Altın Oran Arama Metodu(Golden Search)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Altın Oran Arama Metodu(Golden Search)"

Transkript

1 Altın Oran Arama Metodu(Golden Search) Bir f(x) (tek değişkenli) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b f (x) bulunamayabilir veya f (x) = 0 denklemini çözmek çok zor olabilir. Bu konuda, f(x) eğer özel bir tür fonksiyon ise (unimodal fonksiyon) optimum(en iyi) değerinin nasıl bulunabileceği ele alınacaktır. Tanım: Şayet [a, b] aralığındaki bazı xx değerleri için f(x) [a, xx ] aralığında keskin bir şekilde artıyor ve [xx, b] aralığında ise keskin bir şekilde azalıyorsa f(x) fonksiyonu [a, b] aralığında unimodaldır. Yani bu aralıkta sadece tek bir tepe noktası bulunmaktadır. Eğer f(x) [a, b] aralığında unimodal ise [a, b] aralığında sadece bir yerel maksimum (xx ) değeri vardır ve yukarıda verilen DOP modeli ile çözülür. [a, b] aralığında unimodal bir fonksiyon xx = yerel maksimum değeri [a, b] aralığında unimodal olmayan bir fonksiyon xx bu modelin [a, b] aralığındaki optimum çözümüdür. [a, b] aralığında iki nokta olan x1 ve x2 noktalarında (x1 < x2) f(x) fonksiyonunu incelediğimizde çözümü bulana kadar aralığı daraltabiliriz. f(x1) ve f(x2) incelendiğinde aşağıdaki üç durumdan biri meydana gelir. Her üç durumda da optimum çözümün [a, b] aralığında olacağını gösterebiliriz.

2 Durum 1: f(x1) < f(x2). f(x), [x1, x2] aralığının en azından bir kısmında artmakta olduğu için f(x) in unimodal olmasından dolayı optimum çözüm [a, x1] aralığında oluşamaz. Bu sebeple Durum 1 de f(x1) < f(x2) için xx (x1, b] dir. Eğer f(x1) < f(x2) ise xx (x1, b] Durum 2: f(x1) = f(x2) ise [x1, x2] aralığının bir kısmında f(x) azalıyordur ve optimum çözüm a < x2 kısmındadır. Bu sebeple Durum 2 de f(x1) = f(x2) ise xx [a, x2) dir. Eğer f(x1) = f(x2) ise xx [a, x2) Durum 3: f(x1) > f(x2). Bu durumda f(x), x x2 ye ulaşmadan önce azalmaya başlayacaktır. Bu sebeple Durum 3 de f(x1) > f(x2) ise xx [a, x2) dir. Eğer f(x1) > f(x2) ise xx [a, x2) xx nin [a, x2) veya (x1, b] aralıklarından hangisinde bulunacağına belirsizlik aralığı denir. Bu belirsizlik aralığını azaltmak için çok sayıda arama algoritması bahsedilen bu fikirleri kullanmaktadır. Bu algoritmaların birçoğu aşağıdaki adımları kullanır:

3 Adım 1: x için belirsizlik aralığı olarak [a, b] aralığı ile başla. Makul bir şekilde seçilmiş x1 ve x2 noktaları için f(x) i incele. Adım 2: Durum 1, 2 veya 3 ten hangisine uyduğunu belirle ve belirsizlik aralığını buna göre azalt. Adım 3: İki yeni nokta için f(x) i incele (algoritma, bu iki yeni noktanın nasıl seçileceğini belirtmektedir). Belirsizlik aralığı yeterince küçük oluncaya kadar Adım 2 ye dön. Burada bu algoritmalardan biri olan Altın Oran Arama Algoritması ele alınacaktır. Bu algoritmaya göre unimodal f(x) fonksiyonunu çözerken, Adım 3 te iki yeni noktayı seçtiğimizde noktalardan biri daima daha önce f(x) i incelediğimiz noktalardan biri olarak seçilecektir. r karesel r 2 + r = 1 denkleminin pozitif bir kökü olsun. Karesel formülden şu elde edilir: rr = = 00, Bu değer Altın oran olarak bilinir. Altın oran arama algoritması x1 ve x2 noktalarında f(x) in incelenmesi ile başlar. x1 = b r(b a) x2 = a + r(b a) Şekilden de anlaşılabileceği gibi x1 i bulmak için aralığın son noktasından aralık uzunluğu ile r nin çarpımı kadar sola gelinir. Benzer şekilde x2 yi bulmak için aralığın başlangıç noktasından aralık uzunluğu ile r nin çarpımı kadar sağa gidilir. Altın oran arama algoritması iki yeni nokta bulmuştur. Bu noktalarda f(x) yeniden incelenmelidir. Durum 1, 2 ve 3 te bahsedildiği üzere biliyoruz ki eğer f(x1) < f(x2) ise xx (x1, b], eğer f(x1) f(x2) ise xx [a, x2) dir. Eğer f(x1) < f(x2) ise azaltılmış belirsizlik aralığı b x1 = r(b a) uzunluğundadır. Eğer f(x1) f(x2) ise azaltılmış belirsizlik aralığı x2 a = r(b a) uzunluğundadır. Bu sebeple f(x1) ve f(x2) incelendikten sonra belirsizlik aralığı r(b a) uzunluğuna indirgenmiş olur. f(x) iki noktada incelenip belirsizlik aralığı azaltıldığında Altın Oran Arama Algoritmasının bir iterasyonu tamamlanmış olur. Lk = algoritmanın k iterasyonu tamamlandığında belirsizlik aralığının uzunluğu Ik = k iterasyonu sonundaki belirsizlik aralığı

4 Buna göre Lk = r(b a) ve I1 = [a, x2) veya (x1, b] olur. Aşağıdaki prosedürü kullanarak iki yeni x3 ve x4 noktaları üretilir ve bu noktalarda f(x) incelenir. Durum 1: f(x1) < f(x2). Yeni belirsizlik aralığı (x1, b] alınır. Uzunluğu b x1 = r(b a) olacaktır. x3 = b r(b x1) = b r 2 (b a)= x2 x4 = x1 + r(b x1) Yeni bulunan x3 noktası, daha önce bulunan x2 noktasına eşit olacaktır. Bunu r 2 = 1 r gerçeğinden hareketle ispatlayabiliriz. x3 = b r 2 (b a) = b (1 r)(b a) = a + r(b a) = x2 Durum 2: f(x1) f(x2). Yeni belirsizlik aralığı [a, x2) alınır. Uzunluğu x2 a = r(b a) olacaktır. x3 = x2 r(x2 a) x4 = a + r(x2 a) = a + r 2 (b a)= x1 Yeni bulunan x4 noktası, daha önce bulunan x1 noktasına eşit olacaktır. Bunu r 2 = 1 r gerçeğinden hareketle ispatlayabiliriz. x4 = a + r 2 (b a) = a + (1 r)(b a) = b r(b a) = x1 Şimdi f(x3) ve f(x4) fonksiyonları belirsizlik aralığını azaltmak için kullanılabilir. Bu aşamada Altın Oran Arama Algoritmasının iki iterasyonu tamamlanmıştır. Yukarıdan anlaşıldığı gibi Altın Oran Arama Algoritmasının her iterasyonunda f(x) sadece bir yeni noktada incelenecektir. L2 = rl1 = r 2 (b a) olacaktır. Genel ifadesiyle; Lk = rlk-1 = r k (b a) yazılabilir.

5 Bulunacak son belirsizlik aralığı < ɛ olmalıdır. Bu sebeple kaç iterasyon Altın Oran Arama Algoritması işletileceği, aşağıdaki formülden k değeri elde edilerek bulunur. r k (b a) < ɛ Örnek: Aşağıdaki modeli, nihai belirsizlik aralığı uzunluğu 0,25 den küçük olacak şekilde Altın Oran Arama Algoritması ile çözelim: Max f(x) = x 2 1 Arama aralığı: (a) 1 x 0,75(b) Bu aralık değerlerine göre Altın Oran Arama k İterasyon sayısını bulalım: a = 1 b = 0,75 b a = 1,75 (ilk aralık uzunluğu) r k (b a) < ɛ => 0,618 k * 1,75 < 0,25 => 0,618 k < 1/7 k * ln (0,618) < ln (1/7) k * (-0,48) < -1,95 =>> negatiflikten pozitif değerlere geçilirse: k * (0,48) > 1,95 Buradan İterasyon sayısı k > 4,06 = 5 olmalıdır. Öyleyse 5 iterasyon(adım) Altın Oran Arama Algoritması işletilecektir. 1.İterasyon: Önce x1 ve x2 bulunur. x1 = b r(b a) x2 = a + r(b a) den: x1 = 0,75 0,618 * 1,75 = 0,3315 x2 = 1 + 0,618 * 1,75 = 0,0815 f(x1) = ( 0,3315) 2 1 = 1,1099 f(x2) = (0,0815) 2 1 = 1,0066 f(x1) < f(x2) olduğu için yeni belirsizlik aralığı (x1, b] = ( 0,3315, 0,75] ve daha önce ıspatlandığı üzere x3 = x2 olacaktır. Yeni aralık büyüklüğü: L1 = b - x1 = 0,75 ( 0,3315) = 1,0815 (işlemlerin sona ermesi için)

6 2.İterasyon: Yeni x3 ve x4 noktalarını bulacak olursak: x3 = x2 = 0,0815 x4 = x1 + r * (b - x1 ) = 0, ,618 * 1,0815 = 0,3369 f(x3) = f(x2) = 1,0066 f(x4) = (0,3369) 2 1 = 1,1135 f(x3) > f(x4) olduğu için yeni belirsizlik aralığı [x1, x4) = [ 0,3315, 0,3369) ve daha önce ispatlandığı üzere x6 = x3 olacaktır. Yeni aralık büyüklüğü: L2 = 0,3369 ( 0,3315) = 0, İterasyon: Yeni x5 ve x6 noktalarını bulacak olursak: x5 = 0,3369 0,618 * 0,6684 = 0,0762 x6 = x3 = 0,0815 f(x5) = ( 0,0762) 2 1 = 1,0058 f(x6) = f(x3) = 1,0066 f(x5) > f(x6) olduğu için yeni belirsizlik aralığı [x1, x6) = [ 0,3315, 0,0815) ve x8 = x5 olacaktır. Yeni aralık büyüklüğü: L3 = 0, 0815 ( 0,3315) = 0, İterasyon: Yeni x7 ve x8 noktalarını bulacak olursak: x7 = 0, ,618 * 0,4130 = 0,1737 x8 = x5 = 0,0762 f(x7) = ( 0,1737) 2 1 = 1,0302 f(x8) = f(x5) = 1,0058 f(x7) < f(x8) olduğu için yeni belirsizlik aralığı (x7, x6] = ( 0,1737, 0,0815] ve x9 = x8 olacaktır. Yeni aralık büyüklüğü: L4 = 0,0815 ( 0,1737) = 0, İterasyon: Yeni x9 ve x10 noktalarını bulacak olursak: x9 = x8 = 0,0762 x10 = 0, ,618 * 0,2552 = 0,016

7 f(x9) = f(x8) = 1,0058 f(x10) = (0,016) 2 1 = 1,0003 f(x9) < f(x10) olduğu için yeni belirsizlik aralığı (x9, x6] = ( 0,0762, 0,0815] olacaktır. Yeni aralık büyüklüğü: L5 = 0,0815 ( 0,0762) = 0,1577 < 0,25 olduğu için işlemler sonlandırılır. Sonuç olarak; Max f(x) = x x 0,75 modelinin çözümü ( 0,0762, 0,0815] aralığında olacaktır. (Tabi ki gerçek maksimum xx = 0 da oluşacaktır.) Altın Oran Arama Algoritması, Minimizasyon problemlerinde de kullanılabilir. Bunun için amaç fonksiyonu 1 ile çarpılır. Bulunan çözüm aralığı geçerlidir. f(x) in değeri için ilk fonksiyon kullanılmalıdır. Ödev: 1. Altın Oran Arama Algoritmasını Excel de hazırlayın. 2. Altın Oran Arama Algoritmasının MATLAB kodlarını yazın. 3. Altın Oran Arama Algoritmasını bildiğiniz bir programlama dili ile yazın. Sorular 1. Aşağıdaki modelin optimum çözümünü 0,8 belirsizlik aralığı için çözünüz. Max. x 2 + 2x - 3 x 5 2. Aşağıdaki modelin optimum çözümünü 0,6 belirsizlik aralığı için çözünüz. Max. x e x 1 x 3

8 Altın Oran Arama Algoritması MATLAB Uygulaması fonksiyonunun optimum noktasını [0 10] aralığında altın oran arama algoritmasının MATLAB kodları ile bulalım. Önce bu fonksiyonu tanımlayacağımız fx.m isimli dosyayı aşağıdaki gibi hazırlarız. Fonksiyon minimizasyon olduğu için 1 ile çarpıldığına dikkat edin. function g = fx(c) g = -(2*c./(4+0.8*c+c.^2+0.2*c.^3)); Daha sonra yukarıda tanımlan fonksiyonu çağırarak çalışan altın oran arama algoritmasının kodları altin.m dosyasında oluşturulur. Bu kodlar aşağıda verilmiştir. function [p, yp]=golden(func,a,b,eps,delta) % verilen argüman (girdi) sayısına göre eps/delta değerlerini otomatik al if (nargin<5) delta = 1.0e-10; end if (nargin<4) delta = 1.0e-10; eps = 1.0e-10; end r=(sqrt(5)-1)/2; h=b-a; c=b-r*h; d=a+r*h; ya=feval(func,a); yb=feval(func,b); yd=feval(func,d); yc=feval(func,c); maxit=200; k=1; while (abs(yb-ya) > eps & (h > delta) & (k < maxit)) k=k+1; if (yc < yd) b = d; yb = yd; d = c; yd = yc; h = b - a; c = b - r*h; yc = feval(func,c); else a = c; ya = yc; c = d; yc = yd; h = b - a; d = a + r*h; yd = feval(func,d); end end dp = abs(b-a); dy = abs(yb-ya); p = a;

9 yp = ya; if (yb < ya) p = b; yp = yb; end if (k > maxit) uyari = 'Maksimum iterasyon aşıldı. Sonuç doğru olmayabilir' end Yukarıdaki iki.m dosyası hazırlandıktan sonra MATLAB komut ekranında aşağıdaki gibi altın oran arama algoritması çalıştırılır ve sonuç elde edilir. >> [x fdeg]=altin(@fx, 0, 10) x = fdeg = Kaynak (---1.soru Ödev..1.öğr.ler ) 1. Wayne Winston, Operations Research Applications and Algorithms 4th. Edition, MATLAB: Yapay Zekâ ve Mühendislik Uygulamaları, Prof. Dr. C. Kubat, Beşiz Yayınları- 1.Basım, Aralık 2012.

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik İkiye Bölme / Yarılama Yöntemi Genel olarak f x = 0 gerek şartını sağlamak oldukça doğrusal olmayan ve bu sebeple çözümü

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

NEWTON RAPHSON YÖNTEMİ

NEWTON RAPHSON YÖNTEMİ NEWTON RAPHSON YÖNTEMİ Genel olarak ff(xx) 0 gerek şartını sağlamak doğrusal olmayan ifadelerde oldukça zordur ve bu sebeple çözümler zor olabilir. Newton-Raphson yöntemi, doğrusal olmayan denklemlerin

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Başlangıç Temel Programının Bilinmemesi Durumu

Başlangıç Temel Programının Bilinmemesi Durumu aşlangıç Temel Programının ilinmemesi Durumu İlgili kısıtlarda şartlar ( ) ise bunlara gevşek (slack) değişkenler eklenerek eşitliklere dönüştürülmektedir. Ancak sınırlayıcı şartlar ( ) veya ( = ) olduğu

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon

OPTİMİZASYON TEKNİKLERİ. Kısıtsız Optimizasyon OPTİMİZASYON TEKNİKLERİ Kısıtsız Optimizasyon Giriş Klasik optimizasyon yöntemleri minimum veya maksimum değerlerini bulmak için türev gerektiren ve gerektirmeyen teknikler olarak bilinirler. Bu yöntemler

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon

Kısıtsız Optimizasyon OPTİMİZASYON Kısıtsız Optimizasyon OPTİMİZASYON Bu bölümde çok değişkenli kısıtsız optimizasyon problemlerinin çözüm yöntemleri incelenecektir. Bu bölümde anlatılacak yöntemler, kısıtlı optimizasyon problemlerini de çözebilmektedir. Bunun

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi

Tek Değişkenli Optimizasyon OPTİMİZASYON. Gradient Tabanlı Yöntemler. Bisection (İkiye Bölme) Yöntemi OPTİMİZASYON Gerçek hayatta, çok değişkenli optimizasyon problemleri karmaşıktır ve nadir olarak problem tek değişkenli olur. Bununla birlikte, tek değişkenli optimizasyon algoritmaları çok değişkenli

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü

ALGORİTMA ANALİZİ. Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü ALGORİTMA ANALİZİ Cumhuriyet Üniversitesi Bilgisayar Mühendisliği Bölümü 2 Özyinelemeler veya artık teknik Türkçeye girmiş olan rekürsiflik en çok duyulan fakat kullanımında zorluklar görülen tekniklerdendir.

Detaylı

KISITLI OPTİMİZASYON

KISITLI OPTİMİZASYON KISITLI OPTİMİZASYON SİMPLEKS YÖNTEMİ Simpleks Yöntemi Simpleks yöntemi iteratif bir prosedürü gerektirir. Bu iterasyonlar ile gerçekçi çözümlerin olduğu bölgenin (S) bir köşesinden başlayarak amaç fonksiyonunun

Detaylı

METASEZGİSEL YÖNTEMLER

METASEZGİSEL YÖNTEMLER METASEZGİSEL YÖNTEMLER Ara sınav - 30% Ödev (Haftalık) - 20% Final (Proje Sunumu) - 50% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn: Zaman çizelgeleme, en kısa yol bulunması,

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

GÜMÜŞHANE ÜNĐVERSĐTESĐ MÜHENDĐSLĐK VE DOĞA BĐLĐMLERĐ FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜHENDĐSLĐĞĐ EEM 114 ALGORĐTMA TASARIMI VE PROGRAMLAMA DĐLLERĐ

GÜMÜŞHANE ÜNĐVERSĐTESĐ MÜHENDĐSLĐK VE DOĞA BĐLĐMLERĐ FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜHENDĐSLĐĞĐ EEM 114 ALGORĐTMA TASARIMI VE PROGRAMLAMA DĐLLERĐ GÜMÜŞHANE ÜNĐVERSĐTESĐ MÜHENDĐSLĐK VE DOĞA BĐLĐMLERĐ FAKÜLTESĐ ELEKTRĐK-ELEKTRONĐK MÜHENDĐSLĐĞĐ EEM 114 ALGORĐTMA TASARIMI VE PROGRAMLAMA DĐLLERĐ DERS 1 PROGRAM GELĐŞTĐRME PROGRAM GELĐŞTĐRME VERĐ ĐŞLEME(DATA

Detaylı

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere,

Bilgisayar Programlamaya Giriş I KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, KAREKÖK BULMA Acaba hesap makinesi bir sayının karekökünü nasıl buluyor? başlangıç değeri olmak üzere, dizisi değerine yakınsar. Yani; olur. Burada birinci sorun başlangıç değerinin belirlenmesidir. İkinci

Detaylı

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Çok değişkenli DOP ların çözümü Dr. Özgür Kabak Doğrusal olmayan programlama Tek değişkenli DOP ların çözümü Uç noktaların analizi Altın kesit Araması Çok değişkenli DOP ların

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

Programlama Dilleri 1. Ders 3: Rastgele sayı üretimi ve uygulamaları

Programlama Dilleri 1. Ders 3: Rastgele sayı üretimi ve uygulamaları Ders 3: Rastgele sayı üretimi ve uygulamaları Ders 3 Genel Bakış Giriş Rastgele Sayı Rastgele Sayı Üreteci rand Fonksiyonunun İşlevi srand Fonksiyonunun İşlevi Monte Carlo Yöntemi Uygulama 1: Yazı-Tura

Detaylı

Đlişkisel Operatörler

Đlişkisel Operatörler Şart Bildirimleri İlişkisel Operatörler for, elseif ve while bildirimlerinde aşağıdaki ilişkisel operatörler kullanılır: Đlişkisel Operatörler Simge Anlamı > Büyüktür < Küçüktür = = Eşittir >= Büyük eşittir

Detaylı

Algoritma ve Akış Diyagramları

Algoritma ve Akış Diyagramları Algoritma ve Akış Diyagramları Bir problemin çözümüne ulaşabilmek için izlenecek ardışık mantık ve işlem dizisine ALGORİTMA, algoritmanın çizimsel gösterimine ise AKIŞ DİYAGRAMI adı verilir 1 Akış diyagramları

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

Bulanık Mantık Bilgisayar Mühendisliği Bölümü Arasınav - 11 Nisan 2014 Süre: 1 Saat 30 Dakika

Bulanık Mantık Bilgisayar Mühendisliği Bölümü Arasınav - 11 Nisan 2014 Süre: 1 Saat 30 Dakika SORU 1 (20P). Bir tartı aletinin kalibrasyonunu yapmak üzere kurulan düzenekte, kalibrasyon katası ±10 gram arasında bakılmaktadır. Öyleki -10 ve altı kesinlikle NEGATİF BÜYÜK hata, +10 ve üstü kesinlikle

Detaylı

2012-2013 BAHAR YARIYILI MAK1010 MAKİNE MÜHENDİSLİĞİNDE BİLGİSAYAR UYGULAMALARI DERSİ FİNAL SINAV SORULARI

2012-2013 BAHAR YARIYILI MAK1010 MAKİNE MÜHENDİSLİĞİNDE BİLGİSAYAR UYGULAMALARI DERSİ FİNAL SINAV SORULARI ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 2012-2013 BAHAR YARIYILI MAK1010 MAKİNE MÜHENDİSLİĞİNDE BİLGİSAYAR UYGULAMALARI DERSİ FİNAL SINAV SORULARI Prof. Dr. İbrahim

Detaylı

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir? 1. 36 x A) [- 6, ] B) [- 6, 6 ] C) [, 36] D) [, 36 ] E) [- 36, ] 5. x + 4x + 4 > A) (, ) B) - } C) D) R E) R - {- } 6. x + 8x + 16. x x 8 < aşağıdalerden hangisidir? A) (- 4, ) B) (-, ) C) (- 4, ) A) {

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 5 KONU: Matlab de Diziler ve Matrisler İÇ İÇE FOR DÖNGÜSÜ

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi

BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI. Kafkas Üniversitesi Mühendislik Fakültesi BİLGİSAYAR PROGRAMLAMA Araş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Bu hafta? İki değişken değerinin yer değiştirilmesi (swapping) selection sort sıralama algoritması bubble sort

Detaylı

Bilgisayar Programlama

Bilgisayar Programlama Bilgisayar Programlama M Dosya Yapısı Kontrol Yapıları Doç. Dr. İrfan KAYMAZ Matlab Ders Notları M-dosyası Genel tanıtımı : Bir senaryo dosyası (script file) özel bir görevi yerine getirmek için gerekli

Detaylı

YUVARLAMA FONKSİYONLARI

YUVARLAMA FONKSİYONLARI YUVARLAMA FONKSİYONLARI Fonksiyon Çalışma Prensibi fix(x) x ondalık sayısını sıfır yönündeki ilk tamsayıya round(x) x ondalık sayısını kisine en yakın ilk tamsayıya ceil(x) x ondalık sayısını + yönündeki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL

ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL ÖZEL EGE LİSESİ FİBONACCİ DİZİLERİ YARDIMIYLA DEĞERİNİ HESAPLAYAN BİR FORMÜL HAZIRLAYAN ÖĞRENCİ: Tilbe GÖKÇEL DANIŞMAN ÖĞRETMEN: Emel ERGÖNÜL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI... 3 2. GİRİŞ... 3

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic

Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic Dr. Musa KILIÇ Öğretim Görevlisi http://kisi.deu.edu.tr/musa.kilic BİLGİSAYAR DONANIM Donanım birimleri ekran, klavye, harddisk, ram YAZILIM Yazılımlar ise bilgisayarın donanım yapısını kullanılır hale

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız.

İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. ISLE 403 YÖNEYLEM ARAŞTIRMASI DERS 3 NOTLAR DP Modellerinin Standart Biçimde Gösterimi: İkinci dersin notlarında yer alan Gepetto Marangozhanesi örneğini hatırlayınız. Gepetto Marangozhanesi için DP modeli

Detaylı

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız?

GÜZ DÖNEMİ ARASINAV SORULARI. 1. Sayısal çözümleme ve fonksiyonu tanımlayarak kullanıldığı alanları kısaca açıklayınız? MAK 05 SAYISAL ÇÖZÜMLEME S Ü L E Y M A N D E M Ġ R E L Ü N Ġ V E R S Ġ T E S Ġ M Ü H E N D Ġ S L Ġ K F A K Ü L T E S Ġ M A K Ġ N A M Ü H E N D Ġ S L Ġ Ğ Ġ B Ö L Ü M Ü I. öğretim II. öğretim A şubesi B

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

Yöneylem Araştırması II

Yöneylem Araştırması II Yöneylem Araştırması II Öğr. Gör. Dr. Hakan ÇERÇİOĞLU cercioglu@gazi.edu.tr BÖLÜM I: Doğrusal Programlama Tekrarı Doğrusal Programlama Tanımı Doğrusal Programlama Varsayımları Grafik Çözüm Metodu Simpleks

Detaylı

DÖNGÜLER BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA GİRİŞ LABORATUARI BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA DENEY-4 FÖYÜ GİRİŞ LABORATUARI.

DÖNGÜLER BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA GİRİŞ LABORATUARI BMÜ-101 ALGORİTMA VE PROGRAMLAMAYA DENEY-4 FÖYÜ GİRİŞ LABORATUARI. DÖNGÜLER Amaçlar: 1. ÇEVRİM OLUŞTURMA (DÖNGÜ) 2. WHILE DEYİMİ 3. DO... WHILE DEYİMİ 4. FOR DEYİMİ Örnek 4-1 Programı yazın ve çalıştırın. Örnek 4-2 Programı yazın ve çalıştırın. Örnek 4-3 Aşağıdaki kodu

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok

BÖLÜM III: Şebeke Modelleri. Şebeke Kavramları. Şebeke Kavramları. Şebeke Kavramları. Yönlü Şebeke (Directed Network) Dal / ok 8.0.0 Şebeke Kavramları BÖLÜM III: Şebeke Modelleri Şebeke (Network) Sonlu sayıdaki düğümler kümesiyle, bunlarla bağlantılı oklar (veya dallar) kümesinin oluşturduğu yapı şeklinde tanımlanabilir ve (N,A)

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3519 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Orjinal Adı: YÖNEYLEM ARAŞTIRMASI I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu:

Detaylı

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA Hedef ara komutu bir fonksiyonun tersinin bulunmasında kullanılır. Hedef ara işlemi, y=f(x) gibi bir fonksiyonda y değeri verildiğinde x değerinin bulunmasıdır. Bu işlem,

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ 4. DERS NOTU Konu: M-dosya yapısı ve Kontrol Yapıları Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU 1 M-Dosya Yapısı Bir senaryo dosyası (script file) özel bir görevi yerine getirmek

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr.

Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST328 Yöneylem Araştırması 2 Dersi Bahar Dönemi. Hazırlayan: Doç. Dr. Anadolu Üniversitesi Endüstri Mühendisliği Bölümü İST8 Yöneylem Araştırması Dersi 00-0 Bahar Dönemi Hazırlayan: Doç. Dr. Nil ARAS AÇIKLAMA Bu sunu izleyen kaynaklardaki örnek ve bilgilerden faydalanarak

Detaylı

BİL 810 İnşaat Mühendisliğinde Bilgisayar Uygulamaları

BİL 810 İnşaat Mühendisliğinde Bilgisayar Uygulamaları BİL 810 İnşaat Mühendisliğinde Bilgisayar Uygulamaları 10.Hafta Microsoft Excel-5 Periyot Hesabı Uygulaması HedefAra (GoalSeek) Komutu Makro kullanımı Sunum konularının seçilmesi Dr. Onur TUNABOYU 1 Uygulama

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

Fen ve Mühendislik Uygulamaları ile MATLAB

Fen ve Mühendislik Uygulamaları ile MATLAB Fen ve Mühendislik Uygulamaları ile MATLAB Doç. Dr. M. Akif CEVİZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü M-Dosyaları Kontrol İfadeleri - İlişkisel ve Mantıksal Operatörler

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ SORULAR ÇÖZÜMLER & MATLAB PROGRAMLAMA Doç. Dr. Ali Rıza YILDIZ Arş. Gör. Emre DEMİRCİ 1 4.1: Aşağıdaki verilen fonksiyonun belirten aralıklarda

Detaylı

BİLGİSAYAR PROGRAMLAMA MATLAB

BİLGİSAYAR PROGRAMLAMA MATLAB BİLGİSAYAR PROGRAMLAMA MATLAB Arş. Gör. Ahmet ARDAHANLI Kafkas Üniversitesi Mühendislik Fakültesi Ders Bilgileri Dersin Hocası: Araş. Gör. Ahmet Ardahanlı E-posta: ahmet.ardahanli@hotmail.com Oda: DZ-33

Detaylı

BİLGİSAYAR PROGRAMLAMA DERSİ

BİLGİSAYAR PROGRAMLAMA DERSİ BİLGİSAYAR PROGRAMLAMA DERSİ Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü DERS NOTU 3 KONU: M-dosya yapısı ve Kontrol Yapıları M-Dosya Yapısı

Detaylı

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım)

Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması. (Eğitim/Hata geri yayılım) Çok katmanlı ileri sürümlü YSA da standart geri yayıyım ve momentum geri yayılım algoritmalarının karşılaştırılması (Eğitim/Hata geri yayılım) Özetçe Bu çalışmada çok katmanlı ve ileri sürümlü bir YSA

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

diff Türev Alma Fonksiyonu. >> syms x >> A=3*x^4+x^2-3*x A = 3*x^4+x^2-3*x. >> diff(a) // A fonksiyonunun türevini alır. ans = 12*x^3+2*x-3

diff Türev Alma Fonksiyonu. >> syms x >> A=3*x^4+x^2-3*x A = 3*x^4+x^2-3*x. >> diff(a) // A fonksiyonunun türevini alır. ans = 12*x^3+2*x-3 7.4.. diff Türev Alma Fonksiyonu >> syms x >> A=3*x^4+x^-3*x A = 3*x^4+x^-3*x >> diff(a) // A fonksiyonunun türevini alır. 1*x^3+*x-3 >> diff(a,) // A fonksiyonunun türevini kere alır. 36*x^+ ÖRNEK: >>

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Fen ve Mühendislik Uygulamalarında MATLAB

Fen ve Mühendislik Uygulamalarında MATLAB Fen ve Mühendislik Uygulamalarında MATLAB Dosya Yönetimi Fonksiyon Yapısı Doç. Dr. İrfan KAYMAZ MATLAB Ders Notları DOSYA YÖNETİMİ Şu ana kadar bir programda hesaplanan veya elde edilen veriler RAM de

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi

Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi 07-04-006 Ümit Akıncı Fonksiyon Minimizasyonunda Simulated Annealing Yöntemi İçindekiler Fonksiyon Minimizasyonu Metropolis Algoritması. Algoritma.......................................... Bir boyutlu

Detaylı

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları

4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları 4- Turbo Pascal Bilgisayar Programlamada Kullanılan Şart Yapıları Şart yapıları bir bilgisayar programının olmazsa olmazlarındandır. Şart yapıları günlük hayatımızda da çok fazla karşılaştığımız belirli

Detaylı

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3 Soru : f(x) = log x 4 5 fonksiyonunun tanım aralığını bulunuz? a x = b eşitliğinde a ve b belli iken x i bulmaya logaritma işlemi denir. Üstel fonksiyon bire bir ve örten olduğundan ters fonksiyonu vardır.

Detaylı

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME. Sayısal Çözümleme SAYISAL ÇÖZÜMLEME 1 SAYISAL ÇÖZÜMLEME 4. Hafta DENKLEM ÇÖZÜMLERİ 2 İÇİNDEKİLER Denklem Çözümleri Doğrusal Olmayan Denklem Çözümleri Grafik Yöntemleri Kapalı Yöntemler İkiye Bölme (Bisection) Yöntemi Adım

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları

Algoritma Analizi ve Büyük O Notasyonu. Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritma Analizi ve Büyük O Notasyonu Şadi Evren ŞEKER YouTube: Bilgisayar Kavramları Algoritmaların Özellikleri Algoritmalar Input Girdi, bir kümedir, Output ÇıkF, bir kümedir (çözümdür) Definiteness

Detaylı

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 101 Algoritma ve Programlama I 3. Hafta. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 101 Algoritma ve Programlama I 3. Hafta Yük. Müh. Köksal GÜNDOĞDU 1 Akış Diyagramları ve Sözde Kodlar Yük. Müh. Köksal GÜNDOĞDU 2 Sözde Kodlar (pseudo-code) Yük. Müh. Köksal GÜNDOĞDU 3 Sözde Kod Sözde

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu

Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu Türk-Alman Üniversitesi İktisadi ve İdari Bilimler Fakültesi İşletme Bölümü Ders Bilgi Formu Dersin Adı Dersin Kodu Dersin Yarıyılı Yöneylem Araştırması BWL315 5 ECTS Ders Uygulama Laboratuar Kredisi (saat/hafta)

Detaylı

Lambda, Map, Filter ve Dizi Tamamlama

Lambda, Map, Filter ve Dizi Tamamlama Lambda, Map, Filter ve Dizi Tamamlama Prof.Dr. Bahadır AKTUĞ JFM212 Python ile Mühendislik Uygulamaları *Kaynakça bölümünde verilen kaynaklardan derlenmiştir. Lambda Lambda fonksiyonu veya Lambda operatörü

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr Doğrusal Ara Değer Hesabı Lagrance Polinom İnterpolasyonu

Detaylı

VERİ TABANI ve YÖNETİMİ

VERİ TABANI ve YÖNETİMİ VERİ TABANI ve YÖNETİMİ Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü 2 BÖLÜM -10- FONKSİYONLAR 3 Giriş Geçen haftaki derslerimizde Görünümleri (View) ve Stored Procedure (SP) leri öğrendik. Bu hafta

Detaylı

Erzurum Teknik Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Programlama Dersi Ödevi Soru

Erzurum Teknik Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Programlama Dersi Ödevi Soru Adı: Soyadı: Numara: Bölümü: Erzurum Teknik Üniversitesi Mühislik Mimarlık Fakültesi Bilgisayar Programlama Dersi Ödevi 15.11.2015 Soru 1 2 3 4...... Toplam Puanlar Soru-1: Yandaki kısımda verilen terimlerin

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

PROGRAMLAMA ve YAZILIM. Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK

PROGRAMLAMA ve YAZILIM. Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK PROGRAMLAMA ve YAZILIM Sayısal Analiz Yrd.Doç.Dr. Zekeriya PARLAK PROGRAMLAMA ve YAZILIM Paraçütçünü düşme hızını belirlemek için geliştirdiğimiz model diferansiyel bir denklem şeklini almıştı dv dt =

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim.

ÇARPANLAR ve KATLAR ASAL SAYILAR. Örnek-2 : 17 ve 27 sayılarının asal sayı olup olmadığını inceleyelim. SINIF ÇARPANLAR ve KATLAR www.tayfunolcum.com 8.1.1.1: Verilen pozitif tam sayıların çarpanlarını bulur; pozitif tam sayıları üslü ifade ya da üslü ifadelerin çarpımı seklinde yazar. Çarpan ( bölen ) Her

Detaylı

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

BM202 SAYISAL ÇÖZÜMLEME

BM202 SAYISAL ÇÖZÜMLEME BM202 SAYISAL ÇÖZÜMLEME DOÇ.DR. CİHAN KARAKUZU DERS-2 1 Ders2-Sayısal Hesaplamalarda Gerek Duyulabilecek Matlab İşlemleri MATLAB, çok paradigmalı (bir şeyin nasıl üretileceği konusunda örnek, model) sayısal

Detaylı

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir.

Diferensiyel denklemler sürekli sistemlerin hareketlerinin ifade edilmesinde kullanılan denklemlerdir. .. Diferensiyel Denklemler y f (x) de F ( x, y, y, y,...) 0 veya y f ( x, y, y,...) x ve y değişkenlerinin kendileri ve türevlerini içinde bulunduran denklemlerdir. (Türevler; "Bağımlı değişkenin değişiminin

Detaylı

EMM3208 Optimizasyon Teknikleri

EMM3208 Optimizasyon Teknikleri 2017-2018 Bahar Yarıyılı Balıkesir Üniversitesi Endüstri Mühendisliği Bölümü EMM3208 Optimizasyon Teknikleri (GAMS Kurulumu ve Temel Özellikleri, GAMS ile Modellemeye Giriş) 3 Yrd. Doç. Dr. İbrahim Küçükkoç

Detaylı