ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ POZİTİF ÇEKİRDEKLİ İNTEGRAL OPERATÖR AİLESİNİN L (, UZAYINDA YAKINSAKLIK HIZI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ POZİTİF ÇEKİRDEKLİ İNTEGRAL OPERATÖR AİLESİNİN L (, UZAYINDA YAKINSAKLIK HIZI"

Transkript

1 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ POZİTİF ÇEKİRDEKLİ İNTEGRAL OPERATÖR AİLESİNİN L (, ) UZAYINDA YAKINSAKLIK HIZI Sevilay KIRCI SERENBAY MATEMATİK ANABİLİM DALI ANKARA 28 Her hakkı saklıdır

2 ÖZET Doktora Tezi POZİTİF ÇEKİRDEKLİ İNTEGRAL OPERATÖR AİLESİNİN (, ) L UZAYINDA YAKINSAKLIK HIZI Sevilay KIRCI SERENBAY Ankara Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı Danışman: Doç. Dr. Ertan İBİKLİ Bu tez dört bölümden oluşmaktadır. Birinci bölüm, giriş kısmına ayrılmıştır. İkinci bölümde ileri bölümlerde gerekli olan kavramlar ve tanımlar verilmiştir. Üçüncü bölümde, (, ) L uzayına ait yeni bir süreklilik modülü tanımlanmış ve bazı özellikleri isatlanmıştır. Daha sonra ozitif çekirdekli integral oeratör ailesinin (, ) L uzayında yakınsaklığı ve bu yakınsamanın hızı hesalanmıştır. Dördüncü bölümde, üçüncü bölümde elde edilen sonuçlara örnekler verilmiştir. Eylül 28, 8 sayfa Anahtar Kelimeler : İntegral oeratör ailesi, Konvolüsyon, Süreklilik modülü, Yakınsaklık, Yakınsaklık Hızı i

3 ABSTRACT Ph.D. Thesis THE ORDER OF CONVERGENCE OF FAMILY OF INTEGRAL OPERATORS WITH POSITIVE KERNEL IN THE SPACE L (, ) Sevilay KIRCI SERENBAY Ankara University Graduate School of Natural And Alied Sciences Deartment of Mathematics Suervisor: Assoc. Prof. Dr. Ertan İBİKLİ This thesis consists of four chaters. The first chater is devoted to the introduction. The second chater contains some concets, definitions and theorems which are needed in the further chaters. In the third chater, the new modulus of continuity is given and some roerties of this new modulus of continuity are roven. Then the convergence and the order of the conv- ergence of family of integral oerators with ositive kernel in the sace (, ) L are investigated. In the fourth chater, for results roved in the third chater some examles are given. Setember 28, 8 ages Key Words : Family of integral oerator, Convolution, Modulus of continuity, Convergence, Rate of convergence. ii

4 TEŞEKKÜR Bu çalışmanın oluşturulmasında beni yönlendiren, araştırmalarımın her aşamasında bilgi, öneri ve yardımlarını esirgemeyerek ilerlememe katkıda bulunan danışman hocam sayın Doç. Dr. Ertan İBİKLİ ye, çalışmalarım süresince maddi manevi desteklerini esirgemeyen sevgili annem Neriman KIRCI ya, çalışmalarım süresince birçok fedakarlıklar göstererek beni destekleyen eşim Gökhan SERENBAY ya en derin duygularla teşekkür ederim. Sevilay KIRCI SERENBAY Ankara, Eylül 28 iii

5 İÇİNDEKİLER ÖZET... i ABSTRACT... ii TEŞEKKÜR... iii SİMGELER DİZİNİ... iv. GİRİŞ TANIMLAR ve TEMEL KAVRAMLAR Tanımlar İntegral Oeratör Ailesi ve Yaklaşımlar Teorisi İNTEGRAL OPERATÖR AİLESİNİN YAKINSAKLIĞI VE YAKINSAKLIK HIZI (, ) L Uzayında yakınsaklık (, ) L Uzayında yakınsaklık Yakınsaklık hızı ÖRNEKLER... 6 KAYNAKLAR ÖZGEÇMİŞ... 8

6 . GİRİŞ Yaklaşımlar teorisinin temel roblemlerinden birisi, verilen f fonksiyonunu kendisinden daha iyi özelliklere sahi olan fonksiyonlar dizisinin veya ailesinin herhangi bir anlamda (normda veya noktada) limiti biçiminde gösterebilmektir. Burada iyi özellikleri olan fonksiyonlardan kasıt olinomlar, tam fonksiyonlar, sonsuz kez türevlenebilen fonksiyonlar veya bir aralığın dışında özdeş olaraksıfır olan fonksiyonlardır. Yaklaşım roblemi üzerinde ilk çalışmalar yaan araştırmacı K.Weierstrass olmuştur. Weierstrass, kaalı ve sınırlı aralık üzerinde tanımlı sürekli bir fonksiyonun, olinomlar dizisinin limiti biçiminde gösterebilmesine ait teoremler isatlamıştır. Yani; f C [a, b] = lim n P n (x) =f (x) olacak biçimde (P n ) olinom dizisinin var olduğunu isatlamıştır. Ayrıca, f fonksiyonunun 2π eriyotlu sürekli bir fonksiyon olması halinde; f C [ π, π] = lim n T n (x) =f (x) olacak biçimde (T n ) trigonometrik olinom dizisinin varlığını da göstermiştir. Bu teoremler daha sonraki yıllarda Yaklaşımlar Teorisi adı verilen büyük bir matematik dalının temel teoremlerini oluşturmuştur. Yaklaşım roblemi integrallenebilen fonksiyonlar sınıfında düşünülürse, Lebesque ölçülebilir fonksiyonların Lebesque anlamında integralleri, Lebesque ölçüsü sıfırolan kümenin dışında tanımlandığından, bu sınıftan alınan bir fonksiyona yakınsayan dizileri veya aileleri bir integral dizisi veya ailesi biçiminde almanın dahauygun olduğu görülmektedir.

7 İntegrallenebilen fonksiyonlar sınıfı üzerinde dönüşüm yaan lineer bir integral oeratör; L (f; x) = f (t) K (t, x) dt, x D (.) D olarak verilebilir. Burada K (t, x) fonksiyonuna integral oeratörün çekirdeği adı verilir. (.) denkleminde, Λ indis kümesi olmak üzere λ Λ iken K λ (t, x) çekirdeği ele alınırsa, L λ (f; x) = f (t) K λ (t, x) dt, x D (.2) D biçiminde integral oeratör ailesi elde edilir. (.2) denkleminde özel olarak K λ (t, x) çekirdeği ozitif seçilirse (.2) denklemine ozitif çekirdekli integral oeratör ailesi denir. Eğer K λ (t, x) çekirdeği hem ozitif hem de H λ (t x) olacak şekilde seçilirse, L λ (f; x) = f (t) H λ (t x) dt, x D (.3) D biçiminde ozitif çekirdekli konvolüsyon tili integral oeratör ailesi elde edilir. Matematiğin birçok dalında ozitif çekirdekli konvolüsyon tili integral oeratörler önemli yer tutmaktadırlar. Bu integrallere örnek vermek gerekirse, Yaklaşımlar teorisinde Jackson ve Valle-Pussin integrallerini, Harmonik fonksiyonlar teorisinde Poisson ve Abel-Poisson integrallerini, Fourier serileri teorisinde Fejer integralini ve Diferensiyel denklemler teorisinde Gauss-Weierstrass integralini gösterebiliriz. Bazı önemli roblemlerin çözümlerinde karşımıza çıkan ozitif çekirdekli konvolüsyon tili integral oeratör aileleri aşağıdaki gibidir. ) Tanım bölgesinin D =( π, π), indis kümesinin Λ =(, ) ve limit noktasının λ =, H λ (t x) fonksiyonunun H λ (t x) = λ 2 2λ cos (t x)+λ 2 2

8 şeklinde seçilmesi ile elde edilen integral (Poisson integrali), birim dairedeki Dirichlet robleminin çözümünü vermektedir. 2) Tanım bölgesi D =(, ), indis kümesi Λ =(, ) ve λ limit noktasını, H λ (t x) fonksiyonu H λ (t x) = λ π λ 2 +(t x) 2 olarak seçilirse Abel-Poisson integrali elde edilir. Bu integral üst yarı düzlemdeki Dirichlet robleminin çözümüdür. 3) Tanım bölgesinin D =(, ), indis kümesinin Λ =(, ) ve λ limit noktasını, H λ (t x) fonksiyonunun H λ (t x) = λ π e λ2 (t x) 2 olarak seçilmesi sonucunda elde edilen Gauss-Weierstrass integrali, tüm reel eksende ısı denkeminin çözümüdür. 4) Tanım bölgesinin D =( π, π), indis kümesinin Λ = N ve H λ (t x) fonksiyonunun H λ (t x) = sin n (t x) π 2nπ sin (t x) 2 seçilmesiyle elde edilen Fejer integrali, f fonksiyonunun Fourier serisinin kısmi tolamlarının aritmetik ortalamasını vermektedir. 2 Yukarıdaki örneklerden de görüleceği gibi, matematiğin ve fiziğin çeşitli alanlarında karşılaşılan roblemlerin çözümleri, ozitif çekirdekli konvolüsyon tili integrallerin ve yaklaşımlar teorisinin yardımıyla da elde edilebilir. İlerleyen zamanlarda, eğer bir yaklaşım varsa, bu yaklaşımın hızı nedir roblemi 3

9 ortaya atılmıştır. Normlu bir uzay L (D) olsun. lim L λ f f L(D) = λ λ olacak şekilde normda yakınsaklık varsa, bu durumda λ λ iken (α λ )=L λ (f) f L(D) ifadesi bir sıfır ailesidir. Yani; lim λ λ α λ = dır. Eğer α λ lim β λ = ve lim = λ λ λ λ β λ veya α λ lim β λ = ve lim = A, A reel bir sabit λ λ λ λ β λ olacak şekilde bir (β λ ) sıfır ailesi bulunabilirse, bu durumda (α λ )=L λ f f L = o (β λ ) veya (α λ )=L λ f f L = O (β λ ) olur. Buradan L λ (f) oeratör ailesinin f fonksiyonuna yakınsama hızının (β λ ) sıfır ailesinin sıfıra yakınsama hızından daha hızlı olduğunu görmekteyiz. Bu ise yaklaşımlar teorisinin ikinci temel robleminin çözümü için yukarıdaki koşulları sağlayan uygun bir (β λ ) sıfır ailesinin bulunması gerektiğini gösterir. Böyle bir sıfır ailesi ise 4

10 genellikle süreklilik modülü kullanılarak bulunabilir. İntegrallenebilen fonksiyonlar sınıfı üzerinde, ozitif çekirdekli konvolusyon tili integral oeratörler yardımıyla yaklaşım roblemini incelemiş bir çok matematikçi vardır. Bu konuda çalışan matematikçiler, Weierstrass, Gauss, Picard, Lebesque, Natanson, Butzer vs. sayabiliriz. Yaklaşım roblemleri incelenirken arzu edilen yaklaşım L λ f f eyaklaşımını elde etmekdir. Fakat çoğu zamanbumümkünolmamaktadır, bu noktada araştırmacılar farklı yaklaşımlarıda incelemişlerdir. Bu yaklaşımlardan bir taneside yaklaşımın asimtotik değerinin bulunması roblemidir. Yaklaşımın asimtotik değeri incelenirken bazı araştırmacılar, f fonksiyonunun x noktasında n. mertebeden türevlenebilir olmasının yaklaşımın asimtotik değerine nasıl bir etkisi olduğunu araştırmışlar ve bu araştırmalarda L λ (f,x ) oeratör ailesinin f (x ) fonksiyonuna yaklaşımın asimtotikdeğerinin m C k f (k) (x ) k= biçiminde karışık birtolamın olduğunu gösterilebilmişlerdir. Daha yalın birasim- totik değer bulmak için Gadjiev et al. çalışmalarında yeni bir singüler integral oeratör ailesi olarak, L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt ailesini tanımlamışlar ve bu ailenin f (x ) fonksiyonuna x noktasında yaklaşımının asimtotik değerini, f fonksiyonunun x noktasında sağ ve sol türevlerinin farkı şeklinde olduğunu göstermişlerdir. 5

11 Bu Tez çalışmasında ise L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt ozitif çekirdekli singüler integral oeratör ailesinin L (, ) uzayında f fonksiyonuna L normunda yaklaşımı ve bu yaklaşımın hızı araştırılmıştır daha sonrada P k,λ, α k,λ ve K λ (t) nin özel halleri için bu yakınsamalar örneklendirilmiştir. 6

12 2. TANIMLAR ve TEMEL KAVRAMLAR Bu bölümde çalışmamıza yardımcı olacak temel tanımlar, teoremler ve yaklaşımlar teorisi ile ilgili genel bilgiler verilecektir. 2. Tanımlar Tanım 2... R de ölçülebilir ve f (x) dx <, < koşulunu sağlayan fonksiyonlar uzayına L (, ) uzayı denir. Bu uzayda norm; < olduğunda ve = olduğunda f = f (x) f = ess su f (x) x şeklinde tanımlanır (Stein and Weiss 97). Tanım << ve nin eşlenik sayısı q olsun. Yani + q =olsun. f L (, ) ve g L q (, ) olmak üzere, f (x) g (x) dx f (x) q g (x) veya f g L (, ) f L (, ) g L q (, ) 7

13 eşitsizliğine Hölder Eşitsizlĭgi denir (Stein and Weiss 97). Tanım < olmak üzere f,g L (, ) için f (x)+g(x) f (x) + g (x) veya f + g L (, ) f L (, ) + g L (, ) eşitsizliğine Minkowsky Eşitsizlĭgi denir (Stein and Weiss 97). Tanım f iki değişkenli ölçülebilir bir fonksiyon olsun. < f (x, y) dy f (x, y) dy eşitsizliğine Genelleştirilmiş Minkowsky Eşitsizlĭgi veya Minkowsky İntegral Eşitsizliği denir. Yani, dir. (Stein and Weiss 97). f L (, ) f L(, ) Tanım 2..5.Normlu bir X uzayında bir (f n ) dizisi verilmiş olsun.eğer lim f n f n + X = olacak şekilde bir f X elemanı varsa, (f n ) dizisi kuvvetli yakınsak tır denirve bu durumda lim n f n = f 8

14 olarak yazılır. f fonksiyonuna (f n ) dizisinin kuvvetli limiti adı verilir (Natanson 964). Tanım (f n ) L (, ) olsun. lim f n (x) g (x) dx = n f (x) g (x) dx eşitliği ölçülebilir ve sınırlı olan tüm g fonksiyonları için sağlanıyorsa f n dizisi f L (, ) fonksiyonuna zayıf yakınsaktır denir (Natanson 964). Tanım (f n ) L (, ) olsun. lim f n (x) g (x) dx = n f (x) g (x) dx eşitliği g L q (, ) fonksiyonu için sağlanıyorsa f n dizisi f L (, ) fonksiyonuna zayıf yakınsaktır denir. Burada q, nin eşleniğidir (Natanson 964). 2.2 İntegral Oeratör Ailesi ve Yaklaşımlar Teorisi R, reel sayılar kümesini göstermek üzere, D R üzerinde tanımlı Lebesque anlamında integrallenebilen fonksiyonların uzayını gözönüne alalım. Bu uzay üzerinde dönüşüm yaan lineer bir integral oeratör, L (f; x) = f (t) K (t, x) dt, x D (2.2.) D biçiminde verilebilir. Burada K (t, x),d D üzerinde tanımlı, özellikleri önceden bilinen bir fonksiyondur. Özel olarak (2..) formülünde K (t, x) hem ozitif hem de K (t, x) =H (t x) 9

15 olarak alınırsa, L (f; x) = D f (t) H (t x) dt biçimindeki oeratöre Konvolusyon Tii İntegral Oeratör denir. Bu ti oeratörlerin en önemli özelliği, H çekirdek fonksiyonunun sahi olduğu iyi özelliklerin, konvolüsyon işlemi sonunda elde edilen fonksiyona kalıtsal olarak geçmesidir. Eğer bu çekirdek ozitif ve sürekli ise mevcut olduğu intagral de ozitif ve sürekli olur (Butzer and Nessel 97). Tanım 2.2..Λ bir indis kümesi ve λ, Λ nın biryığılma noktası olsun. λ Λ, L λ (f,x) = f (t) K λ (t x) dt, x D D biçimindeki integral, Λ arametresine bağlı Konvolüsyon Tii İntegral Oeratör Ailesi olarak adlandırılır. Tanım Λ bir indis kümesi ve λ, Λ nın biryığılma noktası olsun. {K λ (t)} ailesine aşağıdaki şartları sağladığı taktirde Çekirdek denir. a) λ Λ için K λ (t) M< olacak şekilde bir M sayısı vardır. b) lim λ λ D K λ (t) dt = (Butzer and Nessel 97).

16 Tanım {K λ (t)} çekirdeği, belirli bir t noktasında lim K λ (t )= λ λ özelliğini sağladığı taktirde, {K λ (t)} çekirdeği Singüler Çekirdek ve L λ (f,x) = D f (t) K λ (t x) dt, x D integral oeratör ailesi ise Λ arametresine bağlı Konvolüsyon Tii Singüler İntegral Oeratör Ailesi adını alır (Butzer and Nessel 97). Tanım {K λ (t)} singüler çekirdeği, belirlenmiş her > sayısı için lim λ λ su K λ (t) t = şartını sağladığı taktirde Yaklaşım Birim (Aroximate Identitiy) olarak adlandırılır (Butzer and Nessel 97). L λ (f,x) = f (t) K λ (x t) dt (2.2.2) biçimindeki ozitif çekirdekli konvolüsyon tii integral oeratör ailesi matematiğin bir çok dalında önemli yer tutmaktadır. Bir çok diferensiyel denklem için sınırdeğer robleminin çözümü bu ti integrallerle verilmektedir. Bunlara birkaç örnek verelim. Düzlemde Lalace oeratörü, = 2 x + 2 şeklinde tanımlanır ve u =denklemine de Lalace denklemi 2 y2 denir. Örnek (Abel-Poisson integrali ve çekirdeği) Üst yarı düzlemde Lalace denklemini sağlayan ve reel eksende u (x, ) = f (x) fonksiyonuna eşit olan u fonksiyo-

17 nunu bulma roblemi üst yarı düzlem için Dirichlet roblemidir ve bu roblemin çözümü, f ε (x) = ε π f (t) ε 2 +(t x) 2 dt, ε > şeklinde bir integralle verilir. Gerçekten türev almakla 2 f ε (x) x f ε (x) ε 2 = denkleminin sağlandığı görülebilir. Şimdi bunu gösterelim: f ε (x) x = ε π f (t) 2(t x) ε2 +(t x) 2 2 dt 2 f ε (x) x 2 = ε π = ε π f (t) 2 ε 2 +(t x) ε 2 +(t x) 2 2(t x)2(t x) ε2 +(t x) 2 4 dt f (t) 8(t x)2 2 ε 2 +(t x) 2 ε2 +(t x) 2 3 dt f ε (x) ε = π f (t) ε 2 +(t x) 2 dt + ε π f (t) 2ε ε2 +(t x) 2 2 dt 2 f ε (x) ε 2 = π + ε π = 4ε π f (t) 2ε ε2 +(t x) 2 2 dt + π f (t) 2ε ε2 +(t x) 2 2 dt f (t) 2 ε 2 +(t x) ε2 ε 2 +(t x) 2 2ε ε2 +(t x) 2 4 dt f (t) dt ε2 +(t x) ε π f (t) 8ε3 2 ε 2 +(t x) 2 ε2 +(t x) 2 3 dt 2

18 elde edilir. Bu ifadeleri taraf taraf tolarsak 2 f ε (x) x f ε (x) ε 2 = ε π 4ε π = 4ε π = f (t) 8 ε 2 +(t x) 2 4 ε 2 +(t x) 2 ε2 +(t x) 2 3 dt f (t) f (t) dt ε2 +(t x) 2 2 dt ε2 +(t x) 2 2 4ε π f (t) dt ε2 +(t x) 2 2 bulunur. f ε (x) = ε π f (t) integraline Abel-Poisson integrali, ε 2 +(t x) 2 dt, ε > A ε (x) = ε π ε 2 + x 2 ifadesine ise Abel-Poisson çekirdeği denir. A ε (x) negatif olmayan çift fonksiyondur. Örnek (Gauss-Weierstrass integrali ve çekirdeği) Tüm reel eksende ısı denklemini yani, u t = 2 u x 2 denklemini ve f verilmiş fonksiyon olmak üzere u (x, ) = f (x) başlangıç koşulunu sağlayan çözüm fonksiyonu, u (x, t) = 2 πt 3 (ζ x) 2 f (ζ) e 4t dζ

19 biçimindedir. Burada yazılırsa, u λ (x) = 2 t = λ, u(x, t) =u λ (x) λ π f (ζ) e λ2 (ζ x) 2 dζ, λ > şeklinde bir integral elde edilir. Bu integrale Gauss-Weierstrass integrali, w λ (x) = λ π e λ2 x 2 fonksiyonuna ise Gauss-Weierstrass çekirdeği adı verilir. Bu çekirdeğin de negatif olmayan çift bir fonksiyon olduğu kolayca görülür. Bir çok roblemde daha genel olan L λ (f; x) = f (t) K λ (t, x) dt (2.2.3) tiindeki integrallere rastlanabilir. (2.2.3) integrali (2.2.2) integralinin bir genellemesi olduğundan dolayı (2.2.2) integraline ait teoremler (2.2.3) için geçerli olmayabilir. Yaklaşımlar teorisinde integrallenebilen fonksiyonlara yaklaşım genelde,bazı özel noktalarda araştırılır. Şimdi de yaklaşımın araştırıldığı bu özel noktaların tanımlarını verelim. Tanım f L (, ) olmak üzere; h lim h + h f (x + t) f (x ) dt = 4

20 eşitliğinin sağlandığı x noktasına f fonksiyonunun Lebesque noktası denir (Butzer and Nessel 97). Tanım f L (, ) olmak üzere; h lim h + h [f (x + t) f (x )] dt = eşitliğinin sağlandığı x noktasına f fonksiyonunun d-noktası denir (Butzer and Nessel 97). Tanım λ Λ olmak üzere; Λ bir indis kümesi ve λ bu kümenin bir yığılma noktası olsun. lim λ λ β λ = olacak biçimdeki (β λ ) ailesine bir sıfır ailesidenir. Teorem (Luzin T eoremi) f L (a, b) ise her ε > sayısına göre, f ϕ L (a,b) < ε sağlanacak şekilde sürekli bir ϕ fonksiyonu bulunur ( Rana 997). Tanım f L (, ) olmak üzere; ω (f,) =su f (x + t) f (x) dx t ifadesine, f fonksiyonunun L süreklilik modülü denir (Butzer and Nessel 97). L süreklilik modülünün temel özellikleri aşağıdaki teoremle verilebilir. 5

21 Teorem f L (, ) olmak üzere; a) b) m N olmak üzere lim ω (f,) = ω (f,m) m ω (f,) dır. c) λ > keyfi bir reel sayı iken ω (f,λ) ( + λ) ω (f,) dır (Butzer and Nessel 97). Teorem f L (, ) fonksiyonunun, (, ) aralığının hemen hemen her noktası Lebesque noktasıdır. İsat. olsun. ϕ (x, h) = h h f (x + t) f (x) dt f L (, ) olduğundan ϕ (x, h) L (, ) dir. 6

22 ϕ (x, h) L = h h f (x + t) f (x) dt dx = h h f (x + t) f (x) dt h = h h h su t ω (f, t ) dt f (x + t) f (x) dt h ω (f,h) h dt, ( t h) = ω (f,h) dir. Yani ϕ (x, h) ω (f,h) eşitsizliği sağlanır. Teorem 2.. den lim ϕ (x, h) = h elde edilir. Bu da hemen hemen her x için, olduğunu gösterir. lim ϕ (x, h) = h ϕ (x, h) fonksiyonunun tanımından (, ) aralığının hemen hemen her noktasının Lebesque noktası olduğu görülür. f L (, ) fonksiyonunun tüm Lebesque noktaları kümesi L (f), tüm d noktalarının 7

23 kümesi de D (f) ile gösterilirse bu durumda, h x+h x (f (t) f (x)) dt h x+h x f (t) f (x) dt eşitsizliği her bir Lebesque noktasının aynı zamanda d noktası olduğunu gösterir. Yani dir. L (f) D (f) Şimdi L (, ) uzayında olan bir f fonksiyonu x (, ) noktasında sürekli olsun. Bu taktirde x noktasındaki süreklilik tanımına göre, ε > > için t x < olduğunda f (t) f (x) < ε sağlanır. h alınırsa, elde edilir. Bu ise x+h f (t) f (x) dt < ε h x x+h lim f (t) f (x) dt = h h x olduğunu gösterir. Yani, L (, ) uzayında olan f fonksiyonunun her bir süreklilik noktası aynı zamanda onun Lebesque noktasıdır. f L (, ) fonksiyonunun tüm süreklilik noktaları kümesi C (f) ile gösterilirse C (f) L (f) D (f) şeklinde bir ilişki olduğu görülür. 8

24 Tanım f L (, ) olmak üzere; lim h + h h f (x + t) f (x ) dt = eşitliğinin sağlandığı x noktasına f fonksiyonunun -Lebesquenoktası denir (Butzer and Nessel 97). Tanım f L (, ) olmak üzere; ω (f,) =su t f (x + t) f (x) ifadesine, f fonksiyonunun L - süreklilik modülü denir (Butzer and Nessel 97). Teorem f L (, ) olmak üzere; a) b) m N olmak üzere lim ω (f,) = ω (f,m) mω (f,) dır. c) λ > keyfi bir reel sayı iken ω (f,λ) ( + λ) ω (f,) dır (Butzer and Nessel 97). 9

25 Teorem f L (, ) fonksiyonunun, (, ) aralığının hemenhemen her noktası Lebesque noktasıdır İsat. ϕ (x, h) = h h f (x + t) f (x) dt olsun. ϕ (x, h) negatif olmayan bir fonksiyondur. Buradan ϕ (x, h) = h h f (x + t) f (x) dt olur. ϕ (x, h) fonksiyonunun L normu: ϕ (x, h) P = = h h h h f (x + t) f (x) dt f (x + t) f (x) dt biçimindedir. Genelleştirilmiş Minkowsky eşitsizliği kullanılırsa, ϕ (x, h) P h h f (x + t) f (x) dt eşitsizliği elde edilir. Buradan da, su th f (x + t) f (x) = ω (f,h) 2

26 olduğundan ϕ (x, h) P ω (f,h) yazılabilir. Süreklilik modülünün; lim ω (f,h) = h özelliğinden, lim ϕ (x, h) = P h elde edilir. Burada norm x değişkenine göre alındığı için, lim ϕ (x, h) = h eşitliği hemen hemen her x için sağlanır. ϕ (x, h) nın tanımından (, ) aralığının hemen hemen her noktasının f fonksiyonunun Lebesque noktası olduğu görülür. Fourier serisi için kullanılan bazı tolama yöntemlerinin incelenmesi ozitif çekirdekli integral oeratörlerle yaılmaktadır. 2π eriyotlu bir f fonksiyonunun Fourier serisinin kısmi tolamı, S n (f; x) = a n 2 + (a k cos kx + b k sin kx) dir. Burada a k ve b k Fourier katsayıları, a k = π f (t)cosktdt, k =,, 2,... 2π π ve b k = π f (t)sinktdt, k =, 2,... 2π π 2

27 olu bu ifadeleri S n (f; x) kısmi tolamında yerine yazarsak, S n (f; x) = π n π f (t) dt + f (t)(coskt cos kx +sinkt sin kx) dt 2π 2π π π = π n f (t) π 2 + cos k (t x) dt (2.2.4) elde edilir. olsun. π n 2 + cos k (t x) = n 2 + cos kα n 2 + cos kα = = = = 2sin α n cos kα 2sin α 2 sin α n 2 + 2sin α cos kα 2 2sin α 2 sin α n 2 + sin n + α 2 2sin α 2 sin k + 2 2sin α 2 α sin k 2 α dir. Bu ifade (2.2.4) de yerine yazılırsa S n (f; x) = π π π sin n + (t x) 2 f (t) dt, n =,, 2,... (t x) 2sin 2 22

28 Fejer integrali elde edilir. F n (t) = sin n 2 t 2nπ sin 2 t 2 fonksiyonuna da Fejer çekirdeği denir. Fejer çekirdeği de negatif olmayan çift bir fonksiyondur. σ n (f,x) = S (f; x)+s (f; x) S n (f; x) n olsun. Uygun düzenlemeler yaılarak Fejer integrali elde edilir. σ n (f,x) = π 2nπ π sin n f (x + t) 2 t sin 2 t 2 dt Yaklaşım hızının bulunması roblemi ile bağlantılı olarak bazen, yaklaşımın asimtotik değerinin bulunması roblemi de araştırılır. Tanım L λ integral oeratör ailesinin f fonksiyonuna x noktasında yaklaşımın asimtotikdeğeri A (x ) ise bu biçiminde gösterilir (Achieser 956). L λ (f,x ) f (x ) lim = A (x ) λ α λ Nikolsky teoremi, bir noktada birinci mertebeden f + (x ),f (x ) sağ vesoltürevleri mevcut olan fonksiyonların Fejer oeratörü ile yaklaşımın asimtotik değerini vermektedir. Şimdi bu teoremi ifade ve isat edelim. 23

29 Teorem f fonksiyonunun x noktasında sağ ve sol türevleri mevcut ise lim n σ n (f,x ) f (x ) σ n sin t 2, = f+ (x ) f (x ) dır. İsat. f fonksiyonunun x noktasındaki sağ vesoltürevleri, f (t + x ) f (x ) lim t + t = f + (x ) f (t + x ) f (x ) lim = f t (x ) t biçimindedir. ϕ (t) = f (t + x )+f (x t) f (x ) 2 ψ (t) = f (t + x ) f (x t) 2 şeklinde tanımlanmış ϕ (t) ve ψ (t) fonksiyonlarını göz önüne alalım. Buna göre f (t + x ) f (x )=ϕ (t)+ψ (t) dir. lim t ϕ (t) sin t 2 = f + (x ) f (x ) eşitliğinin sağlandığını gösterecegiz. Öncelikle t için eşitliğin sağlandığını gösterelim. lim t ϕ (t) sin t 2 ϕ (t) = lim t sin t 2 = 2 lim f (t + x ) f (x ) t. t t sin t lim f (x t) f (x ) t. t t sin t 2 24

30 = ( 2) f (x )+2f + (x ) 2 = f + (x ) f (x ) dır. Benzer şekilde t + için de eşitliğin sağlandığı aynı methotla gösterilebilir. σ n (f,x ) f (x ) = π sin 2 n (f (t + x ) f (x )) 2 t nπ π 2sin 2 dt 2 t = π ϕ (t) nπ π sin 2 n 2 t 2sin 2 dt + π ψ (t) 2 t nπ π sin 2 n 2 t 2sin 2 2 t dt dir ve ψ (t) fonksiyonu tek fonksiyon olduğundan dolayı buradaki ikinci integral sıfıra eşittir. olu σ n (f,x ) f (x )= π ϕ (t) nπ π sin 2 n 2 t 2sin 2 2 t dt = σ n (ϕ;) lim n σ n (f,x ) f (x ) σ σ n sin t n (ϕ;) = lim 2, n σ n sin t = lim 2, = f + (x ) f (x ) n ϕ (t) sin t 2 eşitliğini elde ederiz. Yaklaşımın asimtotikdeğeri incelenirken, f fonksiyonunun x noktasında n. mertebeden türevlenebilir olmasının yaklaşımın asimtotik değerine nasıl biret- kisi olduğunu bulmak için Gadjiev et al. çalışmalarında yeni bir singüler integral oeratör ailesi olarak, L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt (2.2.5) 25

31 ailesini tanımlamışlar ve bu ailenin f (x ) fonksiyonuna yaklaşımının asimtotik değerini, bu fonksiyonun türevlerinin farkı şeklinde olduğunu göstermişlerdir. Burada Λ R, Λ indis kümesi λ Λ ve λ, Λ nın yığılma noktasıdır. Ayrıca λ arametresi için P k,λ ve α k,λ reel sayılar olu k,λ M<, M, λ dan bağımsızdır. ve λ Λ için k,λ = ve su {α k,λ } = α < k,λ dır. Sabit n doğal sayısı için R n,λ η > olu burada η, λ dan bağımsızdır. Ayrıca R s,λ =, s<n (s = ) R n,λ = P k,λ α n k,λ olur. [, ) da azalmayan bir Φ (t) fonksiyonu vardır öyleki Φ (t) lim = t t n ve λ = Φ (t) K λ (t) dt < dır. K λ (t) ozitif çekirdeği çift, <t< ve tüm λ için K λ (t) dt = 26

32 dir. (2.2.5) oeratörünün anlamlı olması için f (x) fonksiyonunun her sabit t (, ) için serisi yakınsak olmalıdır. P k,λ f (x + α k,λ t) Yukarıdaki bilgiler ışığında f fonksiyonunun bir x noktasında n. mertebeden türevlenebilir olması halinde L λ (f,x ) oeratör ailesinin f (x ) fonksiyonuna yaklaşımının asimtotikdeğerini gösteren teorem Gadjiev et al. tarafından aşağıdaki şekilde verilmiştir. Teorem ) Ölçülebilir f fonksiyonu x noktası komşuluğunda (n ). mertebeden türevlere sahi ve yine x noktasında sağdan ve soldan f (n) + (x ) ve f (n) (x ) n. türevlere sahi olsun ayrıca f (x) ϕ (x), <x< eşitsizliğini sağlayan ϕ (x) <, <x< bir ϕ fonksiyonu mevcut olsun. 2) > ve λ, µ (α t) Φ (t) K λ (t) dt = O (λ) 27

33 ki burada ise dır. L λ (f,x ) f (x ) lim = λ R n,λ λ ϕ (x + y) µ (t) = su < <x< ϕ (x) y t f (n) + (x ) f (n) (x ) n! f (n) + (x )+f (n) n! (x ), n tek, n çift İsat. Öncelikle n indisinin tek olduğu durumu ele alalım. n indisinin çift olması durumuda benzer şeklinde isatlanır. L λ (f,x ) f (x ) farkını ele alalım. L λ (f,x ) = = P k,λ f (x + α k,λ t) K λ (t) dt + P k,λ f (x + α k,λ t) K λ (t) dt P k,λ f (x + α k,λ t) K λ (t) dt t yerine t alınırsa K λ (t) çift fonksiyon olduğundan K λ (t) =K λ ( t), L λ (f,x )= P k,λ (f (x + α k,λ t)+f (x α k,λ t)) K λ (t) dt olu K λ (t) dt ==2 K λ (t) dt 28

34 olduğundan L λ (f,x ) f (x )= P k,λ f (x + α k,λ t) +f (x α k,λ t) 2f (x ) K λ (t) dt B λ (t) = P k,λ (f (x + α k,λ t)+f (x α k,λ t) 2f (x )) f fonksiyonunun her sabit t (, ) için serisi yakınsaktır. Gerçekten, P k,λ f (x + α k,λ t) P k,λ f (x + α k,λ t) = ϕ (x) P k,λ f (x + α k,λt) ϕ (x + α k,λ t) ϕ (x + α k,λ t) ϕ (x) Mϕ (x) µ (α t) µ (t) = ϕ (x + y) su < <x< ϕ (x), y = α k,λ t y t µ (α t) = ϕ (x + α k,λ t) su < <x< ϕ (x) y t su {α k,λ } = α k,λ f fonksiyonu, x noktası komşuluğunda (n ). türeve sahi olduğundan t = için f (x ) fonksiyonunun Taylor seri açılımı; f (x + α k,λ t) = f (x )+f (x ) α k,λ t f (n ) (x ) α n k,λ (n )! tn + f (n) + (x )+B (α k,λ t) α n n! k,λt n f (x α k,λ t) = f (x ) f (x ) α k,λ t f (n ) (x ) α n k,λ (n )! tn 29

35 f (n) (x )+B 2 (α k,λ t) n! α n k,λt n taraf tarafa tolarsak, f (x + α k,λ t)+f (x α k,λ t) = 2f (x ) 2f (x )+ α 2 2! k,λt f (n) + (x ) f (n) (x ) α n n! k,λt n + B (α k,λ t) B 2 (α k,λ t) α n n! k,λt n = B λ (t) = P k,λ (f (x + α k,λ t)+f (x α k,λ t) 2f (x )) P k,λ 2f (x ) α 2 2! k,λt f (n) B (α k,λ t) B 2 (α k,λ t) +P k,λ α n n! k,λt n + (x ) f (n) (x ) α n n! k,λt n R n,λ tanımından s<n, R s,λ =dır. Bu yüzden 2f (x ) P k,λ α 2 2! k,λt 2 = olu B λ (t) = f (n) + (x ) f (n) (x ) R n,λ t n + γ n! λ (t) t n olarak yazabiliriz. olu t için γ λ (t) = n! P k,λ α n k,λ (B (α k,λ t) B 2 (α k,λ t)), t γ λ (t) 3

36 olur. σ λ (t) fonksiyonunu aşağıdaki şekilde tanımlayalım, σ λ (t) = B λ (t) Φ (t) R f (n) + (x ) f (n) (x ) n,λ n! ki burada σ λ (t) = B λ (t) Φ (t) ϕ (x ) Φ (t) + c P k,λ f (x + α k,λ t) ϕ (x + α k,λ t) ϕ (x + α k,λ t) ϕ (x ) f (x α k,λ t) ϕ (x α k,λ t) ϕ (x α k,λ t) ϕ (x ) P k,λ (2µ (α k,λ t)+2)+c ϕ (x ) Φ (t) +2 f (x ) ϕ (x ) c =(α ) n f (n) + (x ) f (n) (x ) M n! R n,λ = P k,λ α n k,λ α M µ (t) fonksiyonu tanımı gereği birden daha küçük olamaz ve [, ) da azalmayandır. Bundan dolayı σ λ (t) 4ϕ (x ) Φ (t) µ (α t) M + c + c olu lim t + σ λ (t) = = lim t + γ λ (t) ε > için öyle bir > sayısı vardır ki, σ λ (t) < ε, t<, λ t> için σ λ (t) 4ϕ (x ) Φ () µ (α t) M + c cµ (α t) 3

37 olu, burada c, t den ve λ dan bağımsız bir sabittir. L λ (f,x ) f (x ) = B λ (t) K λ (t) dt = = = B λ (t) Φ (t) Φ (t) K λ (t) dt B λ (t) Φ (t) R f (n) + (x ) f (n) (x ) n,λ n! +R n,λ f (n) + (x ) f (n) (x ) n! σ λ (t) Φ (t) K λ (t) dt Φ (t) K λ (t) dt = +R n,λ f (n) + (x ) f (n) (x ) n! Φ (t) K λ (t) dt f (n) + (x ) f (n) (x ) σ λ (t) Φ (t) K λ (t) dt +R n,λ n! I (λ) λ I (λ) σ λ (t) Φ (t) K λ (t) dt + σ λ (t) Φ (t) K λ (t) dt < ε Φ (t) K λ (t) dt + c µ (α t) Φ (t) K λ (t) dt = ε λ + o ( λ ) ise I (λ) = o ( λ ) f (n) + (x ) f (n) (x ) ε + ε L λ (f,x ) f (x ) λ R n,λ + R n,λ n! R n,λ 32

38 L λ (f,x ) f (x ) f (n) + (x ) f (n) (x ) λ R n,λ n! + ε + ε R n,λ ise L λ (f,x ) f (x ) lim = f (n) + (x ) f (n) (x ) λ λ R n,λ n! isat tamamlanır. 33

39 3. İNTEGRAL OPERATÖR AİLESİNİN YAKINSAKLIĞI VE YAKINSAKLIK HIZI Bu bölümde L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt (3.) oeratörünün yakınsaklığı önce L (, ) uzayında daha sonra da L (, ) ( << ) uzayında araştırılacaktır. (3.) de Λ R, Λ indis kümesi λ Λ ve λ, Λ nın yığılma noktasıdır. Ayrıca λ arametresi için P k,λ ve α k,λ reel sayılar olu k,λ M<, M, λ dan bağımsızdır. ve λ Λ için k,λ = ve su {α k,λ } = α < k,λ dır. 3. L (, ) Uzayında Yakınsaklık f L (, ) için araştıralım. k,λ f (x + α k,λ t) serisi ile tanımlanan fonksiyonun varlığını f (x) < ϕ (x), ϕ L eşitsizliğini sağlayan bir ϕ fonksiyonu mevcut olsun. Gerçekten, k,λ f (x + α k,λ t) k,λ f (x + α k,λ t) k,λ f (x + α k,λ t) ϕ (x + α k,λ t) ϕ (x + α k,λ t) ϕ (x) ϕ (x) 34

40 ϕ (x) k,λ f (x + α k,λ t) ϕ (x + α k,λ t) Mϕ (x) µ (α t) ϕ (x + α k,λ t) ϕ (x) olu k,λ f (x + α k,λ t) serisi her bir t R için yakınsaktır. Burada dır. Ayrıca f L (, ) için ϕ (x + y) µ (t) = su < <x< ϕ (x) y t k,λ f (x + α k,λ t) dx Mϕ (x) µ (α t) dx Mµ(α t) ϕ (x) dx = Mµ(α t) ϕ L olduğundan k,λ f (x + α k,λ t) fonksiyonu da L (, ) uzayına aittir. Önceki çalışmalarda kullanılan süreklilik modülleri, örneğin ω (f,) =su f (x + t) f (x) dx t süreklilik modülü L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt integral oeratör ailesi yardımıyla yakınsaklık hesalamak için çok da kullanışlı değildir. Çünkü bu oeratörde integralin altında bir seri olu ikisinin yer değiştirmesi bazı koşullara bağlıdır. Bu nedenle amacımıza yönelik yeni bir süreklilik modülünü 35

41 aşağıdaki gibi tanımlayalım. Tanım 3... ω L (f,) = su α k,λ t k,λ [f (x + α k,λ t) f (x)] dx fonksiyonu L (, ) de bir süreklilik modülü tanımlar. ω L (f,) fonksiyonunun ozitif ve ya göre monoton artan bir fonksiyon olduğu açıktır. Bu süreklilik modülünün bazı temel özelliklerini bir teorem olarak verelim. Teorem 3... a) b) m N olmak üzere lim ω L (f,) = ω L (f,m) m ω L (f,) dır. c) λ > keyfi bir reel sayı iken ω L (f,λ) ( + λ) ω L (f,) dır. İsat. 36

42 a) k,λ f (x + α k,λ t) fonksiyonu L (, ) uzayına ait olduğundan ε > sayısına karşılık, a k,λ f (x + α k,λ t) dx < ε 4, a k,λ f (x + α k,λ t) dx < ε 4 (3..) eşitsizliklerini sağlayacak bir a reel sayısı vardır. Ayrıca her > için (3..) den a k,λ f (x + α k,λ t) dx < ε 4, a+ k,λ f (x + α k,λ t) dx < ε 4 eşitsizliklerini yazabiliriz. Ayrıca, f fonksiyonu L (, ) uzayına ait olduğundan ε > sayısına karşılık, a k,λ f (x) dx < ε 4, a k,λ f (x) dx < ε 4 eşitsizliklerini sağlayacak bir a reel sayısı vardır ve her > için a k,λ f (x) dx < ε 4, a+ k,λ f (x) dx < ε 4 dir. Diğer yandan a k,λ (f (x + α k,λ t) f (x)) dx + su α k,λ t + su a α k,λ t a+ a+ k,λ (f (x + α k,λ t) f (x)) dx k,λ (f (x + α k,λ t) f (x)) dx k,λ (f (x + α k,λ t) f (x)) dx 37

43 olu su α k,λ t k,λ (f (x + α k,λ t) f (x)) dx su a+ α k,λ t a + su α k,λ t + su k,λ (f (x + α k,λ t) f (x)) dx a α k,λ t a+ su a+ α k,λ t a k,λ (f (x + α k,λ t) f (x)) dx k,λ (f (x + α k,λ t) f (x)) dx k,λ (f (x + α k,λ t) f (x)) dx + ε eşitsizliğini yazabiliriz. Böylece, su a+ α k,λ t a k,λ (f (x + α k,λ t) f (x)) dx < ε (3..2) olduğunu gösterebilirsek isat tamamlanmış olur. Luzin teoreminden, keyfi bir a sayısı için [ a 2,a +2] aralığında f Ψ L < ε olacak şekilde sürekli bir Ψ fonksiyonunun var olduğu bilinmektedir. (3..2) ifadesindeki integral ele alınırsa a+ a k,λ (f (x + α k,λ t) f (x)) dx 38

44 = a+ a a+ a + + a+ k,λ f (x + α k,λ t)+ψ (x + α k,λ t) Ψ (x + α k,λ t)+ψ (x) dx Ψ (x) f (x) k,λ f (x + α k,λ t) Ψ (x + α k,λ t) dx a a+ a k,λ Ψ (x + α k,λ t) Ψ (x) dx k,λ f (x) Ψ (x) dx = I (t)+i 2 (t)+i 3 (t) biçiminde üç integralin tolamına ayrılabilir. Bu integralleri teker teker inceleyelim. Öncelikle I (t) integralini ele alalım, I (t) = a+ a k,λ f (x + α k,λ t) Ψ (x + α k,λ t) dx olu α k,λ t α t için her iki yanın α k,λ t ye göre suremumu alınırsa su I (t) su α k,λ t = a+ α k,λ t α t a a+ a a+2 a 2 k,λ M k,λ f (x + α k,λ t) Ψ (x + α k,λ t) dx k,λ f (x + α t) Ψ (x + α t) dx a+2 a 2 k,λ f (x) Ψ (x) dx a+2 a 2 f (x) Ψ (x) dx f (x) Ψ (x) dx 39

45 elde edilir. Bu eşitsizlikte Luzin teoremi kullanırsa su I (t) εm α k,λ t elde edilmiş olunur.böylece için limite geçilirse elde edilir. lim su α k,λ t I (t) = Benzer yollar taki edilerek I 3 için de lim su α k,λ t I 3 (t) = dır. I 2 (t) nin isatı için Ψ fonksiyonunun sürekliliğini ele alalım. I 2 (t) = a+ a k,λ Ψ (x + α k,λ t) Ψ (x) dx εm (2a +2) eşitsizliğinde için limite geçilirse elde edilir. Sonuç olarak su a+ α k,λ t a lim I 2 (t) = k,λ (f (x + α k,λ t) f (x)) dx < ε dır. Böylece isat tamamlanmış olur. 4

46 b) ω L (f,) süreklilik modülünün tanımından dolayı, ω L (f,m) = su α k,λ t m k,λ [f (x + α k,λ t) f (x)] dx (3..3) dir. Yani burada suremum, [ m,m] aralığında alınmaktadır. (3..3) de t = my alınırsa ω L (f,m) = su α k,λ t m = su α k,λ y k,λ [f (x + α k,λ t) f (x)] dx k,λ (f(x + mα k,λ y) f(x +(m ) α k,λ y) +f(x +(m ) α k,λ y) f(x +(m 2) α k,λ y) f(x + α k,λ y) f(x)) dx olur ve buradan ω L (f,m) su α k,λ y s= m k,λ [f (x + sα k,λ y) f (x +(s ) α k,λ y)] dx eşitsizliğini yazabiliriz. Bu eşitsizlikte x+(s ) α k,λ y = z denirse ve sonra yeniden z, x ile y, t ile değiştirilirse ω L (f,m) su α k,λ y s= = mω L (f,) m k,λ [f (x + α k,λ t) f (x)] dx elde edilir. c) [ λ ] ile λ sayısının tam kısmı gösterilsin. Bu durumda λ < [ λ ]+ 4

47 dir ve ω L (f,) fonksiyonu monoton artan olduğundan ω L (f,λ) ω L (f,([ λ ]+)) dır. [ λ ]+bir tam sayı olduğundan b) şıkkından ω L (f,λ) ω L (f,([ λ ]+)) ([ λ ]+)ω L (f,) (λ +)ω L (f,) elde edilir. Şimdi, L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt ozitif çekirdekli integral oeratör ailesinin L (, ) uzayındaki f fonksiyonuna yakınsaklığını araştıralım. Teorem f (x) < ϕ (x), ϕ L (, ) eşitsizliğini sağlayan her f L (, ) fonksiyonu ve > için lim λ µ (α t) K λ (t) dt =, lim λ K λ (t) dt = 42

48 ve K λ (t) negatif olmayan, K λ (t) dt = koşulunu sağlayan çift fonksiyon ise L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt integral oeratörü λ için L λ f f L dır. İsat. Öncelikle L λ (f,x) f (x) farkını ele alalım. K λ (t) dt =olmasından dolayı f (x) K λ (t) dt = f (x) olur. Ohalde L λ (f,x) f (x) = k,λ [f (x + α k,λ t) f (x)] K λ (t) dt dir. L λ (f,x) f (x) dx k,λ (f (x + α k,λ t) f (x)) K λ (t) dt dx k,λ (f (x + α k,λ t) f (x)) K λ (t) dx dt k,λ (f (x + α k,λ t) f (x)) dx K λ (t) dt k,λ (f (x + α k,λ t) f (x)) dx K λ (t) dt 43

49 + + k,λ (f (x + α k,λ t) f (x)) dx K λ (t) dt k,λ (f (x + α k,λ t) f (x)) dx K λ (t) dt = I (t)+i 2 (t)+i 3 (t) biçiminde yazılabilir. İlk olarak I 2 (t) integralini ele alalım. I 2 (t) = k,λ (f (x + α k,λ t) f (x)) dx K λ (t) dt su α k,λ t k,λ (f (x + α k,λ t) f (x)) dx K λ (t) dt ω L (f,) K λ (t) dt = ω L (f,) K λ (t) dt ω L (f,) K λ (t) dt = ω L (f,) I 2 (t) ω L (f,) eşitsizliği elde edilir. O halde her iki tarafın önce λ için daha sonrada için limiti alınırsa lim λ I 2 (t) = 44

50 olur. Şimdi I 3 (t) integralini ele alalım. I 3 (t) = k,λ (f (x + α k,λ t) f (x)) dx K λ (t) dt k,λ f (x + α k,λ t) dx + f (x) K λ (t) dt f(x+α k,λ t) ϕ(x+α k,λ t) k,λ ϕ (x) ϕ(x+α k,λ t) ϕ(x) dx K λ (t) dt + f (x) dx k,λ f(x+α k,λt) ϕ(x+α k,λ t) + ϕ(x+α k,λ t) ϕ (x) dx ϕ(x) f (x) dx K λ (t) dt Mµ(α t) ϕ (x) dx + f (x) K λ (t) dt Mµ(α t) ϕ (x) dx + f (x) K λ (t) dt = M ϕ L µ (α t) K λ (t) dt + f L K λ (t) dt I 3 (t) M ϕ L µ (α t) K λ (t) dt + f L K λ (t) dt eşitsizliğinin her iki tarafının λ için limiti alınırsa lim λ I 3 (t) = 45

51 elde edilir. Benzer yöntemler kullanılarak I (t) içinde eşitliği elde edilir. Böylece lim I (t) = λ λ için L λ f f L olu isat tamamlanır. 3.2 L (, ) ( << ) Uzayında Yakınsaklık f L (, ) için araştıralım. k,λ f (x + α k,λ t) serisi ile tanımlanan fonksiyonun varlığını f (x) < ϕ (x), ϕ L eşitsizliğini sağlayan bir ϕ fonksiyonu mevcut olsun. Gerçekten, olu k,λ f (x + α k,λ t) ϕ (x) f (x + α k,λ t) k,λ ϕ (x + α k,λ t) ϕ (x) k,λ µ (α t) = ϕ (x) µ (α t) k,λ ϕ (x) µ (α t) M ϕ (x + α k,λ t) ϕ (x) k,λ f (x + α k,λ t) serisi her bir t R için yakınsaktır. Burada ϕ (x + y) µ (t) = su < <x< ϕ (x) y t 46

52 dır. Ayrıca f L (, ) için k,λ f (x + α k,λ t) dx Mϕ (x) µ (α t) du Mµ(α t) ϕ (x) dx = Mµ(α t) ϕ L sonucuna ulaşırız. aittir. Böylece k,λ f (x + α k,λ t) fonksiyonu L (, ) uzayına << için L (, ) uzayında L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt integral oeratör ailesi yardımıyla yakınsaklık hesalayabilmek için yeni bir süreklilik modülünü aşağıdaki gibi tanımlayalım. Tanım <<, ω L (f,) = su α k,λ t k,λ [f (x + α k,λ t) f (x)] fonksiyonu L (, ) de bir süreklilik modülü tanımlar. ω L (f,) fonksiyonunun ozitif ve ya göre monoton artan bir fonksiyon olduğu açıktır. Bu süreklilik modülünün bazı temel özelliklerini bir teorem olarak verelim. 47

53 Teorem a) b) m N olmak üzere lim ω L (f,) = ω L (f,m) m ω L (f,) dır. c) λ > keyfi bir reel sayı iken ω L (f,λ) ( + λ) ω L (f,) dır. İsat. a) k,λ f (x + α k,λ t) fonksiyonu L (, ) ye ait olduğundan k,λ f (x + α k,λ t) L (, ) olu, ε > na karşılık > için a k,λ f (x + α k,λ t) + a+ k,λ f (x + α k,λ t) eşitsizliğini sağlayacak sekilde keyfi bir a reel sayısı vardır. < ε 2 (3.2.) k,λ [f (x + α k,λ t) f (x)] 48

54 = + a a+ a + a+ k,λ [f (x + α k,λ t) f (x)] k,λ [f (x + α k,λ t) f (x)] k,λ [f (x + α k,λ t) f (x)] dx dx olu işlemlerimizi > için yatığımız için < olacaktır. O halde = r için <r<, ( a + b + c ) r a r + b r + c r özelliğinden ve yukarıdaki üç integralin her birinin ozitif ve sonlu olmasından dolayı a + + k,λ [f (x + α k,λ t) f (x)] a+ k,λ [f (x + α k,λ t) f (x)] a a+ k,λ [f (x + α k,λ t) f (x)] k,λ [f (x + α k,λ t) f (x)] eşitsizliği elde edilir. Buradan α k,λ t ler üzerinden suremum alırsak ω L (f,) = su α k,λ t k,λ [f (x + α k,λ t) f (x)] 49

55 su α k,λ t + su α k,λ t + su α k,λ t a a+ k,λ [f (x + α k,λ t) f (x)] a a+ k,λ [f (x + α k,λ t) f (x)] k,λ [f (x + α k,λ t) f (x)] = I (t)+i 2 (t)+i 3 (t) sonucuna ulaşılır. I (t) ve I 3 (t) integrallerinde (3.2.) ifadesini kullanırsak I (t)+i 3 (t) < ε 2 dır. Buradan ω L (f,) = su α k,λ t < ε 2 + I 2 (t) k,λ [f (x + α k,λ t) f (x)] olu, şimdi I 2 (t) integralini ele alalım. I 2 (t) integralinin sıfıra yaklaştığını gösterebilmek için Luzin teoremini kullanacağız. Luzin teoremine göre a keyfi bir reel sayı ve > olmak üzere [ a 2,a+2] aralığında öyle bir sürekli Φ fonksiyonu vardır ki f Φ L < ε 5

56 dır. Aynı zamanda k,λ =olduğundan a+2 a 2 k,λ [f (x) Φ (x)] < ε eşitsizliği sağlanır. I 2 (t) integralini I 2 (t) = su α k,λ t su α k,λ t a+ a a+ a k,λ f (x + α k,λt)+φ (x + α k,λ t) Φ (x + α k,λ t)+φ (x) Φ (x) f (x) k,λ (f (x + α k,λ t) Φ (x + α k,λ t)) + k,λ (Φ (x + α k,λ t) Φ (x)) + k,λ (f (x) Φ (x)) dx olacak biçimde üç arçaya ayıralım = su α k,λ t su α k,λ t a+ a a+ a olur. Bu integralleri tek tek inceleyelim. ( I 2 + I 22 + I 23 ) 2 I I I 23 I 2 = k,λ (f (x + α k,λ t) Φ (x + α k,λ t)) 5

57 2 su 2 a+ a a+ α k,λ t a a+ I 2 P dx = 2 k,λ (f (x + α k,λ t) Φ (x + α k,λ t)) dx a a+ I 2 P dx = 2 su k,λ f (x + α k,λt) dx α k,λ t a Φ (x + α k,λ t) a+2 2 k,λ (f (x) Φ (x)) dx 2 < 2 ε a 2 a+2 a 2 f (x) Φ (x) dx olu benzer yollar taki edillerek I 23 içinde 2 a+ a I 23 P dx < 2 ε sonuca ulaşırız. Şimdi I 22 için de benzer işlemleri uygulayalım. 2 2 a+ a I 22 P dx = a+ a a+ a k,λ (ϕ (x + α k,λ t) ϕ (x)) k,λ ε 2 2 ε (2a +2) dx dx eşitsizliği elde edilir. Böylece I 2 (t) su α k,λ t a+ a ( I 2 + I 22 + I 23 ) 52

58 su 2 + ε ε (2a +2) α k,λ t olu için limit alını gerekli düzenlemeler yaılırsa olur. Böylece isat tamamlanır. lim I 2 (t) < ε 2 b) ω L (f,) süreklilik modülünün tanımından dolayı ω L (f,m) = su α k,λ t m k,λ [f (x + α k,λ t) f (x)] (3.2.2) dir. Yani burada suremum, [ m,m] aralığında alınmaktadır. (3.2.2) de t = my alınırsa görülür ki ω L (f,m) = su α k,λ t m = su α k,λ y k,λ [f (x + α k,λ t) f (x)] k,λ (f (x + mα k,λ y) f (x +(m ) α k,λ y) +f (x +(m ) α k,λ y) f (x +(m 2) α k,λ y) f (x + α k,λ y) f (x)) dx dir. Yani ω L (f,m) su α k,λ y m k,λ s= f (x + sα k,λ y) f (x +(s ) α k,λ y) 53

59 ve burada x +(s ) α k,λ y = z denirse ve sonra yeniden z, x ile y, t ile değiştirilirse ω L (f,m) su α k,λ y = mω L (f,) m k,λ [f (x + α k,λ t) f (x)] s= elde edilir. c) [ λ ] ile λ sayısının tam kısmı gösterilsin. Bu durumda λ < [ λ ]+ dir ve ω L (f,) fonksiyonu monoton artan olduğundan ω L (f,λ) ω L (f,([ λ ]+)) dır. [ λ ]+bir tam sayı olduğundan b) şıkkından ω L (f,λ) ω L (f,([ λ ]+)) ([ λ ]+)ω L (f,) (λ +)ω L (f,) elde edilir. Şimdi, L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt ozitif çekirdekli integral oeratör ailesinin L (, ) uzayındaki f fonksiyonuna 54

60 yakınsaklığını araştıralım. Teorem f (x) < ϕ (x), ϕ L (, ) eşitsizliğini sağlayan her f L (, ) fonksiyonu için lim λ µ (α t) K λ (t) dt =, lim λ K λ (t) dt = ve K λ (t) negatif olmayan, K λ (t) dt = koşulunu sağlayan çift fonksiyon ise integral oeratörü için L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt λ, L λ f f L dır. İsat. Öncelikle L λ (f,x) f (x) farkını ele alalım. L λ (f,x) f (x) = = k,λ [f (x + α k,λ t) f (x)] K λ (t) dt k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] K λ (t) dt 55

61 eşitliğinin her iki tarafında L normuna geçersek L λ f f L k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] K λ (t) dt olu, Genelleştirilmiş Minkowskyeşitsizliğinden L λ f f L k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] K λ (t) dt sonucunu elde ederiz. k,λ f (x + α k,λ t) serisinin yakınsak olmasından dolayı aşağıdaki dağılma işlemini kolaylıkla yaabiliriz. k,λ f (x + α k,λ t) + k,λ f (x α k,λ t) +2 f (x) a b 2c diyelim, << olduğundan (a + b +2c) 2 ((a + b) +2 c ) 2 (2 (a + b )+2 c ) = 2 2 (a + b + c ) 56

62 dır. a, b ve c değerleri yerlerine yazılırsa 2 2 k,λ f (x + α k,λ t) + k,λ f (x + α k,λ t) + f (x) elde edilir. Şimdi (3.2.3) integralinde keyfi bir ozitif alı, dışdaki integrali [, ] ve [, ) aralıkları üzerinde iki integralin tolamı biçiminde yazarsak, L λ f f L + k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] K λ (t) dt K λ (t) dt olu buradan I (t) = k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] K λ (t) dt ve I 2 (t) = k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] K λ (t) dt eşitliklerini elde ederiz. I (t) = k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] I K λ (t) dt 57

63 I = = k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] k,λ [f (x + α k,λ t) f (x)] + k,λ [f (x α k,λ t) f (x)] 2 k,λ [f (x + α k,λ t) f (x)] + k,λ [f (x α k,λ t) f (x)] eşitsizliğini I (t) de yerine yazarsak, I (t) 2 k,λ [f (x + α k,λ t) f (x)] dx + k,λ [f (x α k,λ t) f (x)] Kλ (t) dt = 2 k,λ [f (x + α k,λ t) f (x)] dx + k,λ [f (x α k,λ t) f (x)] K λ (t) dt Minkowsky eşitsizliğinden k,λ [f (x + α k,λ t) f (x)] su α k,λ t k,λ [f (x α k,λ t) f (x)] K λ (t) dt k,λ [f (x + α k,λ t) f (x)] K λ (t) dt 58

64 + su α k,λ t k,λ [f (x α k,λ t) f (x)] K λ (t) dt 2ω L (f,) K λ (t) dt K λ (t) dt = olmasından dolayı I (t) 2ω L (f,) eşitsizliği elde edilir. Bu eşitsizliğin önce, λ için sol tarafının limiti lim I (t) 2ω L (f,) λ daha sonra da sağ tarafın için limiti alınırsa lim I (t) lim 2ω L (f,) λ olu olduğundan lim ω L (f,) = lim λ I (t) = dır. Şimdi I 2 (t) integralini ele alalım, I 2 (t) = k,λ [f (x + α k,λ t)+f (x α k,λ t) 2f (x)] K λ (t) dt 59

65 k,λ f (x + α k,λ t) + k,λ f (x α k,λ t) + f (x) k,λ f (x+α k,λ t) dx K λ (t) dt + f K λ (t) dt eşitsizliğini elde ederiz. I 2 = k,λ f (x+α k,λ t) olsun. I 2 integralini inceleyelim. I k,λ (f (x + α k,λ t)+f (x α k,λ t)) k,λ f (x + α k,λ t) dx k,λ f (x α k,λ t) k,λ f (x + α k,λ t) k,λ f (x + α k,λ t) ϕ (x + α k,λ t) k,λ f (x α k,λ t) ϕ (x α k,λ t) k,λ µ (α t) ϕ (x) dx + k,λ f (x α k,λ t) dx ϕ (x + α k,λ t) ϕ (x) ϕ (x α k,λ t) ϕ (x) dx ϕ (x) ϕ (x) dx dx 6

66 2 2+ µ (α t) k,λ ϕ (x) 2 2+ µ (α t) ϕ L dx elde edilen bu eşitsizliği I 2 (t) integralinde yerine yazarsak, I 2 (t) µ (α t) ϕ L +2 2 f L K λ (t) dt ϕ L µ (α t) K λ (t) dt f L K λ (t) dt eşitsizliği bulunur. lim λ µ (α t) K λ (t) dt = olmasından dolayı her iki tarafın λ için limiti alınırsa, dır. lim λ I 2 (t) = Elde edilen sonuçları (3.2.4) de yerine yazarsak teorem isatlanmış olur. 3.3 Yakınsaklık Hızı Bukesimdedeyaklaşımlar teorisinin diğer önemli bir roblemi olan, L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt ozitif çekirdekli integral oeratör ailesinin L (, ) uzayında f fonksiyonuna 6

67 L normunda yaklaşımın hızı incelenmiştir. (α λ )=L λ f f L ifadesi bir sıfır ailesidir. Yani; lim λ α λ = dır. Eğer lim β α λ λ = ve lim = A, A reel sabit λ λ β λ olacak şekilde bir (β λ ) sıfır ailesi bulunabilirse, bu durumda (α λ )=L λ f f L = O (β λ ) olur. Buradan; L λ (f)oeratör ailesinin f fonksiyonuna yakınsama hızının, (β λ ) sıfır ailesinin sıfıra yakınsama hızına denk olduğunu söyleyebiliriz. Bu ise yaklaşımlar teorisinin ikinci temel robleminin çözümü için, yukarıdaki koşulları sağlayan uygun bir (β λ ) sıfır ailesinin bulunması gerektiğini gösterir. Böyle bir sıfır ailesini elde edebilmek için f L (, ), ( < ) fonksiyonunun > için ω L (f,) = su α k,λ t k,λ [f (x + α k,λ t) f (x)] olan L (, ) süreklilik modülünü ele alalım. Bu süreklilik modülünü kullanarak yakınsaklık hızını aşağıdaki teoremle ifade edebiliriz. 62

68 Teorem f (x) < ϕ (x), ϕ L (, ) eşitsizliğini sağlayan her f L (, ) ( < ) fonksiyonu için K λ (t) negatif olmayan, K λ (t) dt = koşulunu sağlayan çift fonksiyon ve λ = tk λ (t) dt olmak üzere λ için λ olsun. integral oeratörü için L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt L λ f f 2M ( + α ) ω (f, λ ) dır. İsat. Öncelikle L λ (f,x) f (x) farkını ele alalım. L λ (f,x) f (x) P k,λ (f (x + α k,λ t)+f (x + α k,λ t) 2f (x)) K λ (t) dt 63

69 eşitsizliğinin her iki tarfında L normuna geçersek L λ (f) f L = L λ (f,x) f (x) P k,λ f (x + α k,λ t)+ f (x + α k,λ t) 2f (x) K λ (t) dt olu, Genelleştirilmiş Minkowskyeşitsizliğinden 2 P k,λ (f (x + α k,λ t)+f (x + α k,λ t) 2f (x)) K λ (t) P k,λ (f (x + α k,λ t)+f (x α k,λ t) 2f (x)) P k,λ f su α k,λ t x + α k,λ t f (x) P k,λ (f (x + α k,λ t) f (x)) ω L (f,α k,λ t) K λ (t) dt K λ (t) dt K λ (t) dt dt K λ (t) dt 2M 2M ω L f,α t λ K λ (t) dt λ +α t λ ω L (f, λ ) K λ (t) dt = 2Mω L (f, λ ) K λ (t) dt +2Mα ω L (f, λ ) λ tk λ (t) dt = λ = 2M ( + α ) ω L (f, λ ) 64

70 sonucuna ulaşılır. Buradan; L λ (f) f farkının sıfıra yakınsama hızının vedolayısıyla L λ (f,x) = P k,λ f (x + α k,λ t) K λ (t) dt integral oeratör ailesinin f fonksiyonuna yakınsama hızının, ω L (f, λ ) sıfır ailesinin sıfıra yakınsama hızına denk olduğunu görmekteyiz. 65

71 4. ÖRNEKLER Örnek 4.. L λ (f,x) = integral oeratör ailesinde; özel olarak,k = P k,λ =,k =2, 3,..., P k,λ f (x + α k,λ t) K λ (t) dt,k = ve α k,λ =,k =2, 3,..., alırsak, L λ (f,x) = f (x + t) K λ (t) dt integral oeratör ailesini elde ederiz. Burada da K λ (t) çekirdeğini; negatif olmayan K λ (t) dt = koşulunu sağlayan K λ (t) = λ π e λ2 t 2 Gauss-Weierstrass çekirdeği şeçersek, L λ (f,x) = f (x + t) λ π e λ2 t 2 dt Gauss-Weierstrass integralini elde ederiz. Her f L (, ) ( < ) için L λ (f) f L olduğunu gösterelim. 66

72 Öncelikle L λ (f,x) f (x) = (f (x + t) f (x)) λ π e λ2 t 2 dt olu λ π e λ2 t 2 dt =olmasından dolayı L λ (f,x) f (x) = (f (x + t)+f (x t) 2f (x)) λ π e λ2 t 2 dt eşitliğini yazabiliriz. Buradan her iki tarafın L (, ) normunu alırsak, L λ f f L (f (x + t)+f (x t) 2f (x)) λ e λ2 t 2 dt π dır. Genelleştirilmiş Minkowskyeşitsizliğinden, L λ f f L f (x + t)+f (x t) 2f (x) λ π e λ2 t 2 dt (4.) sonucunu elde ederiz. (4.) İntegralini, keyfi bir ozitif alı dışdaki integrali [, ] ve [, ) aralıkları üzerinde iki integralin tolamı biçiminde yazarsak, L λ f f L f (x + t)+f (x t) 2f (x) λ π e λ2 t 2 dt + f (x + t)+f (x t) 2f (x) λ π e λ2 t 2 dt = I (t)+i 2 (t) eşitsizliği elde edilir. İlk olarak I (t) integralini ele alalım. 67

73 I (t) = f (x + t)+f (x t) 2f (x) λ π e λ2 t 2 dt I I = f (x + t)+f (x t) 2f (x) = f (x + t) f (x)+f (x t) f (x) 2 ( f (x + t) f (x) + f (x t) f (x) ) eşitsizliğini I (t) de yerine yazarsak, I (t) 2 f (x + t) f (x) + f (x t) f (x) f (x + t) f (x) dx = 2 + f (x t) f (x) dx λ π e λ2 t 2 dt λ π e λ2 t 2 dt Minkowsky eşitsizliğinden, 2 f (x + t) f (x) λ π e λ2 t 2 dt +2 f (x t) f (x) λ π e λ2 t 2 dt 68

74 2 + su α k,λ t su α k,λ t f (x + t) f (x) f (x t) f (x) λ e λ2 t 2 dt π 2ω (f,) K λ (t) dt λ π e λ2 t 2 dt = olmasından dolayı I (t) 2ω (f,) eşitsizliği elde edilir. Buradan her iki tarafın önce λ için limiti alınırsa lim I (t) 2ω (f,) λ elde edilir. Şimdi için limit alırsak ω (f,) olduğundan dır. lim I (t) = λ Şimdi I 2 (t) integralini ele alalım, I 2 (t) 2 2 ( f (x + t) + f (x t) + 2f (x) ) λ π e λ2 t 2 dt 4 4 f λ π e λ2 t 2 dt =6f λ e λ2 t 2 dt π 69

75 eşitsizliğini elde ederiz. Burada lim λ λ e λ2 t 2 dt = π olduğundan lim λ I 2 (t) = dır. Bulduğumuz sonuçları (4.) integralinde yerine yazarsak, λ, L λ f f L olur. Örnek 4.2. L λ (f,x) = integral oeratör ailesinde; özel olarak ( ) k+ Cn,k k =, 2, 3,...,n P k,λ =,k = n +,n+2,..., P k,λ f (x + α k,λ t) K λ (t) dt k, k =, 2, 3,..., n ve α k,λ =,k = n +,n+2,..., alırsak, n L λ (f,x) = ( ) k+ Cnf k (x + kt) K λ (t) dt integral oeratör ailesini elde ederiz. Burada K λ (t) çekirdeğini Abel ossion çekirdeği seçersek, L λ (f,x) = λ π n ( ) k+ Cn k f (x + kt) +λ 2 t dt 2 dir. O halde her f L (, ) fonksiyonu için > ve λ, L λ f f L 7

76 olduğunu gösterelim. L λ f f L λ π n ( ) k+ Cn k (f (x + kt) +f (x kt) 2f (x)) +λ 2 t dt 2 olu, Genelleştirilmiş Minkowskyeşitsizliğinden sonucunu elde ederiz. L λ f f L λ π dx n ( ) k+ Cn k (f (x + kt) +f (x kt) 2f (x)) dx) +λ 2 t dt 2 n ( ) k+ Cnf k (x + kt) tolamınınsonluolmasından dolayı aşağıdaki dağılma işlemini kolaylıkla yaabiliriz. n 2 2 ( ) k+ Cnf k (x + kt) n + ( ) k+ C k nf (x kt) + f (x) elde edilir. Şimdi (4.2) integralini, keyfi bir ozitif alarak, dışdaki integrali [, ] ve [, ) aralıkları üzerinde iki integralin tolamı biçiminde yazarsak ve bu integrallere I (t) ve I 2 (t) dersek I (t) = n ( ) k+ Cn k f (x + kt) +f (x kt) 2f (x) +λ 2 t 2 dt 7

77 ve I 2 (t) = n ( ) k+ Cn k f (x + kt) +f (x kt) 2f (x) +λ 2 t 2 dt olur. olur. +λ 2 dt = olmasından dolayı t2 lim λ I (t) = I 2 (t) integralini ele alalım, I 2 (t) n ( ) k+ C k nf (x+kt) n ( ) k+ C k nf (x+kt) + f + f L +λ 2 t 2 dt +λ 2 t 2 dt 4 2c f L + f L +λ 2 t 2 dt 4 (2c +)f L +λ 2 t dt 2 eşitsizliği elde edilir. lim λ +λ 2 dt = t2 olduğundan,herikitarafın > ve λ λ için limiti alınırsa, lim I 2 (t) = λ 72

78 dır. Elde edilen sonuçları (4.2) de yerine yazarsak λ, L λ f f L dır. Örnek 4.3. L λ (f,x) = integral oeratör ailesinde; özel olarak P k,λ = P k,λ f (x + α k,λ t) K λ (t) dt k (k +),, 2, 3,... ve α k,λ = k, k =, 2, 3,..., alırsak, L λ (f,x) = k (k +) f (x + kt) K λ (t) dt integral oeratör ailesini elde ederiz. Burada K λ (t) çekirdeğini keyfi bir yaklaşık birim seçelim. O halde f (x) < ϕ (x), ϕ L eşitsizliğini sağlayan f L (, ) fonksiyonları için > ve λ λ, L λ f f L olduğunu gösterelim. L λ f f L k (k +) f (x + kt) +f (x kt) 2f (x) K λ (t) dt 73

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu

Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri. Ders izlence Formu Ankara Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı Açık Ders Malzemeleri Ders izlence Formu Dersin Kodu ve İsmi Dersin Sorumlusu Dersin Düzeyi MAT407 REEL ANALİZ Prof. Dr. Ertan İBİKLİ ve

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A 2.2 Ölçüler SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X kuvvet kümesi veriliyor. P (X üzerinde 0 ; A (A : 1 ; A şeklinde tanımlanan dönüşümü ölçü müdür? ÇÖZÜM 1: (i Tanımdan ( 0. (ii A

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI A R, a A ve f de A da tanımlı bir fonksiyon olsun. Eğer f(x) f(a) lim x a x a limiti veya x=a+h koymakla elde edilen f(a+h) f(a) lim h 0 h Bu türev f (a), df dx limiti varsa f fonksiyonu

Detaylı

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz.

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2. Fonksiyonlarda Limit Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2.1. Değişkenin Limiti Sonsuz sayıda değer alabilen bir x değişkeninin

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir.

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir. .7. Analitik ve Harmonik Fonksiyonlar Tanım 1. f(z) nin z 0 da f (z 0 ) türevi mevcut ve z 0 ın bir D ε (z 0 ) = {z : z z 0 < ε} komşuluğundaki her noktada türevi varsa bu durumda f ye z 0 da analitiktir

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri   Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

1. Hafta Uygulama Soruları

1. Hafta Uygulama Soruları . Hafta Uygulama Soruları ) x ekseni, x = doğrusu, y = x ve y = x + eğrileri arasında kalan alan nedir? ) y = x 3 ve y = 4 x 3 parabolleri arasında kalan alan nedir? 3) y = x, x y = 4 eğrileri arasında

Detaylı

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir.

Bir değişkenin bir sabite mümkün olduğu kadar çok yaklaşması durumu ancak onun limitiyle ifade edilebilir. LİMİT VE SÜREKLİLİK A- LİMİTLER Bir top 10 metre yükseklikten bırakılmaktadır. Top yere vurduktan sonra ilk yüksekliğin 2/5 i kadar sıçramakta ve bunu her yükseliş için devam ettirmektedir. Topun sıçrayacağı

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

SORU 1: Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde. ÇÖZÜM 1: B sayılabilir bir küme olsun. Bu durumda λ (B) = 0 gerçeklenir.

SORU 1: Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde. ÇÖZÜM 1: B sayılabilir bir küme olsun. Bu durumda λ (B) = 0 gerçeklenir. 2.4 Lebesgue Dış Ölçüsü ve Lebesgue Ölçüsü SORU : Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde G R kümesinin varlığınıgösteriniz? ÇÖZÜM : B sayılabilir bir küme olsun. Bu durumda λ (B) =

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir.

14.Konu Reel sayılarının topolojisi. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 14.Konu Reel sayılarının topolojisi 1.Teorem: cismi tamdır. 1.Tanım:, verilsin. açık aralığına noktasının -komşuluğu denir. { } kümesine nın delinmiş -komşuluğu denir. 2.Tanım: ve verilsin. nın her komşuluğunda

Detaylı

Doktora Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı

Doktora Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ İKİ DEĞİŞKENLİ q-bleimann, BUTZER VE HAHN OPERATÖRLERİNİN YAKLAŞIM ÖZELLİKLERİ S. SİBEL (ÇEVİK ERSAN MATEMATİK ANABİLİM DALI ANKARA 8 Her hakkı

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve

(14) (19.43) de v yi sağlayan fonksiyona karşılık gelen u = F v fonksiyonunun ikinci türevi sürekli, R de 2π periodik ve nin her g L 2 (S için tek çözümünüm olması için gerekli ve yeterli koşulun her j için λ λ j olacak biçimde λ j ifadesini sağlayan R \ {} de bir λ j dizisinin olduğunu gösteriniz. (13) Her λ j için (19.43)

Detaylı

Yazım hatalari olabilir. Yeni sorular eklenecek. 1 Sunday 12 th January, :17

Yazım hatalari olabilir. Yeni sorular eklenecek. 1 Sunday 12 th January, :17 Prof. Dr. İsmail Kömbe Matematik Analiz III/Final çalışma soruları Sonbahar 3 SORU Lütfen çözümlerinizi basamak basamak ve net bir şekilde yaziniz. n ( n + )n3/ serisinin yakinsak olup olmadigini inceleyiniz.

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

6. Ders. Mahir Bilen Can. Mayıs 16, 2016

6. Ders. Mahir Bilen Can. Mayıs 16, 2016 6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği

Detaylı

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir.

B Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir. B Ö L Ü M 2 DOĞAL SAYILAR En basit ve temel sayılar doğal sayılardır, sayı kelimesine anlam veren saymak eylemi bu sayılarla başlamıştır. Fakat insanoğlunun var oluşundan beri kullanılan bu sayıların açık

Detaylı

Ocak Matematiksel Proje ve Projenin Matematiği. Doç.Dr. Ogün Dogru. Gazi Üniversitesi, Fen Fakültesi, Matematik Bölümü, Öğretim Üyesi

Ocak Matematiksel Proje ve Projenin Matematiği. Doç.Dr. Ogün Dogru. Gazi Üniversitesi, Fen Fakültesi, Matematik Bölümü, Öğretim Üyesi Ocak 2012 Matematiksel Proje ve Projenin Matematiği Doç.Dr. Ogün Dogru Gazi Üniversitesi, Fen Fakültesi, Matematik Bölümü, Öğretim Üyesi Proje Herkes tarafından kabul görmüş yada ispatlanmış olan bilimsel

Detaylı

Sonsuz Diziler ve Seriler

Sonsuz Diziler ve Seriler Sonsuz Diziler ve Seriler İki veya birden çok sonlu sayıdaki sayının nasıl toplanacağını herkes bilir. Peki sonsuz tane sayıyı nasıl toplarız? Bu sorunun cevabını bu bölümde vermeye çalışacağız. Diziler

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ YÜKSEK LİSANS TEZİ İnci BİRGİN Anabilim Dalı : Matematik Programı : Matematik

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ

ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ. YÜKSEK LİSANS TEZİ Hakan TEMİZ. Danışman Doç. Dr. Mustafa Kemal YILDIZ ZAMAN SKALASINDA LİNEER OLMAYAN İNTEGRAL EŞİTSİZLİKLERİ YÜKSEK LİSANS TEZİ Hakan TEMİZ Danışman Doç. Dr. Mustafa Kemal YILDIZ MATEMATİK ANABİLİM DALI Haziran, 2014 AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır.

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır. Çok Değişkenli Fonksiyonlar Tanım 1. D düzlemin bir bölgesi, f de D nin her bir (x, y) noktasına bir f(x, y) reel sayısı karşılık getiren bir fonksiyon ise f fonksiyonuna bir iki değişkenli fonksiyon adı

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I Bölüm 5 ANALOG İŞARETLERİN SPEKTRUM ANALİZİ 10 Bölüm 5. Analog İşaretlerin Spektrum Analizi 5.1 Fourier Serisi Sınırlı (t 1, t 2 ) aralığında tanımlanan f(t) fonksiyonunun sonlu Fourier serisi açılımı

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50 Modül Teori Modüller Prof. Dr. Neşet AYDIN ÇOMÜ - Matematik Bölümü [01/07] Mart 2012 Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart 2012 1 / 50 Giriş M bir toplamsal değişmeli

Detaylı

T.C. UZAYLARI VE İNTEGRAL OPERATÖRLERİ

T.C. UZAYLARI VE İNTEGRAL OPERATÖRLERİ T.C. AHİ EVRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HARMONİK ANALİZDE LEBESGUE UZAYLARI VE İNTEGRAL OPERATÖRLERİ Süleyman ÇELİK YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI KIRŞEHİR 206 T.C. AHİ EVRAN ÜNİVERSİTESİ

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

Prof.Dr.Ünal Ufuktepe

Prof.Dr.Ünal Ufuktepe İzmir Ekonomi Üniversitesi, Matematik Bölümü 21 Ocak 2012 KLASİK ANLAMDA TÜREV Fiziğin en temel işlevlerinden biri hareketi tanımlamaktır. Newton ve Leibniz hareketi tanımlama ve tahmin etme konusunda

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

2.1 Kayan Nokta aritmetiği: Nümerik Analizde Operatorler Genişletme (Kaydırma) Operatörü µ Ortalama Operatörü...

2.1 Kayan Nokta aritmetiği: Nümerik Analizde Operatorler Genişletme (Kaydırma) Operatörü µ Ortalama Operatörü... Contents GİRİŞ 5 Hata Çeşitleri 5. Kayan Nokta aritmetiği:..................................... 6. Aritmetik İşlemlerde Hata Analizi............................... 7 Nümerik Analizde Operatorler 8. İleri

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

Diverjans teoremi ise bir F vektörüne ait hacim ve yüzey İntegralleri arasındaki ilişkiyi ortaya koyar ve. biçiminde ifade edilir.

Diverjans teoremi ise bir F vektörüne ait hacim ve yüzey İntegralleri arasındaki ilişkiyi ortaya koyar ve. biçiminde ifade edilir. Maxwell denklemlerini intagral bicimlerinin elde edilmesinde Stokes ve Diverjans Teoremlerinden yararlanilir. Stokes Teoremiaşağıdaki gibi ifade edilir, bir F vektörüne ait yüzey integrali ile çizgi integrali

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

GENİŞLEMEYEN DÖNÜŞÜMLER İÇİN SABİT NOKTA YAKLAŞIM METOTLARI VE VARYASYONEL EŞİTSİZLİK PROBLEMLERİ İbrahim KARAHAN Doktora Tezi Matematik Anabilim

GENİŞLEMEYEN DÖNÜŞÜMLER İÇİN SABİT NOKTA YAKLAŞIM METOTLARI VE VARYASYONEL EŞİTSİZLİK PROBLEMLERİ İbrahim KARAHAN Doktora Tezi Matematik Anabilim GENİŞLEMEYEN DÖNÜŞÜMLER İÇİN SABİT NOKTA YAKLAŞIM METOTLARI VE VARYASYONEL EŞİTSİZLİK PROBLEMLERİ İbrahim KARAHAN Doktora Tezi Matematik Anabilim Dalı Analiz ve Fonksiyonlar Teorisi Bilim Dalı Prof. Dr.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Analiz III Ara S nav Sorular 24 Kas m 2010

Analiz III Ara S nav Sorular 24 Kas m 2010 Analiz III Ara S nav Sorular 24 Kas m 2010 1 Aşa¼g daki ifadelerin do¼gru olup olmad klar n nedenlerini aç klayarak yaz n z. (a) R n uzay n n aç k olmayan her alt kümesi kapal d r. (b) A = fx 2 [0; 1]

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

16 Ocak 2015 A A A A A A A. 3. Sınavda pergel, cetvel, hesap makinesi gibi yardımcıaraçlar ve müsvedde kağıdıkullanılmasıyasaktır.

16 Ocak 2015 A A A A A A A. 3. Sınavda pergel, cetvel, hesap makinesi gibi yardımcıaraçlar ve müsvedde kağıdıkullanılmasıyasaktır. KDENİZ ÜNİVERSİTESİ MTEMTİK BÖLÜMÜ BİTİRME ÖDEVİ FİNL SORULRININ ÇÖZÜMLERİ 16 Ocak 015 DI SOYDI :... NO :... SINV TRİHİ VE STİ : Bu sınav 40 sorudan oluşmaktadır ve sınav süresi 90 dakikadır. SINVL İLGİLİ

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

10. DİREKT ÇARPIMLAR

10. DİREKT ÇARPIMLAR 10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü

Detaylı

DÜZGÜN QUASI-LIPSCHITZIAN DÖNÜŞÜMLERİN SONSUZ AİLELERİNİN ORTAK SABİT NOKTALARINA YENİ YAKLAŞIM METOTLARI Süheyla ELMAS Doktora Tezi Matematik

DÜZGÜN QUASI-LIPSCHITZIAN DÖNÜŞÜMLERİN SONSUZ AİLELERİNİN ORTAK SABİT NOKTALARINA YENİ YAKLAŞIM METOTLARI Süheyla ELMAS Doktora Tezi Matematik DÜZGÜN QUASI-LIPSCHITZIAN DÖNÜŞÜMLERİN SONSUZ AİLELERİNİN ORTAK SABİT NOKTALARINA YENİ YAKLAŞIM METOTLARI Süheyla ELMAS Doktora Tezi Matematik Anabilim Dalı Analiz ve Fonksiyonlar Teorisi Bilim Dalı Prof.

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BAZI KÜME-DEĞERLİ FONKSİYON UZAYLARI VE BU UZAYLAR ARASINDAKİ OPERATÖRLERİN ANALİZİ ÜZERİNE Fatih TEMİZSU YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI MALATYA

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7.

Soru 1. Soru 5. Soru 2. Soru 6. Soru 3. Soru 7. İstanbul Kültür Üniversitesi Matematik -Bilgisayar Bölümü MB1001 Analiz I 6 Aralık 013. Yıliçi Sınavı Öğrenci Numarası: Adı Soyadı: - Talimatlar: Sınav süresi 90 dakikadır. İlk 30 dakika sınav salonunu

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x SOULA. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim! lim sin(t )dt sin 4 np n! i= n sin i n. q + arcsin belirli integralini hesalay n z. Cevab n z n aşamalar n belirtiniz. 3. 4

Detaylı

INVESTIGATION OF A CLASS OF NONLINEAR DIFFUSION EQUATIONS

INVESTIGATION OF A CLASS OF NONLINEAR DIFFUSION EQUATIONS BİR SINIF DOĞRUSAL OLMAYAN DİFÜZYON DENKLEMLERİNİN İNCELENMESİ INVESTIGATION OF A CLASS OF NONLINEAR DIFFUSION EQUATIONS FATMA GAMZE DÜZGÜN PROF. DR. KAMAL SOLTANOV Tez Danışmanı Hacettepe Üniversitesi

Detaylı

8.04 Kuantum Fiziği DersXIX

8.04 Kuantum Fiziği DersXIX Bu takdirde yani, 1 = a ˆ 0 de bir enerji özdurumudur, ancak 0 için enerjisi 1hω yerine 3 hω dir. 2 2 Benzer şekilde, 2 = a ˆ 1 inde bir enerji özdurumu olduğunu fakat enerjisinin 5 hω, vs. 2 söyleyebiliriz.

Detaylı

KPSS ÖABT İLKÖĞRETİM MATEMATİK. Tamamı Çözümlü SORU BANKASI. 50 soruda SORU

KPSS ÖABT İLKÖĞRETİM MATEMATİK. Tamamı Çözümlü SORU BANKASI. 50 soruda SORU KPSS ÖABT 09 İLKÖĞRETİM MATEMATİK Tamamı Çözümlü SORU BANKASI 50 soruda SORU Komisyon ÖABT İLKÖĞRETİM MATEMATİK TAMAMI ÇÖZÜMLÜ SORU BANKASI ISBN 978-605--9-6 Kitapta yer alan bölümlerin tüm sorumluluğu

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ LOKAL İNTEGRALLENEBİLİR FONKSİYON UZAYLARINDA KOROVKİN TİPİ YAKLAŞIMLAR.

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ LOKAL İNTEGRALLENEBİLİR FONKSİYON UZAYLARINDA KOROVKİN TİPİ YAKLAŞIMLAR. ANKARA ÜNİVERSİTESİ FEN İLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEİ LOKAL İNTEGRALLENEİLİR FONKSİYON UAYLARINDA KOROVKİN TİPİ YAKLAŞIMLAR Nilay ŞAHİN MATEMATİK ANAİLİM DALI ANKARA Her hakkı saklıdır ÖET Yüksek

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Grup Homomorfizmaları ve

Grup Homomorfizmaları ve Bölüm 7 Grup Homomorfizmaları ve İzomorfizmalar Bu bölümde verilen gruplar arasında grup işlemlerini koruyan fonksiyonları ele alacağız. Bu fonksiyonlar yardımıyla verilen grupların cebirsel yapılarının

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Diziler. Tanım 9.1. a i0, a i1, a i2,..., a in,... (9.2)

Diziler. Tanım 9.1. a i0, a i1, a i2,..., a in,... (9.2) 2 86 Bölüm 9 Diziler Tanım 9. a 0, a, a 2,..., a n,... (9.) biçiminde sıralanmış sayılar kümesine dizi denilir. {a n }, (a n ) n=0, {a n} n=0 gibi gösterimler kullanılır. Bu gösterimlerde, i doğal sayısına

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı