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri HATIRLATMALAR Faz-Faz ve Faz-Nötr Gerilimleri V cn V ca V ab 30 10 V an V bn V bc V ab 30 -V bn cos30 30 V an cos30 3 3 30 Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri Üçgen Bağlı Yük: V LN =

Detaylı

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu)

Iki Boyutlu Sabit Katsay l Lineer Homogen Diferensiyel Denklem Sistemleri (Euler Metodu) Iki Boyulu Sabi Kasay l Lineer Homogen Diferensiyel Denklem Sisemleri (Euler Meodu) Bu bölümde sabi kasay l, lineer, homogen 8 >< d = a 1x + b 1 y >: dy d = a 2x + b 2 y sisemi ele al nmakad r. Burada

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu KUADRATİK FORMLAR KUADRATİK FORM Tanım: Kuadratik Form Bir q(x,x,,x n ) fonksiyonu q x : n şeklinde tanımlı ve x i x j bileşenlerinin doğrusal kombinasyonu olan bir fonksiyon ise bir kuadratik formdur.

Detaylı

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+

( ) ( ) ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. Cevap D. Cevap C. noktası y ekseni üzerinde ise, a + 4 = 0 A 0, 5 = 1+ ÖABT Analitik Geometri KONU TESTİ Noktanın Analitik İncelemesi. a+ = b 4. a = b 0+ a b a b = b a+ b = 0. A ( a + 4, a) noktası y ekseni üzerinde ise, ( + ) a + 4 = 0 A 0, 5 a = 4 B b, b 0 noktası x ekseni

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. ise fonksiyonu için, = b olduğuna göre, a b kaçtır? = 1 olur. Öğrenci Seçme Sınavı (Öss) 8 Haziran 6 Matematik II Soruları ve Çözümleri. f (x) + x lim f ( x) a x x ve, x ise fonksiyonu için,, x lim f ( x) b olduğuna göre, a b kaçtır? x A) B) C) D) E) Çözüm x x için,

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş

İşaret ve Sistemler. Ders 2: Spektral Analize Giriş İşaret ve Sistemler Ders 2: Spektral Analize Giriş Spektral Analiz A 1.Cos (2 f 1 t+ 1 ) ile belirtilen işaret: f 1 Hz frekansında, A 1 genliğinde ve fazı da Cos(2 f 1 t) ye göre 1 olan parametrelere sahiptir.

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

matematiksel eşitliğin her iki tarafındaki birim eşitliği kullanılarak a ve b sayılarına ulaşılır.

matematiksel eşitliğin her iki tarafındaki birim eşitliği kullanılarak a ve b sayılarına ulaşılır. Soru 1- Kuzey istikametinde 8m giden bir aracın, sonrasında 6m doğuya ve 10m güneye ilerlediği görülüyorsa, bu aracın hareketi boyunca aldığı toplam yol ve yerdeğiştirmesi kaç metredir? Cevap 1-8m Harekete

Detaylı

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1 ..3 Ters Trigonometrik Fonksionlar Önceki kesimde belirtilen bütün trigonometrik fonksionlar perodik olduklarından görüntü kümesindeki her değeri sonsuz noktada alırlar. Bölece trigonometrik fonksionlar

Detaylı

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L

T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB1001 Analiz I 6 Aralık 013. Yıliçi Sınavı Öğrenci Numarası: Adı Soyadı: - Talimatlar: Sınav süresi 90 dakikadır. İlk 30 dakika sınav salonunu

Detaylı

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b.

Final sınavı konularına aşağıdaki sorular dahil değildir: 1, 2, 3, 4, 5, 6, 7, 19, 20, 21, 25, 27, 28, 29, 30, 33-b. Final sınavı konularına aşağıdaki sorular dahil değildir:,,,, 5, 6, 7, 9,,, 5, 7, 8, 9,, -b. MAT -MATEMATİK (- GÜZ DÖNEMİ) FİNAL ÇALIŞMA SORULARI. Tabanı a büyük eksenli, b küçük eksenli elips ile sınırlanan

Detaylı

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe)

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) Merak uyandıran konulardan birisi olan fonksiyonel denklemlerle ilgili Türkçe kaynakların az oluşundan dolayı, matematik

Detaylı

MAT 101, MATEMATİK I, ARA SINAV 13 KASIM (10+10 p.) 2. (10+10 p.) 3. ( p.) 4. (6x5 p.) TOPLAM

MAT 101, MATEMATİK I, ARA SINAV 13 KASIM (10+10 p.) 2. (10+10 p.) 3. ( p.) 4. (6x5 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, ARA SINAV 13 KASIM 2014 Adı Soyadı: No: İMZA: 1. (10+10 p.) 2. (10+10 p.) 3. (10+10+10 p.) 4. (65 p.) TOPLAM NOT: Tam puan almak için

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu

ÜNİTE MATEMATİK-1 İÇİNDEKİLER HEDEFLER ÜSTEL VE LOGARİTMA FONKSİYONLARI. Prof.Dr.Ahmet KÜÇÜK. Üstel Fonksiyon Logaritma Fonksiyonu HEDEFLER İÇİNDEKİLER ÜSTEL VE LOGARİTMA FONKSİYONLARI Üstel Fonksiyon Logaritma Fonksiyonu MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu ünite çalışıldıktan sonra, Üstel fonksiyonun tanımı öğrenilecek Üstel fonksiyonun

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı (30)1.a) İki reel sayının mantissa ları (gövde kısımları) eşit ve mantissa1 = mantissa2

Detaylı

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir. KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat

Detaylı

( ) ( ) { } ( ] f(x) = sinx fonksiyonunun x=0 için türevi aşağıdakilerden hangisidir. 3 ün (mod 7) ye göre denk olduğu sayı aşağıdakilerden

( ) ( ) { } ( ] f(x) = sinx fonksiyonunun x=0 için türevi aşağıdakilerden hangisidir. 3 ün (mod 7) ye göre denk olduğu sayı aşağıdakilerden . 4 ün (mod 7) ye göre denk olduğu sayı aşağıdakilerden hangisidir? B) 4 E ) (mod 7) (mod 7) 6 (mod 7) 6 4 (mod 7) 4 (mod 7). R R olduğuna göre f : f() = - fonksiyonunun tanım kümesi nedir? { :-< < } B)

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

ALTERNATİF AKIMDA ANİ VE ORTALAMA GÜÇ

ALTERNATİF AKIMDA ANİ VE ORTALAMA GÜÇ ALTERNATİF AKIMDA ANİ VE A akımda devreye uygulanan gerilim ve akım zamana bağlı olarak değişir. Elde edilen güç de zamana bağlı değişir. Güç her an akım ve gerilimin çarpımına (U*I) eşit değildir. ORTALAMA

Detaylı

Parametrik doğru denklemleri 1

Parametrik doğru denklemleri 1 Parametrik doğru denklemleri 1 A noktasından geçen, doğrultman (doğrultu) vektörü w olan d doğrusunun, k parametresine göre parametrik denklemi: AP k w P A k w P A k w P A k W (P değişken nokta) A w P

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

TRİGONOMETRİK DENKLEMLER

TRİGONOMETRİK DENKLEMLER TRİGONOMETRİK DENKLEMLER Daha önceden Sin + Cos = 1 ifadesinin R için gerçekleştiğini biliyoruz. Bu tür eşitliklere Özdeşlik adını verdiğimizi biliyorsunuz. Fakat ; Sin = 0 ve tan = 0 gibi eşitlikler R

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Çözüm: Yanıt:E. Çözüm:

Çözüm: Yanıt:E. Çözüm: ., -< 0 önermesinin olumsuzu, aşağıdakilerden, - 0 B), -> 0, -> 0, - 0 E ), - 0, -< 0 önermesinin olumsuzu, +- 0 dir.. a A önermesi p, b B önermesi q ve c C önermesi de r ile gösterildiğine göre A = B

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı