ZEOLİT KATKILI BETONLARIN ELASTİSİTE MODÜLÜNÜN TAHMİN EDİLMESİ



Benzer belgeler
Eda Serin Accepted: October 2011

YAPIDAKİ BETON DAYANIMININ STANDART KÜRDE SAKLANAN NUMUNELER YARDIMIYLA TAHMİNİ. Adnan ÖNER 1, Süleyman DİRER 1 adnan@kou.edu.tr, sdirer@engineer.

Elazığ Ferrokrom Cürufunun Betonun Basınç Dayanımı ve Çarpma Enerjisi Üzerine Etkisi

POLİPROPİLEN LİF KATKILI YARI HAFİF BETONLARIN BASINÇ DAYANIMI ÖZELLİKLERİ

GENLEŞTİRİLMİŞ KİL AGREGASI İLE TAŞIYICI HAFİF BETON ÜRETİMİ

Kuruca Dağından Elde Edilen Agregaların Beton Agregası Olarak Kullanılabilirliği

ÇELİK LİFLERİN TAZE BETON ÖZELLİKLERİNE ETKİSİ EFFECT OF STEEL FIBERS ON FRESH CONCRETE PROPERTIES

Çizelge 5.1. Çeşitli yapı elemanları için uygun çökme değerleri (TS 802)

DEĞİŞİK FAKTÖRLERİN BETON MUKEVEMETİNE ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ

Mermer Parça Atıklarının Beton Agregası Olarak Değerlendirilmesi. Evaluation of Concrete Aggregate Marble Pieces

Effect of Glass Fiber Addition on the Compressive and Tensile Strength of Concrete

UÇUCU KÜLLÜ BETONLARIN DONMA-ÇÖZÜLME ETKİSİNDE MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI. Necdet Sezer Kampüsü Gazlıgöl Yolu Afyon,

YAPILARIN ZATİ YÜKÜNÜN AZALTILMASI İÇİN DİYATOMİTLE ÜRETİLEN HAFİF BLOK ELEMANLARIN ÖZELLİKLERİNİN ARAŞTIRILMASI. Tayfun UYGUNOĞLU 1, Osman ÜNAL 1

Agreganın En Büyük Tane Boyutu ve Numune Boyutunun Betonun Karot Dayanımına Etkisi

Yakup BölükbaĢ Accepted: October ISSN : turan.yildiz@mynet.com Elazig-Turkey

Zeolit ve Silika Dumanı Katkılı Betonların Mekanik ve Geçirimlilik Özellikleri

FARKLI TİPTE AGREGA KULANIMININ BETONUN MEKANİK ÖZELİKLERİNE ETKİSİNİN ARAŞTIRILMASI

ATIK BETONLARIN GERİ DÖNÜŞÜMÜNDE SÜPER AKIŞKANLAŞTIRICI KATKI KULLANIMI

Sugözü Uçucu Külünün Beton Katkısı Olarak Kullanılabilirliği

YAPILARDA DİYATOMİTLE ÜRETİLEN HAFİF BLOK ELEMANLARIN KULLANILMASI

HAFİF AGREGALARIN YAPISAL BETON İMALATLARINDA KULLANIMI Çimento Araştırma ve Uygulama Merkezi

beton karışım hesabı

DÜZCE İLİNDE 1999 YILINDAKİ DEPREMLERDE YIKILAN BETONARME BİNALARDA KULLANILAN BETONUN FİZİKSEL ÖZELLİKLERİNİN BELİRLENMESİ

Beton sınıfına göre tanımlanan hedef (amaç) basınç dayanımları (TS EN 206-1)

BETON KARIŞIM HESABI (TS 802)

BETON YOL KAPLAMALARINDA VAKUM UYGULAMASI ÜZERİNE BİR ÇALIŞMA

METİLEN MAVİSİ DEĞERİ YÜKSEK AGREGALAR VE FARKLI ÖZELLİKTEKİ KİMYASAL KATKILARLA YAPILAN BETON ÇALIŞMALARI

İYC MADENCİLİK SAN. VE TİC. LTD. ŞTİ. NE AİT MUĞLA - FETHİYE YÖRESİ BEJ TÜRÜ KİREÇTAŞININ FİZİKO-MEKANİK ANALİZ RAPORU

BETON* Sıkıştırılabilme Sınıfları

Ağır Betonların Fiziksel ve Mekanik Özelliklerine Filler Malzemenin Etkisi. Filler Effects on Physical and Mechanical Properties of Heavy Concrete

YAPI MALZEMESİ OLARAK BETON

Cam Elyaf Katkılı Betonların Yarmada Çekme Dayanımlarının Yapay Sinir Ağları İle Tahmini

ISSN : alperkurt0123@hotmail.com Elazıg-Turkey

Volkanik Cüruf Agregaların Yapı Sektöründe Kullanımı. S. Demirdağ, L. Gündüz & S. Saraç

BETON KARIŞIM HESABI. Beton; BETON

GERİ DÖNÜŞÜM AGREGALI BETONLARDA ELASTİSİTE MODÜLÜNÜN DENEYSEL VE TEORİK OLARAK İNCELENMESİ

DÜŞÜK MUKAVEMETLĐ ATIK BETONLARIN BETON AGREGASI OLARAK KULLANILABĐLĐRLĐĞĐ

Atık Bordür Taşlarının Beton Agregası Olarak Kullanılabilirliğinin Araştırılması

Thermo-Mechanical Properties of Concrete Containing Zeolite

UÇUCU KÜL KATKI MĠKTARININ BETON ĠġLENEBĠLĠRLĠĞĠ VE SERTLEġME SÜRELERĠNE OLAN ETKĠSĠ

TEKNOLOJİK ARAŞTIRMALAR

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ- YAPI MALZEMELERİ LABORATUARI. Kemal Tuşat YÜCEL

ISIDAÇ 40. refrakter. Özel ürünleriniz için özel bir çimento!

Sıkıştırma İşleminin Betonarme Elemanların Sertleşmiş Betonun Dayanım Özelliklerine Etkisi

Donma-Çözülmenin Farklı Kür Görmüş Kendiliğinden Yerleşen Betonlar Üzerindeki Etkisi

POMZA AGREGALI TAŞIYICI HAFİF BETONUN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

İNCE AGREGA TANE BOYU DAĞILIMININ ÇİMENTOLU SİSTEMLER ÜZERİNDEKİ ETKİLERİ. Prof. Dr. İsmail Özgür YAMAN

Faz Malzeme Oranının Polimer Beton Özellikleri Üzerindeki Etkisinin Araştırılması

Üçlü Sistemler - 1 Çimento Araştırma ve Uygulama Merkezi

ISIDAÇ 40. yapı kimyasalları. Özel ürünleriniz için özel bir çimento!

5/3/2017. Verilenler: a) TS EN standardından XF1 sınıfı donma-çözülme ve XA3 sınıfı zararlı kimyasallar etkisi için belirlenen kriterler:

ISIDAÇ 40. karo. Özel ürünleriniz için özel bir çimento!

C30 SINIFI ATIK BETONUN GERİDÖNÜŞÜM AGREGASI OLARAK BETON ÜRETİMİNDE KULLANILABİLİRLİĞİ. Can DEMİREL, 2 Osman ŞİMŞEK

1-AGREGALARIN HAZIRLANMASI (TS EN 932-1, TS 707, ASTM C 33)

EKOBEYAZ. prekast. Hem ekonomik, hem yüksek beyazlık!

Bazalt Lifli Donatının Yüksek Dayanımlı Betondaki Aderans Performansı

Maksimum Agrega Tane Boyutu, Karot Narinliği ve Karot Çapının Beton Basınç Dayanımına Etkisi GİRİŞ

FARKLI YÖNLERDEN ALINAN BETON KAROT NUMUNELERİN BASINÇ DAYANIMLARININ ALTERNATİF BİR YÖNTEMLE TAHMİNİ

Elastisite modülü çerçevesi ve deneyi: σmaks

BETONARMEDE BETON VE DONATI ARASINDAKİ ADERANS DAYANIMINA KÜR ŞARTLARININ ETKİSİ

BİMS AGREGASI İLE ÜRETİLEN SİLİS DUMANI KATKILI TAŞIYICI HAFİF BETONLARIN KONUT ÜRETİMİNDE KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

EKOBEYAZ. karo. Hem ekonomik, hem yüksek beyazlık!

Effects of Mugla-Yatağan Fly Ash on Recycled Waste Concretes

ZEOLİT KATKILI BETONLARIN FİZİKSEL VE MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI

Bolomey formülünün gelişmiş şekli; hava boşluğunun dayanıma etkisini vurgulamak

KENDİLİĞİNDEN YERLEŞEN NORMAL DAYANIMLI HAFİF BETON ÜZERİNE DENEYSEL BİR ÇALIŞMA

CAM LİF TAKVİYELİ ÇİMENTO HARÇLARININ AŞINMA DİRENCİ ÜZERİNE ATIK MERMER TOZUNUN ETKİSİ

Büro : Bölüm Sekreterliği Adana, 22 / 04 /2014 Sayı : /

KİMYASAL KATKILARDAKİ HİDROLİZ SÜRECİNİN TAZE VE SERTLEŞMİŞ BETON ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİ

MERMER TOZU TANE BOYUTUNUN POLİMER BETON ÖZELLİKLERİNE ETKİSİ EFFECTS TO POLYMER CONCRETE PROPERTIES OF PARTICLE SIZE OF MARBLE DUST

KENDİLİĞİNDEN YERLEŞEN BETON ÖZELLİKLERİNE ATIK MERMER TOZUNUN ETKİSİ

SÜPER BEYAZ. prekast. Yüksek performanslı beyaz çimento!

1. Projeden, malzemeden gerekli veriler alınır

SÜLFAT ETKİSİNDE MARUZ BETONDA PUZOLANİK KATKI KULLANIMI

Uluabat Kuvvet Tüneli Projesindeki Segment Üretimi

SİLİS DUMANI KATKILI TAŞIYICI HAFİF BETONUN MEKANİK ÖZELLİKLERİNİN ARAŞTIRILMASI

ZEOLIT KATKILI ÇIMENTOLARIN ÖZELLİKLERİNİN İNCELENMESİ INVESTIGATION OF ADDED ZEOLITE CEMENT PROPERTIES

Calacatta Oro

Mustafa Kara, Yasemin K

FARKLI İNCELİKLERDEKİ TRAS VE UÇUCU KÜLÜN ÇİMENTO DAYANIMLARINA ETKİSİ

ENDÜSTRİYEL DEMİR TALAŞI ATIĞININ BETONUN BAZI MEKANİK ÖZELLİKLERİNE ETKİSİ

Yüksek Dayanımlı Betonlarda Pomza ve Zeolitin Kullanılabilirliği *

GERİ DÖNÜŞÜMLÜ İRİ AGREGALARIN BETON ÖZELLİKLERİNE ETKİSİ

YÜKSEK FIRIN CÜRUFUNUN PARKE VE BORDÜR ÜRETİMİNDE KULLANILMASI

BÜLENT ECEVİT ÜNİVERSİTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ DÖNER SERMAYE HİZMETLERİ 2016 BİRİM FİYAT LİSTESİ GENEL HUSUSLAR

A Şentürk, L. Gündüz ve A. Sanışık

Alkaliye Dayanıklı Cam Elyafla Güçlendirilmiş Betonun Performansı YUWARAJ M. GHUGAL* AND SANTOSH B. DESHMUKH

3/9/ µ-2µ Filler (taşunu) 2µ altı Kil. etkilemektedir.

Hafif Agregalı Betonun Mühendislik Özelliklerinin Araştırılması

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

AGREGALAR Çimento Araştırma ve Uygulama Merkezi

Ham Perlit Agregalı Hafif Beton Özelliklerine Alternatif Genleştirilmiş Perlit Kullanımının Etkisi

Beton Melike Sucu ZEMİN BETONLARINDA KALSİYUM ALÜMİNAT ÇİMENTOSU KULLANIMI. Nisan, 17

Köpük Beton - I. Çimento Araştırma ve Uygulama Merkezi. Kasım, 2015

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 1 sh Ocak 2004

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI DENEY ADI: AGREGA ELEK ANALİZİ VE GRANÜLOMETRİ EĞRİSİ

TEKNOLOJĐK ARAŞTIRMALAR

Uçucu Kül İçeriğinin Beton Basınç Dayanımı ve Geçirimliliği Üzerine Etkisinin Araştırılması

FARKLI DOZLARDA ÜRETİLEN BEYAZ BETONLARIN BASINÇ DAYANIMINA FARKLI KÜR ŞARTLARININ ETKİSİ

Beton; kum, çakıl, su, çimento ve diğer kimyasal katkı maddelerinden oluşan bir bileşimdir. Bu maddeler birbirleriyle uygun oranlarda karıştırıldığı

Transkript:

ISSN:1306-3111 e-journal of New World Sciences Academy 2009, Volume: 4, Number: 4, Article Number: 1A0046 ENGINEERING SCIENCES Received: Fabruary 2009 Accepted: September 2009 Series : 1A ISSN : 1308-7231 2009 www.newwsa.com Hakan Sarıkaya 1, Nazmi Şengün 2 Celalettin Başyiğit 2, Raşit Altındağ 2 Adnan Menderes University 1 Suleyman Demirel University 2 hakan.sarikaya@adu.edu.tr Aydin-Turkey ZEOLİT KATKILI BETONLARIN ELASTİSİTE MODÜLÜNÜN TAHMİN EDİLMESİ ÖZET Zeolit, doğal ya da yapay olmak üzere atomik düzeyde mikro gözenekli kristal yapılı, yüksek su emme özelliğine, geniş yüzeye sahip alümina silikat içeren bir mineraldir. Gözenekli malzeme olmasından dolayı hafif beton agregası olarak kullanılmaktadır. Bu çalışmada Manisa-Gördes bölgesinden temin edilen zeolit agregası ile Atabey (Isparta) normal agregası farklı oranlarda karıştırılarak katkısız veya katkılı olarak beton örnekleri elde edilmiştir. Üretilen bu betonlar üzerinde birim hacim ağırlık, slump, su emme, ultrases hızı, Schmidt yüzey serlik, basınç dayanımı ve Elastisite deneyleri yapılmıştır. Elde edilen deney verileri istatistiksel değerlendirme yapılarak zeolit katkılı betonların Elastisite modül değerlerini tahmin etmek için ampirik eşitlikler verilmiştir. Anahtar Kelimeler: Beton, Agrega, Zeolit, Zeolit Katkılı Beton, Elastisite Modülü PREDICTING THE ELASTICITY MODULUS OF CONCRETE ADDED ZEOLITE ABSTRACT Zeolite is a mineral which contains aluminum silicates and has a wide surface. Also it has natural or artificial micro porosity crystal structure and highly water absorption property. So zeolite is used as light weight concrete aggregate. In this study, zeolite aggregate from Manisa-Gördes region and Atabey-Isparta aggregate were mixed by different proportion and normal or added concrete samples are prepared. On these samples bulk density, slump, water absorption, seismic velocity, Schmidt surface hardness, uniaxial compressive strength and elasticity modulus tests were done. Tests results were statistically analyzed and empirical equations were given for estimating elasticity modulus values of zeolite added concretes. Keywords: Concrete, Aggregate, Zeolite, Zeolite Added Concrete, Elastisity Modulus

1. GİRİŞ (INTRODUCTION) Beton; çimento, agrega, su ve gerektiğinde katkı maddelerinin belirli oranlarda homojen olarak karıştırılması ile elde edilen, başlangıçta plastik kıvamda olup zamanla çimentonun hidratasyonu sebebiyle katılaşıp, istenilen şekli alarak sertleşen kompozit bir yapı malzemesidir [1]. Gelişen teknoloji ile kullanılabilecek özel beton tipleri geliştirilmiştir. Uzun yıllar hafif agregalı beton, duvar ve blok eleman üretiminde kullanılan bir malzeme olarak görülmüştür. 1950 lerden sonra hafif agregalı betonun taşıyıcı olarak kullanılması gündeme gelmiştir. Yapay hafif agregaların üretimine başlanması ile yüksek dayanımlı hafif agregalı betonlar üretilmeye başlanmıştır. Hafif betonlar öncelikle ekonomik olmaları nedeniyle kullanılırlar. Çok katlı yapıların artması sonucu, yapı yüklerinde azalma sağlama gereği de ortaya çıkmaktadır. Hafif agregalı beton kullanarak, çelik gereksinimi azalmakta, temellerde ve diğer taşıyıcı yapı kısımlarında tasarruf sağlanmakta, depreme karşı daha güvenilir yapı elde edilmektedir. Betonun ağırlık olarak hafif olması yani ağırlığının azalması sonucu taşıma kolaylığı ve inşaat yerinde montaj kolaylığı sağlamaktadır [2 ve 3]. Zeolit doğal ya da yapay olmak üzere atomik düzeyde gözenekli yapıya sahip sulu alümina silikat bileşiklerine verilen isimdir. İlk olarak İsveç li mineralog Fredrick Cronstedt tarafından 1756 yılında bulunmuştur. Bu kristaller ısıtıldıklarında yapılarında bulunan suyun köpürmesinden dolayı Yunanca kaynayan taş anlamına gelen Zeolit adını almıştır. Zeolit, geniş anlamındaki tanımıyla alkali ve toprak alkali katyonları ihtiva eden sulu alümina silikat olarak tanımlanır. Doğal zeolitler yaygın kullanım alanlarının varlığı ve büyük pazar potansiyeline rağmen, birçok pazar alanında daha yeni yeni kabul görmeye başlamıştır. Zeolitler endüstriyel alanlarda kullanılabildiği 1940 lı yıllarda ortaya konulmasına rağmen tali mineral olarak volkanik kayaçların boşluk ve çatlaklarında bulunduğunun bilinmesi kullanımlarını sınırlamıştır. Ancak 1950 li yıllardan sonra denizel ve gölsel tüflerin de zeolit içerdiklerinin saptanmasıyla zeolitlerin kullanım alanları hızla genişlemiştir. Zeolitler inşaat sektöründe başlıca şu şekillerde kullanılırlar [4, 5, 6, 7 ve 8]. Beton genel olarak elastik bir malzeme değildir. Elastiklik, üzerindeki yük, kaldırılan malzemenin başlangıç biçimine dönebilme özelliğidir. Betonun gerilme deformasyon ilişkisi, genellikle bir eğri şeklindedir. Elastisite modülünün zamana bağlı değeri, zamana ve kalıcı yüke bağlıdır. Elastisite modülün zamanla ilk değerinin yarısına ve daha azına yaklaşması mümkündür. Elastisite modülü, gerilme deformasyon (σ- ) eğrisini etkileyen bütün faktörlerden etkilenir. Elastisite modülü, betonun basınç dayanımının bir fonksiyonu olmaktadır. Betonun elastisite modülü ile dayanımı arasında bir ilişki vardır. Dayanımı yüksek betonların elastisite modülü de yüksektir [9]. 2. ÇALIŞMANIN ÖNEMİ (RESEARCH SIGNIFICANCE) Zeolit, gözenekli malzeme olmasından dolayı hafif beton agregası olarak kullanılmaktadır. Zeolitin inşaat sektöründe ilk kullanım alanı çimento ya katkı maddesi katılarak başlamıştır. Birçok araştırmacı bu konu üzerine çalışmıştır. Bu çalışmada Manisa-Gördes bölgesinden temin edilen zeolit agregası ile Atabey normal agregası faklı oranlarda karıştırılarak katkısız ve katkılı olarak beton örnekleri elde edilmiştir. Üretilen bu betonlar üzerinde birim hacim ağırlık, su emme, ultrases hızı, Schmidt yüzey sertlik, basınç dayanımı ve Elastisite deneyleri yapılmıştır. Elde edilen deney verileri istatistiksel değerlendirme 484

yapılarak zeolit katkılı betonların Elastisite modül değerlerini tahmin etmek için ampirik eşitlikler verilmiştir. 3. DENEYSEL YÖNTEM (EXPERIMENTAL METHOD) Çalışmada, Manisa ilinin Gördes ilçesinde bulunan doğal zeolit agregası ile Isparta ili Atabey ilçesinde bulunan doğal agrega yataklarından elde edilen Atabey agregası kullanılmıştır. Belirli oranlarda ve belli granülometriye sahip zeolit, agrega yerine konularak farklı mukavemetlere sahip betonlar elde edilmeye çalışılmıştır. Beton yapımında bağlayıcı olarak portland çimentosu ve şebeke suyu kullanılmıştır. Çalışmalarda TSE nin önerdiği deney standartlarına göre agregalar ve betonlar üzerine deneyler yapılmıştır. Bu çalışmada, su/çimento oranı 0,50 olarak sabit tutularak beton serileri dökülmüştür. Çimento olarak Portland çimentosu kullanılmıştır. Kullanılan çimento ve zeolitin kimyasal ve fiziksel özellikleri Tablo 1 ve 2 de verilmiştir. Tablo 1. Çimento ve zeolitin kimyasal özellikleri (Table 1. Chemical properties of cement and zeolite) Kimyasal CEM I Zeolit Bileşim 42.5 N MgO 1,91 1.15 Al 2 O 3 6,20 11,84 SiO 2 20,60 67,11 CaO 61,40 2,18 Fe 2 O 3 3,01 1,47 K 2 O 1,03 3,44 Na 2 O 0,19 0,38 Kızdırma Kaybı 1,35 12,5 Tablo 2. CEM I 42,5 N Çimentosunun fiziksel özellikleri (Table 2. Physical properties of cement CEM I 42.5 N) Özgül Ağırlık (gr/cm 3 ) 3,10 İncelik (cm 2 /gr) 2914 7 günlük basınç dayanımı (N/mm 2 ) 37,7 28 günlük basınç dayanımı (N/mm 2 ) 49,8 7 günlük eğilme-çekme dayanımı (N/mm 2 ) 5,9 28 günlük eğilme-çekme dayanımı (N/mm 2 ) 7,5 Tablo 3 de verilen elek analizi sonuçlarına göre, bu agregalardan normal beton yapılamayacağı açıktır. Çünkü doğal haldeki atabey ve zeolit agregasının granülometrik eğrisine (Şekil 1) e göre kalın malzeme oranı çok fazla olduğundan bu agregalar üzerinde iyileştirmeler yapılmıştır. Bu iyileştirme işlemi 16 mm elekten başlayarak her elek için ayrı ayrı eleme işlemi yapılmış ve mevcut agregalar sınıflandırılmıştır. Bu şekilde, Atabey ve zeolit agregasının granülometri eğrisi istenen şekilde ayarlanabilmektedir. Bu ayarlama sonucunda, agrega karışımlarının beton üretimi için uygun olduğu gözlenmiştir. Betonda agrega karışımı granülometrisinin A 16 -B 16 eğrileri arasında olduğu zaman [1]; En yüksek doluluk oranı, En az su miktarı ile kalıba iyi yerleşebilecek kıvam, Taze betonda ayrışmayı (segregasyon) önlemek ve yapışkanlığı (kohezyonu), Taze betonun iyi ve kolay yerleşmesi ve Taze betonda terlemenin azalması sağlanmış olur. 485

Tablo 3. Normal ve Zeolit agregasının elek analizi (Table 3. Sieve analysis of normal and Zeolite aggregates) Elekten Geçen Malzeme Miktarı (%) Normal Agrega 16 100 100 8 88,3 79,2 4 63,9 57,3 2 40,4 37,4 1 24,8 26,1 0,5 14,3 18,3 0,25 9,5 12,2 PAN 0 0 Zeolit Agregası (a) (b) Şekil 1.(a)Normal ve(b)zeolit agregasının granülometri eğrisi(d max =16mm) (Figure 1. Granulometer curve of (a) Normal and (b) Zeolite aggregates (d max =16mm)) İyileştirilmiş ve beton yapımında kullanılacak olan Atabey ve zeolit agregalarının ortak granülometri eğrisi Şekil 2 de verilmiştir. 486

Şekil 2. İyileştirilme yapılmış ve beton yapımında kullanılan Atabey ve Zeolit agregaların ortak granülometri eğrisi (Figure 2. Common granulometer curve of Atabey and Zeolite aggregates improved and used in concrete) Çalışma kapsamında önce TS 802 ye göre 350 dozlu normal agrega kullanılarak beton üretimi yapılmıştır. Karışım hesapları, üretilecek betonun kuru plastik kıvamda ve maksimum dane çapı 16 mm olacak şekilde birim hacim ağırlık yöntemine göre yapılmıştır. Agrega karışım oranları %40 ı ince (0-4 mm) ve %60 ı kalın (4-16 mm) olacak şekilde alınmıştır. Bu çalışmada hesaplanan agrega miktarının tamamı normal agrega olmak üzere N35 (350 dozlu beton) serisi kontrol betonları üretilmiştir. Agrega hacminin %10 u, %30 u, %50 si kadar aynı hacimde zeolit kullanılarak NZ10, NZ30 ve NZ50 serisi betonlar üretilmiştir. Aynı serilerden Sika FFN süper akışkanlaştırıcı katkı maddesi kullanılarak katkılı betonlar (NK35, NZK10, NZK30 ve NZK50) üretilmiştir (Tablo 4 5). Çeşitli deneylerde kullanılmak üzere bir kenarı 100 mm olan küp kalıplara ve çapı 150 mm boyu 300 mm olan silindir kalıplara beton serileri dökülmüştür. Toplamda küp numunelerinden 20 adet, silindir numunelerden ise 5 adet numune dökülmüştür. Deneyler bu numuneler üzerinde yapılmıştır. Yüksek oranda su azaltıcı ve erken yüksek dayanım sağlayan bu katkı maddesi, ASTM C 494 Tip-F ye uygundur. Beton karışım agregası A 16 -B 16 bölgesi içinde kalacak şekilde alınmıştır. Tablo 4. Üretilen betonların karışım yüzdeleri. (Table 4. Percentage of mixture of produced concrete) Kodu Beton Agrega Zeolit Sınıfı (%) (%) N35 350 Dozlu 100 - NZ10 350 Dozlu 90 10 NZ30 350 Dozlu 70 30 NZ50 350 Dozlu 50 50 NK35 350 Dozlu 100 - NZK10 350 Dozlu 90 10 NZK30 350 Dozlu 70 30 NZK50 350 Dozlu 50 50 487

Tablo 5. Karışıma giren beton bileşenleri (kg/m 3 ) (Table 5. Concrete components into the mix) Beton Su Çimento Katkı Normal Agrega Zeolit Agregası İnce Kaba İnce Kaba N35 704 1128 0 0 NZ10 633 1015 57 82 175 350 0 NZ30 493 790 176 250 NZ50 352 564 296 418 NK35 704 1128 0 0 NZK10 633 1015 57 82 175 350 3,5 NZK30 493 790 176 250 NZK50 352 564 296 418 3.1. Birim Hacim Ağırlık Deneyi (Unit Volume Weight Test) Uygun koşularda üretilmiş normal betonun birim hacim ağırlığı 2,2 2,4 kg/m 3 dir. Sertleşmiş betonun birim ağırlığı karışım suyunun bir kısmının buharlaşması nedeniyle, taze betonuna kıyasla biraz daha azdır. Betonun birim hacim ağırlığını bulmak için betonun hacmini ve ağırlığını bulmak yeterlidir. Beton numuneler hazırlandıktan sonra her farklı beton numunesinin birim hacim ağırlığı bulunmuş ve Tablo 6 da verilmiştir (TSEN 1097). Tablo 6. Beton serilerinin fiziksel ve mekanik özellikleri. (Table 6. Physical and mechanical properties of concrete series) Kuru Slump Su Ultrases Schmidt Basınç Birim Deneyi Emme Hızı Çekici Dayanımı Hacim (mm) (%) (km/sn) (MPa) Ağırlık (kg/m 3 ) Beton Serileri Elastisi te Modülü (GPa) N35 2,498 42 1,6 2,05 32 44,1±3,9 6,34±1,8 NZ10 2,445 33 2,13 2,19 26 41,2±2,9 4,69±0,8 NZ30 2,154 26 4,04 2,49 21,8 27,2±1,5 2,64±0,4 NZ50 2,008 20 5,08 2,92 17,6 19,1±1,0 1,67±0,2 NK35 2,499 65 1,04 2,11 42,1 48,0±0,7 7,11±0,4 NZK10 2,405 55 1,33 2,23 33 45,4±0,9 5,95±0,5 NZK30 2,187 40 2,24 2,54 27,5 30,3±0,9 3,18±0,3 NZK50 2,005 33 3,34 3,05 23,5 27,1±1,0 2,80±0,1 3.2. Slump Deneyi (Slump Test) Betonun kıvamını belirlemek üzere Slump Deneyi yapılmıştır. Abrams konisi olarak da isimlendirilen bu deneyde, ölçüleri belirli tepesi kesik koni şeklindeki metal bir kalıp içine üç eşit tabaka halinde ve her tabakası 25 kez özel bir çubukla şişlenerek standart olarak doldurulan betonun, ilk yüksekliği ile kap kaldırıldıktan sonraki yüksekliği arasındaki farkın ölçülmesi esas alınmıştır. Elde edilen değerlerin aritmetik ortalaması Tablo 6 da verilmiştir (TSEN 12350-2). 3.3. Su Emme Deneyi (Water Absorption Test) Betonun su emme yüzdelerini belirlemek amacıyla her bir beton için su emme deneyi yapılmıştır. Kalıptan çıkarılan numuneler kür havuzlarına konmuş, kür havuzunda 24 saat kalan numune çıkarılıp tartıldıktan sonra etüvlere konup 105 C de 24 saat süreyle bekletilmiştir. Etüvden çıkan numune tartılmış ve numunelerin su emme değerleri bulunmuştur. Bu değerlerin aritmetik ortalaması Tablo 6 da verilmiştir (TSEN 1097). 488

3.4. Schmidt Yüzey Sertlik Testi (Schmidt Surface Hardness Test) Schmidt darbe çekici ile betonun yüzey sertliğini belirlenebilmektedir. Bu değer yardımıyla basınç dayanım değeri yaklaşık olarak tahmin edilmektedir. Deneylerde N-tipi Schmidt çekici kullanılmış ve deney öncesi kalibrasyonu yapılmıştır. Schmidt sertlik deneyleri 28 günlük kürde ve çapı 150 mm ve boyu 300 mm olan silindir numuneler üzerinde yapılmıştır. Deney her bir beton serisi için beş farklı numune üzerinde ve her numune için 5 farklı noktasından uygulanmıştır. Elde edilen değerlerin aritmetik ortalamaları Tablo 6 da verilmiştir (TSEN 12504). 3.5. Ultrases Hızı (Ultrasound Velocity) Ultrases hızı betonun elastiklik ve çatlaklılığının bir ölçüsüdür. Beton numunelerin ultrases hızı deneyleri P-dalga hızı olarak yapılmıştır. P-dalga hızı (Vp) ölçümleri 150 mm çaplı 300 mm boyunda silindir şeklinde numuneler üzerinde gerçekleştirilmiştir. Ölçümlerde ses dalgasının kat ettiği yol ölçülerek P-dalgası geçiş zamanına bölünerek hesaplanmıştır. Hesaplanan değerlerin aritmetik ortalamaları Tablo 6 da verilmiştir( TSEN 12504 ). 3.6. Basınç Dayanımı (Uniaxial Compressive Strength) Bu deney için ELE-ADR2000 model 200 ton kapasiteli pres kullanılmıştır (Şekil 3). Basınç deneylerinde yükleme hızı saniyede 0.35 MPa olarak sabit tutulmuştur. Bu amaçla hazırlanan 100x100x100 mm boyutlu küp beton numuneleri 28 günlük kür süresinden sonra kırılmıştır. Deneyden elde edilen dayanım değerlerinin aritmetik ortalaması Tablo 6 da verilmiştir (TS EN 12390). Şekil 3. Elastisite modülünü belirlemek için kullanılan pres (Figure 3. The pres used to determine elastisity modulus) 489

Şekil 4. Gerilme-Deformasyon eğrisi (Figure 4. The stress-strain curve) 3.7. Elastisite Modülü (Elastisity Modulus) Basınç dayanım deneyi yapılırken düşey yer değiştirmeyi belirlemek amacı bir adet LVDT (Linear Variable Differantial Transducer) kullanılmıştır (Şekil 3). Presten ve LVDT den gelen voltaj değerleri veri işlemci (ADU) ile toplanmış ve veriler grafiğe dökülmüştür. Elde edilen gerilme-deformasyon grafiğinden (Şekil 4) beton serilerinin her numunesi için basınç dayanımının %50 seviyesinden tanjant elastisite modül (E) değerleri belirlenmiştir. Bu değerlerin aritmetik ortalaması Tablo 6 da verilmiştir (TS EN 1352). 4. İSTATİSTİKSEL DEĞERLENDİRME (STATISTICAL EVALUATION) Zeolit katkılı veya katkısız betonların elastisite modüllerini tahmin etmek amacıyla deneysel verilerin grafikleri çizilmiş ve en yüksek korelasyon katsayısını veren eğilim çizgileri eklenmiştir (Şekil 4, 5, 6, 7, 8, 9 ve 10). Grafikleri incelediğimizde, kuru birim hacim ağırlığının artmasıyla elastisite modülü değerinin de üstel olarak arttığı belirlenmiştir (Şekil 5). Aynı grafikte katkılı betonların elastisite modül değerlerinin daha yüksek olduğu görülmüştür. (Şekil 6 ve Şekil 7) de betonların su emme ve ultrases hızı değerleri arttıkça elastisite modül değeri azalmaktadır. (Şekil 8) de betonların Schmidt çekici değeri ile elastisite modül değerleri arasında doğrusal artan bir ilişki belirlenmiştir. Hazırlanan betonların basınç dayanımı değerleri ile elastisite modül değerleri arasında üstel artan bir ilişki bulunmuştur (Şekil 9). (Şekil 10) da zeolit miktarının artmasıyla betonun elastisite modül değerinin azaldığı görülmüştür. Süper akışkanlaştırıcı katkılı betonların elastisite modül değerleri katkısız betonlara nazaran her zeolit karışım miktarında daha yüksek olduğu belirlenmiştir. 490

Şekil 5. Betonun elastisite modülü ile kuru birim hacim ağırlığı arasındaki ilişkiler (Figure 5. The relationship between elastisity modulus and dry unit volume weight of concrete) Şekil 6. Betonun elastisite modülü ile su emme arasındaki ilişkiler (Figure 6. The relationship between elastisity modulus and water absorption) Şekil 7. Betonun elastisite modülü ile ultrases hızı arasındaki ilişkiler (Figure 7. The relationship between elastisity modulus and ultrasound velocity) 491

Şekil 8. Betonun elastisite modülü ile Schmidt çekici arasındaki ilişkiler (Figure 8. The relationship between elastisity modulus and Schmidt rebound values) Şekil 9. Betonun elastisite modülü ile basınç dayanımı arasındaki ilişkiler (Figure 9. The relationship between elastisity modulus and uniaxial compressive strength) Şekil 10. Elastisite modülü ile zeolit miktarı arasındaki ilişkiler (Figure 10. The relationship between elastisity modulus and amount of zeolite) 492

Zeolit katkılı betonların elastisite modülünü tahmin edebilmek için farklı karışım oranlarında beton örnekleri hazırlanmış ve bu örnekler üzerinde çeşitli fiziko-mekanik testler yapılmıştır. Aynı beton karışım gruplarının elastisite modül değerleri belirlenmiş ve fiziko-mekanik testlerin sonuçları ile karşılıklı grafikleri çizilmiştir. Grafiklerde en yüksek ilişkiyi veren eğilim çizgileri eklenmiş ve bu eğilim çizgilerin eşitlikleri özet olarak Tablo 7 te verilmiştir. Tablo 7. Zeolit katkılı betonların elastisite modülünün belirlenmesinde kullanılabilecek ampirik eşitlikler (Table 7. The empirical equations can be used to predict the elastisity modulus of Zeolite added concrete) Bağımlı Değişken Elastisite Modülü (E), GPa Bağımsız Değişken Kuru Birim Hacim Ağırlığı, kg/m 3 Su Emme, % P-Dalga Hızı, km/sn Schmidt Sertliği Basınç Dayanımı, MPa Zeolit Miktarı, % Sembol KBHA SE VP SH BD ZM 493 Katkı Durumu Ampirik Eşitlik Katkısız E=0.011e 2.5165KBHA 0.991 Katkılı E=0.0453e 2.013KBHA 0.974 Katkısız E=10.776SE -1.091 0.989 Katkılı E=7.2691SE -0.857 0.979 Katkısız E=91.864VP -3.789 0.994 Katkılı E=46.503VP -2.621 0.936 Katkısız E=0.3374SH -4.3816 0.992 Katkılı E=0.2502SH -3.1282 0.958 Katkısız E=0.6511e 0.05BD 0.993 Katkılı E=0.8549e 0.0043BD 0.998 Katkısız E=6.18e -0.027ZM 0.998 Katkılı E=6.9e -0.02ZM 0.965 4. SONUÇLAR (CONLUSIONS) Bu çalışma kapsamında zeolit katkılı betonların elestisite modül değerlerini pratik olarak önceden tahmin edebilmek için öncelikle Manisa ilinin Gördes ilçesinden doğal zeolit agregası ile elde edilen betonun, fiziksel ve mekanik özellikleri tespit edilmiştir. Daha sonra elastisite modül değerleri belirlenmiş ve deneysel verilere bağlı olarak eşitlikler sunulmuştur. Önerilen eşitliklerde en düşük korelasyon katsayı değeri r=0.936 ile katkılı betonların ultrases hız değerleri ile elastisite modül değerleri arasında elde edilmiştir. Bu en düşük değer bile kabul edilebilir sınır değerlerin oldukça üstündedir. Bu sonuçlar ışığında zeolit katkılı betonların elastisite modül değerlerinin fiziksel ve mekanik özellikler kullanılarak tahmin edilebilineceği görülmüştür. KAYNAKLAR (REFERENCES) 1. Baradan, B., (2004). Yapı Malzemesi II Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, No:207, ss:222, İzmir. 2. Neville, A., (1993). Properties of Concrete, ISBN 0 582-23070-5, 3 rd edition, London. 3. Postacıoğlu, B., (1987). Beton Cilt II, Teknik Kitaplar Yayınevi, Matbaa Teknisyenler Basımevi, İstanbul. 4. Okucu, A., (2004). Zeolitik Tüflerin Çimento Katkı Maddesi Olarak Değerlendirilmesi, Beton Kongresi. r

5. Breck, D.W., (1974). Zeolite Molecular Sieve; Structure, Chemistry and Use. John Wiley and Sons, New York, pp:771. 6. Demirel, H., Aksank, B. ve Öztürk. H., (1971). Zeolitin Çimento Üretiminde Kullanım Olanakarı, Türkiye Maden Bil. ve Teknik II, Ankara. 7. Mol, F., (2001). Değişik Oranlarda Pomza-Zeolit Karışımlarının Kimi Fiziksel ve Kimyasal Özellikleri, FenBilimler Enstitüsü, Yüksek Lisans Tezi. 8. Sarıkaya, H., (2006). Zeolit Katkılı Betonların Fiziksel ve Mekanik özelliklerinin Araştırılması, SDÜ Fen Bilimleri Enstitüsü, Isparta. 9. Şimşek, O., (2004). Beton ve Beton Teknolojisi, Seçkin Yayıncılık, ss:247, Ankara. 10. TS 802 Beton Karışım Hesapları, Türk Standartları Enstitüsü, Ankara, 1985. 494