HAVA SOĞUTMALI ÇİFT KADEMELİ ABSORBSİYONLU SOĞUTMA SİSTEMİNİN ENERJİ VE EKSERJİ ANALİZİ



Benzer belgeler
ÇĠFT KADEMELĠ ABSORBSĠYONLU - BUHAR SIKIġTIRMALI KASKAD SOĞUTMA ÇEVRĠMĠNĠN TERMODĠNAMĠK ANALĠZĠ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 2 sh Mayıs 2003

Üç-kademeli Bir Soğurmalı Soğutma Siteminde Kaynatıcılara Bağlı Enerji ve Ekserji Analizi *

ABSORPSİYONLU SOĞUTMA SİSTEMLERİNDE KULLANILAN EŞANJÖRLERİN SİSTEMİN PERFORMANSINA ETKİSİ

Abs tract: Key Words: İlhami HORUZ

BUHAR SIKIŞTIRMALI-ABSORBSİYONLU ÇİFT KADEMELİ SOĞUTMA ÇEVRİMİ VE ALTERNATİF ÇEVRİMLERLE KARŞILAŞTIRILMASI

ABSORPSİYONLU SOĞUTMA SİSTEMLERİNDE SOĞUTMA SUYU DÜZENLEMESİNİN ARAŞTIRILMASI

Jeotermal Enerjili Çift Etkili Lityum Bromür - Su Akışkanlı Absorpsiyonlu Soğutma Sisteminin Ekserji Analizi

Dilek Nur ÖZEN, 2 Kemal Çağrı YAĞCIOĞLU

ABSORBSİYONLU ISI YÜKSELTİCİLERİ VE BİR ENDÜSTRİYEL UYGULAMA

YAYINIMLI SOĞURMALI SOĞUTMA SİSTEMİNİN DENEYSEL İNCELENMESİ VE SOĞUTMA VERİMİ ANALİZİ

İzmir İlindeki Elli Yataklı Bir Otel İçin Güneş Enerjisi Destekli Isıtma ve Absorbsiyonlu Soğutma Siseminin Teorik İncelenmesi

ÖZGEÇMİŞ. Osmaniye Korkut Ata Üniversitesi Makine Mühendisliği Bölümü Osmaniye/Türkiye Telefon : /3688 Faks :

AMONYAK/SU İLE ÇALIŞAN ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE ISI DEĞİŞTİRİCİLERİN PERFORMANSA ETKİSİ

BÜYÜK KAPASİTELİ SOĞUTMA SİSTEMLERİNDE KOJENERASYON KULLANIMININ DEĞERLENDİRİLMESİ

İNDİREK / DİREK EVAPORATİF SOĞUTMA SİSTEMLERİ KOMBİNASYONU

ÇİFT KADEMELİ SOĞUTMA ÇEVRİMLERİNDE ENERJİ VERİMLİLİĞİ

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

SOLAR ASSISTED ABSORPTION APPLICATIONS FOR HEATING AND COOLING

BİR OTELİN SICAK SU İHTİYACININ SUDAN SUYA ISI POMPASIYLA DESTEKLENMESİ VE SİSTEMİN TERMOEKONOMİK ANALİZİ

SOĞUTMA ÇEVRİMLERİ 1

Kaskad Soğutma Sisteminin Termodinamik Analizi ve Performans Değerlendirmesi

JEOTERMAL BÖLGE ISITMA SİSTEMLERİNDE SICAKLIK KONTROLUNUN DÖNÜŞ SICAKLIĞINA ETKİSİ

SOĞURMALI ISI YÜKSELTİCİLERİNDE AMONYAK-SU İLE LİTYUM BROMÜR-SU ERİYİKLERİNİN KARŞILAŞTIRILMASI

ÇĠFT KADEMELĠ ABSORPSĠYONLU SOĞUTMA SĠSTEMĠNĠN PERFORMANS ANALĠZĠ

VRF DEĞİŞKEN SOĞUTUCU DEBİLİ KLİMA SİSTEMLERİ

HAVALANDIRMA CĠHAZLARINDA ISI GERĠ KAZANIM VE TOPLAM ENERJĠ VERĠMLĠLĠĞĠNĠN SĠMÜLASYONU

Şekil 2.1 İki kademeli soğutma sistemine ait şematik diyagram

JEOTERMAL ENERJĠLĠ ÇĠFT ETKĠLĠ LĠTYUM BROMÜR - SU AKIġKANLI ABSORPSĠYONLU SOĞUTMA SĠSTEMĠNĠN EKSERJĠ ANALĠZĠ

HAVA SOĞUTMALI BİR SOĞUTMA GURUBUNDA SOĞUTMA KAPASİTESİ VE ETKİNLİĞİNİN DIŞ SICAKLIKLARLA DEĞİŞİMİ

JEOTERMAL DESTEKLİ ABSORBSİYONLU SOĞUTMA SİSTEMİNİN TERMODİNAMİK VE EKONOMİK ANALİZİ: SİMAV ÖRNEĞİ

Ýklimlendirme Yapýlacak Tesislerde Enerji Tasarrufu Tedbirleri

HASRET ŞAHİN ISI EKONOMİSİ

Jeotermal Kaynaklardan Güç Üretim Modelleri, Tasarım ve Performans Değerlendirmesi Üzerine Görüşler

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

Bir Kimyasal Üretim Tesisinde Absorbsiyonlu Soğutucu ile Atık Isı Geri Kazanımı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

Bir Hastanede Ameliyathane Klima Santrali Isıtma Hattının Ekserji Analizi

SICAK SU ABSORBSİYONLU SOĞUTUCU c

ISI POMPASI DENEY FÖYÜ

İklimlendirme Sistemlerinde Dış Hava Sıcaklığının Soğutucu Serpantin Kapasitesine ve Ekserji Kaybına Etkisinin Deneysel Olarak İncelenmesi

Araş. Gör. Makina Mühendisliği Gaziantep Üniversitesi

ANTALYA İLİNDEKİ BİR OTEL BİNASI İÇİN GÜNEŞ ENERJİSİ DESTEKLİ ISITMA VE ABSORBSİYONLU SOĞUTMA SİSTEMİNİN TEORİK İNCELENMESİ

TOPRAK KAYNAKLI BİR ISI POMPASININ FARKLI SOĞUTUCU AKIŞKANLAR İÇİN TERMODİNAMİK ANALİZİ

Doç. Dr. Serhan Küçüka Dokuz Eylül Üniversitesi Makina Mühendisliği Bölümü

Isıtma Sistemlerinde Kullanılan Plakalı Isı Değiştiricilerin Termodinamik Analizi

ISI DEĞİŞTİRİCİLERİN TASARIMI [1-4]

Soğutma Teknolojisi Bahar Y.Y. Prof. Dr. Ayla Soyer

The Power to Save Energy.

AYTEK COOLING SYSTEMS SU SOĞUTMALI CHILLER + TCU

SU/LİTYUM BROMİD VE ÜÇLÜ HİDROKSİT KARIŞIMLARIYLA ÇALIŞAN ABSORBSİYONLU SİSTEMLERİN PERFORMANSLARININ KARŞILAŞTIRILMASI

Havalandırma Cihazlarında Isı Geri Kazanım ve Toplam Enerji Verimliliğinin Simülasyonu

ENERJİ DEPOLAMALI LiCl-H 2 O ÇİFTİYLE ÇALIŞAN ABSORPSİYONLU SOĞUTMA SİSTEMİNİN PERFORMANS ANALİZİ

ORGANĠK RANKINE ÇEVRĠMĠ (ORC) ĠLE BĠRLĠKTE ÇALIġAN BUHAR SIKIġTIRMALI BĠR SOĞUTMA ÇEVRĠMĠNĠN EKSERJĠ ANALĠZĠ

Kurutma Tekniği. Nemli Havanın Tanımı

Doğu Çamur Accepted: October ISSN : dogucamur@gmail.com Karabuk-Turkey

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ

Nem Almalı Bir Soğutma Sisteminin Termodinamik Analizi

Dış Ortam Sıcaklığının Soğutma Durumunda Çalışan Isı Pompası Performansına Etkisinin Deneysel Olarak İncelenmesi

JEOTERMAL ENERJİ İLE HACİM SOĞUTMA

Hacettepe Ankara Sanayi Odası 1.OSB Meslek Yüksekokulu

YILDIZ TEKNİK ÜNİVERSİTESİ

EJEKTÖRLÜ TRANSKRĠTĠK CO 2 SOĞUTMA SĠSTEMĠNĠN ENERJĠ VE EKSERJĠ ANALĠZĠ

Çift buharlaştırıcılı ve ejektörlü bir soğutma sisteminin termodinamik analizi

3. Versiyon Kitapta 5. Bölüm, 7. Versiyon Kitapta 6. Bölüm, soruları

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl. Teknik Eğitim Fakültesi, Makina Eğitimi. Fen Bilimleri Enstitüsü, Makina Eğitimi A.B.

DİFÜZYONLU ABSORBSİYONLU MİNİ SOĞUTUCULARDA NANOAKIŞKAN KULLANIMININ EKSERJİ PERFORMANSINA ETKİSİ

Makale. ile ihtiyacın eşitlendiği kapasite modülasyon yöntemleri ile ilgili çeşitli çalışmalar gerçekleştirilmiştir

R1234YF SOĞUTUCU AKIŞKANININ FİZİKSEL ÖZELLİKLERİ İÇİN BASİT EŞİTLİKLER ÖZET ABSTRACT

İKLİMLENDİRME DENEYİ FÖYÜ

Diğer yandan Aquatherm kataloglarında bu konuda aşağıdaki diyagramlar bulunmaktadır.

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ LABORATUARI

Kalorifer Tesisatında Hidrolik Dengesizliğin Radyatör Debileri ve Isı Aktarımlarına Etkisi

Thermodynamic Analysis of Cooling with Vertical Type Ground Source Heat Pump: Mardin Case Study

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 4 Sayı: 3 sh Ekim 2002

CO 2 /NH 3 KASKAT SOĞUTMA SĠSTEMĠNĠN TERMODĠNAMĠK ANALĠZĠ VE PERFORMANS DEĞERLENDĠRMESĠ

BİNALARIN SOĞUTULMASINDA GÜNEŞ ENERJİSİ KAYNAKLI ABSORBSİYONLU ISI POMPASININ DENEYSEL İNCELENMESİ

SOĞUTMA SİSTEMLERİ VE ÇALIŞMA İLKELERİ (Devamı)

BUHAR SIKIġTIRMALI EJEKTÖRLÜ SOĞUTMA SĠSTEMĠNDE YOĞUġTURUCU VE BUHARLAġTIRICI BOYUTLARININ BELĠRLENMESĠ

Abs tract: Key Words: Fatih ÜNAL Derya Burcu ÖZKAN

ÇOKLU BUHARLAŞTIRICILI SOĞUTMA SİSTEMLERİNDE ENERJİ VERİMLİLİĞİNİN ARTTIRILMASI

AZEOTROPİK VE YAKIN AZEOTROPİK SOĞUTUCU AKIŞKAN KARIŞIMLARININ KARŞILAŞTIRILMASI

TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi PERFORMANCE ANALYSIS OF SINGLE FLASH GEOTHERMAL POWER PLANTS

ISI POMPASI DENEY FÖYÜ

GEMĐLERDE KULLANILAN VAKUM EVAPORATÖRLERĐNDE OPTĐMUM ISI TRANSFER ALANININ BELĐRLENMESĐ

Proses Tekniği HAFTA 8-9 GAZ-BUHAR KARIŞIMLARI VE İKLİMLENDİRME

Karadeniz Fen Bilimleri Dergisi 7(1), 41-52, Karadeniz Fen Bilimleri Dergisi The Black Sea Journal of Sciences ISSN (Online):

Enerji Verimliliğinde İklimlendirme Çözümleri

İKLİMLENDİRME SİSTEMLERİNDE DIŞ HAVA SICAKLIĞININ SOĞUTUCU SERPANTİN KAPASİTESİNE VE EKSERJİ KAYBINA ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ

Abs tract: Key Words: Abdullah YILDIZ Mustafa Ali ERSÖZ

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ

Yatay Tip Mısır Kurutma Tesisinde Enerji Ve Ekserji Analizi. 1. Fatih ÜNAL Mardin Artuklu Üniversitesi, Makine Programı, Mardin, 47100

Afyon Kocatepe Üniversitesi 7 (2) Afyon Kocatepe University FEN BİLİMLERİ DERGİSİ

ÜÇ BÜYÜK ġehġr MERKEZĠ ĠÇĠN BĠN-DATA DEĞERLERĠNĠN BELĠRLENMESĠ

ÇİFT FAZLI GÜNEŞ ENERJİSİ KAYNAKLI ISI POMPASI SİSTEMİNİN TEORİK ve DENEYSEL İNCELENMESİ

Energy and exergy analysis of an organic Rankine-Brayton combined cycle

Experimental Investigation of Performance of R134a/R152a Refrigerant Mixture in Heat Pump

: Abdulvahap Yiğit. Tel : (0224) Oda Numarası : 214

Gaz türbinli kojenerasyonla elektrik üretimi ve soğutma

Transkript:

TESKON 015 / SOĞUTMA TEKNOLOJİLERİ SEMPOZYUMU Bu bir MMO yayınıdır MMO bu yayındaki ifadelerden, fikirlerden, toplantıda çıkan sonuçlardan, teknik bilgi ve basım hatalarından sorumlu değildir. HAVA SOĞUTMALI ÇİFT KADEMELİ ABSORBSİYONLU SOĞUTMA SİSTEMİNİN ENERJİ VE EKSERJİ ANALİZİ KENAN SAKA NURETTİN YAMANKARADENİZ FARUK KAYNAKLI ÖMER KAYNAKLI ULUDAĞ ÜNĠVERSĠTESĠ MAKİNA MÜHENDİSLERİ ODASI BİLDİRİ

1137 HAVA SOĞUTMALI ÇİFT KADEMELİ ABSORBSİYONLU SOĞUTMA SİSTEMİNİN ENERJİ VE EKSERJİ ANALİZİ Kenan SAKA Nurettin YAMANKARADENİZ Faruk KAYNAKLI Ömer KAYNAKLI ÖZET Bu çalıģmada su LiBr eriyiği ile çalıģan çift kademeli seri akıģlı bir absorbsiyonlu soğutma sisteminin mevsimsel performansı incelenmiģtir. Bursa ili Ģartlarında, mevsimlere göre değiģen Bursa ya ait bağıl nem oranları, hava sıcaklıkları ve hava entalpileridir. DıĢ havaya ait yıllık ortalama bağıl nem oranları ve ortalama sıcaklık değerleri resmi kaynaklardan alınmıģtır. Atmosfere açık kısım absorber ve yoğuģturucudur. Entalpi değiģimine bağlı olarak yoğuģturucu ve absorberden gerekli ısının atılması için hava debisi ve ekserji kayıplarındaki değiģim hesaplanmıģtır. Sistem de buharlaģtırıcı tarafından soğuk su üretilirken enerji kaynağı olarak sıcak su seçilmiģtir. Yapılan analiz sonucunda en fazla ekserji kaybı Ocak ayında olmaktadır. En az ekserji kaybı ise Temmuz ayında gerçekleģmiģtir. YoğuĢturucu ve absorberi soğutmak için gerekli debi miktarı en fazla Temmuz ayında ve en az Ocak ayındadır. Anahtar Kelimeler: Absorbsiyonlu soğutma sistemi, hava Ģartları, Ekserji analizi ABSTRACT Seasonal performance of a double stage series flow absorption refrigeration cycle with water/lithium bromide as working fluid is investigated. Relative humidity, air temperature and air enthalpies are changing according to the seasons of Bursa. Annual average relative humidity of the air and the average temperature value is taken from official sources. Condenser and absorber are open to atmosphere. The necessary air flow to remove heat from the condenser and absorber and exergy destruction depending on the enthalpy changes were determined. The chilled water is produced by the evaporator and hot water is selected as the energy source of the system. Results showed that the maximum exergy loss occurs in January and the minimum exergy loss is in July. The necessary air flow to remove heat from the condenser and absorber is maximum in July and minimum in January. Keywords: Absorption Refrigeration Systems, Air Conditions, Exergy Analysis 1. GİRİŞ Absorbsiyonlu soğutma sistemleri, buhar sıkıģtırmalı soğutma sistemlerinden farklı olarak endüstriyel atık ısıyı, güneģ enerjisini ya da jeotermal enerjiyi enerji kaynağı olarak kullanabilen sistemlerdir. Bu yüzden enerji tasarrufunun ve yenilenebilir enerji kaynaklarının daha da önem kazandığı günümüzde absorbsiyonlu soğutma sistemleri üzerindeki çalıģmalarda yoğunluk kazanmıģtır. Ayrıca çevreyi koruma bilincinin kuvvetlenmesi, çevreye zararsız akıģkanlarla çalıģan absorbsiyonlu soğutma

1138 sistemlerine olan ilgiyi arttırmaktadır. Absorbsiyonlu soğutma sistemleri daha az hareketli elemanlara sahip olduklarından, buhar sıkıģtırmalı soğutma sistemlerine göre daha sessiz ve daha sorunsuz olarak çalıģmaktadırlar. Absorbsiyonlu soğutma sistemleri, sistem içerisinde gerçekleģen absorbe olayına atfen isimlendirilmiģlerdir. Bu olay, sistem içerisinde dolaģan soğutucu akıģkanın absorber adı verilen sistem elemanı içerisinde absorbe edici diğer bir akıģkan (absorbent) tarafından absorbe (soğurulma) edilmesi Ģeklinde gerçekleģir. Yaygın olarak kullanılan eriyikler, amonyak-su ( NH3 H O ) ve su-lityum bromür ( H O LiBr ) eriyikleridir. Su-lityum bromür ile çalıģan sistemlerde, su soğutucu akıģkan; lityum bromür ise absorbent görevini görmektedir. H O LiBr ile çalıģan sistemlerde suyun donma noktasına bağlı olarak sıfır derece altındaki uygulamalar yapılamaz. Sıfır altı soğutma uygulamalarında kullanılabilen NH3 H O ile çalıģan sistemlerde ise amonyak soğutucu akıģkan, su ise absorbent olarak kullanılmaktadır. Bu tür sistemlerle -10 C sıcaklığına kadar soğutma yapılabilmektedir [1]. Günümüze kadar absorbsiyonlu soğutma sistemleri ile ilgili birçok çalıģma yapılmıģtır. Genel olarak bu çalıģmaları sistemin ekonomik yapısının incelenmesi, içinde dolaģan farklı akıģkan türleri, verimlilik, ekserji analizi ve eģanjörlerin sistem üzerindeki etkileri olarak sınıflandırabiliriz. Yapılan çalıģmalara genel olarak baktığımızda, H O LiBr eriyiği kullanan absorbsiyonlu soğutma sistemlerini tek kademeli olarak ele alan araģtırmacılar vardır.(talbi ve Agnew [], Sözen[3], Tozer vd. [4]). Ayrıca çift kademeli absorbsiyonlu soğutma sistemleri üzerinde yoğunlaģan çalıģmalar da vardır. (Ravilkumar vd. [5], Kaushik ve Arora [6], Gomri ve Hakimi [7], Zhao vd. [8]). Genel olarak tercih edilen H O LiBr, NH3 H O eriyiklerine alternatif sunan çalıģmalardan bir kaçı ise Ģunlardır.(Ferreira [9], Sargent ve Beckman [10], Zhu ve Gu [11]) Bugüne kadar yapılan diğer çalıģmalardan bazılarının içerikleri ise Ģöyledir: NH3 H O ve H O LiBr eriyiklerinden farklı olarak bazı alternatif eriyikler Sun tarafından incelenmiģ ve amonyağın lityum nitrat ve sodyum tiyoksanat gibi absorbentlerle oluģturduğu eriyiklerin termodinamik analizleri yapılmıģtır [1]. Karamangil vd. ise son yıllar için kapsamlı bir literatür taraması yapmıģlar, tek kademeli bir sistem için yaygın ve alternatif eriyiklerin için termodinamik analiz sonuçlarını simülasyon programları yardımıyla ortaya koymuģlardır [13]. Misra vd. ise tek kademeli H O LiBr ile çalıģan bir absorbsiyonlu soğutma sistemini termoekonomik açıdan incelemiģler, sistemi noktasal olarak her bir noktadaki termodinamik özelliklerin yanında saat baģı birim maliyetini hesaplara dahil ederek sistem için optimum fiyat ve performans karģılaģtırmasını yapmıģlardır [14]. Arun vd. ise çift kademeli seri bağlı H O LiBr ile çalıģan bir absorbsiyonlu soğutma sistemini incelemiģler, yüksek ve düģük basınçlı sistem elemanlarının farklı çalıģma sıcaklıklarında sistem performansı üzerindeki etkilerini belirtmiģlerdir [15]. ġencan vd. H O LiBr eriyiği kullanan tek kademeli bir absorbsiyonlu soğutma sistemi için ekserji analizi yapmıģlar ve kaynatıcı sıcaklığına bağlı sistem performansını tablolarla göstermiģlerdir. YoğuĢturucu ve buharlaģtırıcıdaki ekserji kaybının absorber ve kaynatıcıya göre daha az olduğunu tespit etmiģlerdir. [16].

1139 Bu çalıģmada ise H O LiBr eriyiği ile çalıģan çift kademeli seri akıģlı iki eģanjörlü bir absorbsiyonlu soğutma sistemine ait hava soğutmalı absorber ve yoğuģturucu elemanlarının enerji ve ekserji analizi yapılmıģtır. Havanın termodinamik özelliklerinden yola çıkılarak yıl içerisinde değiģen aylara göre ortalama değerler kullanılarak sistem analizleri yapılmıģ, değiģen hava sıcaklıkları ve nem oranlarının sistemin enerji ve ekserji hesapları üzerindeki etkileri incelenmiģtir.. SİSTEMİN ÇALIŞMA PRENSİBİ Çift kademeli ve çift eģanjörlü bir absorbsiyonlu soğutma sistemi ġekil 1 de verilmiģtir. Çift kademeli bir absorbsiyonlu soğutma sistemi, buhar sıkıģtırmalı soğutma sistemlerinde yer alan yoğuģturucu ve buharlaģtırıcıya sahip olmakla birlikte artı olarak absorber, eriyik pompası, yüksek basınçlı kaynatıcı (YBK), düģük basınçlı kaynatıcı (DBK), yüksek basınçlı yoğuģturucu, iki eriyik eģanjörü, iki eriyik kısılma vanası ve iki adet eriyik kısılma vanasından oluģur [17]. Su LiBr eriyiği ile çalıģan bir sistemde soğutucu akıģkan görevini su görür. Su yoğuģturucu da ısı kaybederek doymuģ sıvı fazında ayrılır ve kısılma vanasına gelir. Kısılma vanasında buharlaģtırıcı basıncına düģen su buharlaģtırıcıda çevreden ısı çekerek doymuģ buhar fazında buharlaģtırıcıdan ayrılır ve absorbere gelir. Absorberde LiBr yönünden fakirleģen eriyik pompa vasıtasıyla YBK basıncına yükselir. Fakir eriyik bir ve iki numaralı eriyik eģanjörlerinden geçerek ısı kazanır ve YBK ya gelir. BaĢka bir ısı kaynağından ısı çeken YBK da sudan ayrılan eriyik LiBr yönünden zenginleģerek iki numaralı eriyik eģanjörüne gelir. Ġki numaralı eriyik eģanjöründe ısı kaybeden eriyik kısılma vanasında DBK basıncına kadar düģerek DBK ya gelir. DBK da YBK dan gelen kızgın su buharından enerji çeken eriyik biraz daha su kaybederek bir numaralı eriyik eģanjörüne gelir. Bir numaralı eriyik eģanjöründe biraz daha soğuyan eriyik kısılma vanasından geçerek buharlaģtırıcı basıncında absorbere gelir. DBK nın diğer çıkıģından çıkan kızgın su buharı ise yoğuģturucuya gelir. Ayrıca YBK dan gelen kızgın su buharı da kısılma vanasında geçerek yoğuģturucu basıncında yoğuģturucuya girer ve çevrim tamamlanmıģ olur.

1140 Şekil 1. Ġki kademeli seri akıģlı absorbsiyonlu soğutma sistemine ait Ģematik gösterim 3. ÇEVRİMİN BİRİNCİ KANUN ANALİZİ Absorbsiyonlu soğutma sisteminde birinci kanun analizini ifade eden denklemler kütle ve enerji dengesi üzerine kurulur. Kütle dengesi, pompa tarafından basılan ve YBK ya gelen fakir eriyiğe ait debi miktarının YBK dan çıkan zengin eriyiğe ait debi ve YBK dan çıkan su buharı miktarının toplamına eģittir. Zengin ve fakir eriyiklere ait debi ve konsantrasyon çarpımları da eģittir [18]. DolaĢım oranı zengin ve fakir eriyik konsantrasyon oranlarına bağlı olarak hesaplanır. DolaĢım oranı sistem elemanlarının ısıl yüklerini ifade eden denklemleri kapasiteden bağımsız olarak oluģturmada yardımcı olur. m f m z m HO (1) m f f 1 f X f Xz m z X z Bu çalıģmada denklemler iki dolaģım oranı kullanılarak oluģturulmuģtur [19]. 1 X f X Xz1 Xz Xz f 1 () (3) (4)

1141 AĢağıdaki denklemlerde ise dolaģım oranına bağlı olarak yoğuģturucu ve absorber için ısıl kapasiteler ifade edilmiģtir. Denklem sonuçları kapasite değerlerinin yüksek basınçlı kaynatıcı çıkıģındaki kızgın buhar debisine bölünmüģ halini ifade eder. q Y q A ( f h 1 /( f 1)) * h14 h13 ( f1 /( f 1) 1) * ( f h STK Q 1 /( f 1) 1) * h3 (( f1 * f ) /( f 1)) * h17 ( f1 1) * YBK Q B W P 1 4 (5) (6) (7) 4. EKSERJİ ANALİZİ Absorbsiyonlu sistemlerin termodinamik analizini tamamlamak için ikinci kanun analizini yapmak gerekir. Sistem içerisindeki kayıplar birinci kanun analiziyle tam olarak ifade edilemez bu yüzden ikinci kanun analizinden yararlanılır. AĢağıdaki denklemde sistemdeki herhangi bir nokta için kullanılabilirlik ve yoğuģturucu ve absorberdeki ekserji kayıpları ifade edilmiģtir [0]. ( h h0 ) T0 * ( s s0 ) EK Y m EK A m (9) *( 14 *( f1 /( f 1)) 13 1 *( f1 /( f 1) 1)) m 0 *( 0 1) (( *( f /( f 1) 1) *(( f * f )/( f 1)) *( f 1)) m *( 11 11 * 3 1 17 1 14 1 4 4 5 (10) ) (8) 5. DEĞİŞEN ATMOSFER ŞARTLARI Soğutma sistemleri dıģ ortama ısı atan sistemlerdir. Hava soğutmalı sistemlerde dıģ ortam atmosfer olmaktadır. Gerçek çalıģma Ģartlarında atmosfer Ģartları değiģkendir. Türkiye de atmosfer Ģartları mevsimlere göre değiģir. Atmosfer Ģartları için önemli parametrelerden biri sıcaklıktır. Tablo 1 de birinci satırda Bursa ili için aylara göre ortama sıcaklık değerleri verilmiģtir. Bu bilgiler 1954 013 yılları arasındaki sıcaklık değerlerine göre hesaplanmıģtır [1]. Atmosfer Ģartları için diğer önemli parametre ise bağıl nem oranıdır. Havanın sıcaklığına bağlı olarak taģıyacağı nem miktarı değiģir. Tablo 1 de ikinci satırda Bursa iline ait aylık ortalama bağıl nem oranları verilmiģtir. Bu bilgiler ayrıca binalar için ısı yalıtımı hesaplarında gerekli olduğundan resmi kaynaklarda yer almaktadır []. Üçüncü satırda ise Bursa iline ait aylara göre ortalama havanın özgül nem değerleri verilmiģtir. Havaya ait entalpi değerleri havaya ait bağıl nem oranlarına ve sıcaklığa bağlı olarak değiģir. Havaya ait entalpi değiģimi absorber ve yoğuģturucu için gerekli soğutma havasına ait debi miktarının değiģmesine ve ekserji kayıplarında değiģime neden olur. Tablo 1 de dördüncü satırda Bursa iline ait aylara göre havanın ortalama entalpi değerleri verilmiģtir. Ortalama özgül nem ve ortalama entalpi değerleri birinci ve ikinci satırda verilen değerler kullanılarak hesaplanmıģtır [3,4]. Hazırlanan simülasyonda ise havanın entalpisi sıcaklığın ve havanın özgül nemine bağlı bir denklemle tanımlanmıģtır. h hava 1.0035* T (501.3 1.8* T) (11) Denklemde gösterimi havanın özgül nemini kgnem/kghava olarak tanımlamaktadır.

114 Tablo 1. Bursa iline ait aylara göre havanın ortalama termodinamik değerleri Bursa Ocak ġubat Mart Nisan Mayıs Haziran Temmuz Ağustos Eylül Ekim Kasım Aralık Ortalama Sıcaklık 5,3 6, 8,4 1,9 17,6, 4,6 4, 0,1 15,3 10,7 7,4 (ºC) Ortalama Bağıl 71 70 69 68 64 60 58 61 65 71 73 73 Nem (%) Ortalama Özgül 3,9 4,1 4,7 6,3 8 10 11, 11,5 9,5 7,7 5,8 4,6 nem (g/kg) Ortalama Entalpi kj/kg 15,1 16,5 0,3 8,8 38 47,8 53,3 53,7 44,4 34,8 5,4 19,1 6. ANALİZ SONUÇLARI VE TARTIŞMA Simülasyonda 100 kw kapasitede soğutma yapabilen çift kademeli bir sistemin analizi yapılmıģtır. Programlama dili olarak Delphi seçilmiģtir. Analiz için bazı bilgiler kullanıcı tarafından girilmesi gerekmektedir. Tablo de sisteme ait çalıģma ve çevre Ģartları verilmiģtir. Tablo. Sistemdeki Elemanların ÇalıĢma ġartları Sistem Elemanı ÇalıĢma ġartları T YBK (ºC) 135 Isı Kaynağı ÇıkıĢ Sıcaklığı (ºC) 145 Isı Kaynağı GiriĢ Sıcaklığı (ºC) 150 T DBK (ºC) 80 T Y (ºC) 35 Soğutma Havası ÇıkıĢ Sıcaklığı T (ºC) Y - 5 T Soğutma Havası GiriĢ Sıcaklığı (ºC) atm T B (ºC) 5 Soğutulan Su ÇıkıĢ Sıcaklığı (ºC) 10 Soğutulan Su GiriĢ Sıcaklığı (ºC) 15 T A (ºC) 35 Soğutma Havası ÇıkıĢ Sıcaklığı T (ºC) A - 5 T Soğutma Havası GiriĢ Sıcaklığı (ºC) atm Pompa verimliliği (%) 95 Isı EĢanjörü I (%) 70 Isı EĢanjörü II (%) 70 Q B (kw) 100

1143 Tablo 3. Sistemin Noktasal Olarak Termodinamik Özellikleri Noktalar Maddesel Durum T ( C) X (%) m (kg/s) h (kj/kg) s (kj/kgk) 1 Su 35 0 0.04 146.643 0.503 Su 5 0 0.04 146.643 0.565 3 Su Buharı 5 0 0.04 508.50 9.048 4 Fakir Eriyik 35 55.13 0.501 84.15 0.9 5 Fakir Eriyik 35. 55.13 0.501 84.166 0.31 6 Fakir Eriyik 61.86 55.13 0.501 139.554 0.391 7 Fakir Eriyik 109.16 55.13 0.501 37.465 0.6644 8 Zengin Eriyik I 135 57.75 0.479 94.363 0.7679 9 Zengin Eriyik I 83.83 57.75 0.479 191.998 0.4986 10 Zengin Eriyik I 83.83 57.75 0.479 191.998 0.4986 11 Su Buharı 135 0 0.0 719.81 7.7441 1 Su 87.57 0 0.0 366.963 1.1661 13 Su 35 0 0.0 366.96 1.07 14 Su Buharı 80 0 0.01 644.756 8.608 15 Zengin Eriyik II 80 60.311 0.459 194.35 0.4560 16 Zengin Eriyik II 48.53 60.311 0.459 133.84 0.789 17 Zengin Eriyik II 48.53 60.311 0.459 133.84 0.789 18 Sıcak Su 150 0 3.78 631.91 1.8406 19 Sıcak Su 145 0 3.78 610.386 1.7896 0 Hava 5.3 0.48 15.111 5.6489 1 Hava 30 0.48 40.073 5.734 Soğuk Su 15 0 4.77 6.83 0.07 3 Soğuk Su 10 0 4.77 41.868 0.1478 4 Hava 5.3 0 5.05 15.111 5.6489 5 Hava 30 0 5.05 40.073 5.734 Tablo 3 de sisteme ait noktasal termodinamik özellikler verilmiģtir ve üzerinde sisteme ait noktasal termodinamik değerler okunmaktadır. Bununla birlikte sistemin çevreyle olan iliģkisi de tablo üzerinde görülmektedir ve sistemin çevreyle olan iliģkisini gösteren değerler Ocak ayına aittir. Tablo 4 te ise Tablo 3 ü oluģturan Ģartlar için sistemin diğer elemanlarına ait ısıl kapasiteler ve COP değerleri gösterilmiģtir. Sistemde en fazla ısıl kapasite absorbere aittir. Absorberi buharlaģtırıcı, YBK ve yoğuģturucu takip etmektedir.

1144 Tablo 4. Sistem Elemanlarının Isıl Kapasiteleri Sistem Elemanları Isıl Yük (kw) Yüksek Basınçlı Kaynatıcı (Q YBK ) 81.37 DüĢük Basınçlı Kaynatıcı (Q DBK ) 51.45 YoğuĢturucu (Q Y ) 56.1 BuharlaĢtırıcı (Q B ) 100 Absorber (Q A ) 15.44 Pompa (Q P ) 0.005 Eriyik EĢanjörü I (Q EE 1 ) 7.75 Eriyik EĢanjörü II (Q EE ) 49.05 COP 1.9 Tablo 5 te sistem elemanlarına ait ekserji kayıpları verilmiģtir. Tablo 5 i oluģturan değerler diğer tablolarla aynıdır. Sistemde en fazla ekserji kaybı absorberde yaģanmaktadır. Absorberi buharlaģtırıcı ve yüksek basınçlı kaynatıcı takip etmektedir. Tablo 5. Sistem Elemanlarının Ekserji Kayıpları Sistem Elemanları Sembol Ekserji Kaybı (kw) Yüksek Basınçlı Kaynatıcı EK YBK 3.35 DüĢük Basınçlı Kaynatıcı EK DBK 1.079 YoğuĢturucu EK Y.865 BuharlaĢtırıcı EK B 3.565 Absorber EK A 9.014 Pompa EK P 0.003 Eriyik EĢanjörü I EK EE 1 1.034 Eriyik EĢanjörü II EK EE.07 Toplam Ekserji Kaybı Σ EK 3.385

1145 Şekil. Aylara göre yoğuģturucuyu soğutmak için gerekli hava debisi ġekil de yoğuģturucunun sağlıklı bir Ģekilde ısı atabilmesi için gerekli olan hava debisi gösterilmiģtir. ġekilde görüldüğü gibi yoğuģturucuya ait 33 ºC çalıģma sıcaklığı için en fazla hava debisi Temmuz ayında 15,953 kg/s olarak en az ise Ocak ayında,41 kg/s olarak çıkmıģtır. YoğuĢturucudan çıkan havanın sıcaklık değerinin sabit olduğu göz önüne alındığında kıģ aylarında daha serin havayla yapılan soğutmada hava ihtiyacı az olmakta yazın ise yoğuģturucuya giren soğutucu hava daha sıcak olduğu için daha fazla havaya ihtiyaç olmaktadır. Havaya ait ortalama sıcaklık değerleri göz önüne alındığında Temmuz ayında ortalama sıcaklık değerinin en yüksek ve Ocak ayında ise en düģük seviye olması grafik davranıģının sebebi olarak gösterilebilir. Grafikte dikkati çeken diğer bir nokta yoğuģturucuya ait daha yüksek çalıģma sıcaklıklarında soğutma için gerekli hava debisinin azalmasıdır. YoğuĢturucu için daha yüksek çalıģma Ģartlarında yoğuģturucu kapasitesi artmaktadır fakat Ģekilde görüldüğü gibi gerekli hava debisi azalmaktadır. Bunun nedeni ise sistem için belirlenen çalıģma kriterleridir. Ġncelenen sistemde yoğuģturucuyu terk eden soğutma havası yoğuģturucu çalıģma sıcaklığına bağlı olarak beģ derece daha az farkla değiģmektedir. Dolayısıyla yoğuģturucunun daha yüksek çalıģma sıcaklıklarında ısınan havaya ait ısınma farkı arttığı için daha az havaya ihtiyaç duyulmuģtur. ġekil yi veren sonuçlar termodinamik olarak hesaplanmıģtır. Herhangi bir ısı transferi hesabı yapılmamıģtır. Yaz aylarında yoğuģturucuyu soğutmak için ihtiyaç duyulan havayı sağlayan fan kapasiteleri göz önünde bulundurulmalıdır.

1146 Şekil 3. Aylara göre absorberi soğutmak için gerekli hava debisi ġekil 3 de absorbere ait sabit üç farklı çalıģma sıcaklığı için yıl içinde absorberi soğutmak için gerekli ortalama hava debisi verilmiģtir. YoğuĢturucu ve absorber sistemde ısı atan elemanlar olduğu için absorberi soğutmak için gerekli hava debisini davranıģı yoğuģturucuyu soğutma için gerekli hava debi davranıģına benzer olmaktadır. Fakat absorberin ısıl kapasitesi yoğuģturucudan fazla olduğu için gerekli debi değerleri daha büyük olmaktadır. Yıl içerisinde en fazla debi ihtiyacı absorberin 33 ºC çalıģma sıcaklığı için Temmuz ayında 35,417 kg/s olmaktadır. 33 ºC çalıģma sıcaklığı için en az debi Ocak ayında 5,374 kg/s olmaktadır. Absorberin yüksek çalıģma sıcaklık değerleri için absorberi terk eden ısınan hava beģ derece daha düģük farkla absorberi terk etmektedir. Dolayısıyla daha yüksek çalıģma değerlerinde ısınan havanın çıkıģ sıcaklığı daha yüksek olduğu için daha az debiye ihtiyaç olmaktadır. Yaz aylarında gereken debi ihtiyacını karģılamak için sistem tasarımında absorbere ait fan kapasiteleri göz önünde bulundurulmalıdır.

1147 Şekil 4. Aylara göre yoğuģturucuda ki ekserji kayıpları ġekil 4 de sabit çalıģma Ģartlarında yıl içinde yoğuģturucu da yaģanan ortalama ekserji kayıpları görülmektedir. YoğuĢturucuda ki ekserji kayıplarının daha iyi anlaģılması için yoğuģturucu iç ve dıģ olarak iki kısımda incelenebilir. Ġç kısımda oluģan ekserji kayıpları sıcaklığa bağlı değiģeceği için sabit sıcaklıkta iç kısımda herhangi bir değiģim olmaz. DıĢ kısımda ısınan hava sıcaklığı sabit olduğuna göre ġekil 4 de verilen grafiğin davranıģı tamamen giren havaya bağlı olarak değiģir. Yaz aylarındaki sıcaklık değerleri ölü hal kabul edilen 5 ºC ye daha yakın olduğu için yaz aylarında ekserji kayıpları azalan yönde davranmaktadır. Grafikte görüldüğü gibi en az ekserji kaybı Temmuz ayında en fazla ekserji kaybı ise Ocak ayındadır. ġekil 4 de üzerinde durulması gereken diğer bir nokta ise yoğuģturucuya ait yüksek çalıģma sıcaklıklarında ekserji kayıplarının artmasıdır. YoğuĢturucuya ait daha yüksek çalıģma sıcaklıklarında yoğuģturucu kapasitesi artmaktadır. YoğuĢturucu kapasitesindeki artıģ ekserji kayıplarında da artıģa neden olmaktadır.

1148 Şekil 5. Aylara göre absorberdeki ekserji kayıpları ġekil 5 de absorberde aylara göre yıl içinde ekserji kayıplarındaki değiģim görülmektedir. Grafikte görülen davranıģ yoğuģturucuya ait ekserji kayıplarını gösteren grafikle benzerdir. Absorbere ait ısıl kapasite yoğuģturucudan fazla olduğu için ekserji kayıplarındaki değerlerde daha büyük çıkmaktadır. Ayrıca absorbere ait çalıģma sıcaklığı arttıkça ekserji kayıpları da artmaktadır. En az ekserji kaybı Temmuz ayında en fazla ekserji kaybı ise Ocak ayındadır. Şekil 6. Aylara göre sistemdeki toplam ekserji kayıpları ġekil 6 da incelenen sistemdeki toplam ekserji kaybının aylara göre yıl içerisindeki değiģimi görülmektedir. ġekilde farklı sıcaklık değerlerine sahip eleman absorberdir. Fakat değiģen hava giriģ sıcaklıkları yoğuģturucuyu da etkilemektedir. ġekil sisteme giren soğutucu hava giriģine bağlı ekserji

1149 kayıplarının sistemde yaģanan toplam ekserji kayıpları üzerindeki etkisini gösterdiğinden önemlidir. ġekil 6 da görüldüğü üzere Ocak ayından itibaren azalmaya baģlayan ekserji kayıpları yaklaģık %35 lik bir azalıģla Temmuz ayında en az seviyeye inmiģtir. SONUÇLAR Bu çalıģmada çift kademeli seri akıģlı bir absorbsiyonlu soğutma sisteminin enerji ve ekserji analizine yer verilmiģtir. Sıcak su kaynaklı ve soğuk su üretimi için kullanılan sistemin atmosfere açık olan kısmı yoğuģturucu ve absorberdir. Yıl içinde atmosfer Ģartları değiģkendir. Ġncelenen sistemde hava soğutmalı olan yoğuģturucu ve absorber tarafından ısıtılan havanın giriģ sıcaklığı ve bağıl nemi literatürde Bursa ili için verilen aylık ortalama sıcaklık ve ortalama bağıl nem miktarı sisteme girilerek yoğuģturucu ve absorber için soğutucu havaya ait debi miktarı her ay için hesaplanmıģtır. Hesaplar sonucunda hem absorber hem de yoğuģturucu için gerekli olan soğutucu hava debisi en fazla Temmuz ayı için ve en az Ocak ayı için çıkmıģtır. Ayrıca farklı yoğuģturucu ve absorber sıcaklıkları için yapılan analizde yüksek çalıģma sıcaklık değerlerinde gerekli soğutucu hava debisinde azalma görülmüģtür. Yapılan ekserji analizinde ise yoğuģturucu, buharlaģtırıcı ve sistemin toplam ekserji değerleri için en az ekserji kaybı Temmuz ayında ve en fazla ekserji kaybı Ocak ayında yaģanmıģtır. Sistem elemanları içerisinde en fazla ekserji kaybı absorberde olmaktadır. KAYNAKLAR [1] Kaynaklı Ö., Yamankaradeniz R., Absorpsiyonlu soğutma sistemlerinde kullanılan eģanjörlerin sistemin performansına etkisi, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi,Cilt 8, Sayı 1, 003. [] Talbi M. M., Agnew B., Exergy analysis an absorption refrigerator using lithium bromide and water as the working fluids, Applied Thermal Engineering, vol. 0, pp. 619-630, 000. [3] Sözen A., Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond s temperature, Renewable Energy,vol. 9, pp. 501-515, 003. [4] Tozer R., Syed A., Maidment G., Extended temperature-entropy (T-s) diagrams for aqueous lithium bromide absorption refrigeration cycles, International JournalOf Refrigeration, vol. 8, pp. 689-697, 005. [5] Ravikumar T. S., Suganthi L., Anand A. S., Exergy analysis of solar assisted double effect absorption refrigeration system, Renewable Energy,vol. 14, nos. 1-4, pp. 55-59, 1998. [6] Kaushik S. C., Arora A., Energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption refrigeration systems, International Journal Of Refrigeration, vol. 3, pp. 147-158, 009 [7] Gomri R., Hakimi R., Second law analysis of double effect vapour absorption cooler system, Energy Conversion and Management, vol. 49, pp. 3343-3348, 008 [8] Zhao Z., Zhou F., Zhang X., Li S., The thermodynamic performance of a new solution cycle in double absorption heat transformer using water/lithium bromide as the working fluids, International Journal Of Refrigeration,vol. 6, pp. 315-30, 003 [9] Ferreira C. A. I., Thermodynamic and physical property data equations for ammonia-lithium and ammonia-sodium thiocyanate solutions, Solar Energy, vol. 3, no., pp. 31-36, 1984 [10] Sargent S.L.,Beckman W.A., Theoretical performance of an ammonia-sodium thiocyanate intermittent absorption refrigeration cycle,solar Energy,vol.1,pp.137-146, 1968 [11] Zhu L., Gu J., Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system, Renewable Energy, vol. xxx, pp. 1-7, 010.

1150 [1] Sun DW., Comparison of the performance of NH3 HO, NH3 LiNO3 and NH3 NaSCN absorption refrigeration systems, Energy Conversion and Management, vol. 39 (5/6), pp.357 368, 1998. [13] Karamangil M. I., CoĢkun S., Kaynaklı Ö., Yamankaradeniz N., A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives, Renewable and Sustainable Energy Reviews, vol. 14, pp. 1969-1978, 010. [14] Misra R. D., Sahoo P. K., Sahoo S., Gupta A., Thermoeconomic optimization of a single effect water/libr vapour absorption refrigeration system, International Journal Refrigeration vol. 6, pp. 158 69, 003. [15] Arun M. B., Maiya M. P., Murthy S. S., Equilibrium low pressure generator temperatures for double efect series flow absorption refrigeration systems, Applied Thermal Engineering,vol.0, pp. 7-4, 000. [16] ġencan A., Yakut K. A., Kalogirou S. A., Exergy analysis of lithium bromide/water absorption systems, Renewable Energy, vol. 30, pp. 645-657, 005. [17] Gomri R., Second law comparison of single effect and double effect vapour absorption refrigeration systems, Energy Conversion and Management,vol. 50, pp. 179-187, 009. [18] Kaynakli O., The first and second law analysis of a lithium bromide/water coil absorber, Energy, vol. 33, pp. 804-816, 008 [19] Vasilescu C., Hera D., Ferreira C. I., Model for double-effect absorption refrigeration cycle Termotehnica, vol., pp. 43-48, 011 [0] Kılıç M., Kaynaklı Ö., Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system., Energy,vol.3, pp. 1505-151, 007 [1] www.dmi.gov.tr [] www.resmigazete.gov.tr [3] www.daikin.be/nl/ [4] www.es.be/en ÖZGEÇMİŞ Kenan SAKA 005 yılında Gaziantep Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümünden mezun oldu. 010 yılında Uludağ Üniversitesi Mühendislik Mimarlık Fakültesi Makine Mühendisliği termodinamik bilim dalında yüksek lisansını tamamladı. 009 yılından beri Uludağ Üniversitesi YeniĢehir Ġbrahim Orhan Meslek Yüksekokulunda Öğretim Görevlisi olarak görev yapmaktadır. Doktora çalıģmaları devam etmektedir. Nurettin YAMANKARADENİZ 004 yılında Uludağ Üniversitesi Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümünden mezun oldu. 005 yılında Teknik Bilimler Meslek Yüksek Okulu Ġklimlendirme ve Soğutma Teknolojisi programında öğretim görevlisi olarak çalıģmaya baģladı. 007 yılında Uludağ üniversitesi Mühendislik Mimarlık Fakültesi Makine Mühendisliği termodinamik bilim dalında yüksek lisansını tamamladı. 011 yılında Uludağ üniversitesi Mühendislik Mimarlık Fakültesi Makine Mühendisliği termodinamik bilim dalında doktorasını tamamladı. Faruk KAYNAKLI 1975 yılı Bursa doğumludur. 000 yılında UÜ. Mühendislik Fakültesi Makina Bölümünü bitirmiģtir. Aynı Üniversiteden 009 yılında Yüksek Mühendis unvanını almıģ ve Doktora çalıģmalarına baģlamıģtır. 000-01 yılları arasında özel sektörde çalıģmıģ, 01 yılından beri Uludağ Üniversitesi Gemlik Asım

1151 Kocabıyık Meslek Yüksekokulunda Öğretim Görevlisi olarak görev yapmaktadır. Kapalı Hacimlerde Isıl Konfor konularında çalıģmaktadır. Ömer KAYNAKLI Uludağ Üniversitesi Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü nden 1998 yılında mezun oldu. 000 yılında yüksek lisans, 004 yılında doktora derecelerini aldı. 008 yılında Yardımcı Doçentliğe atandı. 009 yılında Doçentliğini ve 014 yılında Profesör unvanını aldı. 014 yılından beri Uludağ Üniversitesi Gemlik Asım Kocabıyık Meslek Yüksekokul Müdürlüğü görevine devam etmektedir. Isıl konfor, enerji ekonomisi, absorbsiyonlu soğutma ve ekserji analizi konularında çalıģmaktadır.