Nonlineer Yükleri İçeren Enerji Sistemleri İçin Filtreli Reaktif Güç Kompanzasyonu ve Sistemin MATLAB & Simulink Modeli ile Simülasyonu

Benzer belgeler
ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

Eleco 2014 Elektrik Elektronik Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, Kasım 2014, Bursa

ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU. Sabir RÜSTEMLİ

Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması

KOMPANZASYON SİSTEMLERİNDE HARMONİKLER VE ETKİLERİ

Murat Genç Elektrik ve Elektronik Mühendisi TÜBİTAK-UZAY

GÜÇ SİSTEMLERİNDE HARMONİKLER VE HARMONİKLERİN ENGELLENMESİ

BİLGİSAYAR YÜKLERİNİN HARMONİK AKTİVİTE KESTİRİMİ VE HARMONİK ANALİZİ

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK TESİSLERİNDE HARMONİKLERİN PASİF FİLTRE KULLANILARAK AZALTILMASI VE SİMÜLASYONU

GENETEK Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti.

ENDÜSTRİYEL BİR TESİSTE DİNAMİK KOMPANZASYON UYGULAMASI

Kompanzasyon ve Harmonik Filtreleme. Eyüp AKPINAR DEÜ

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

Kompanzasyon ve Harmonik Filtreleme. Eyüp AKPINAR DEÜ

ELEKTRİK MÜHENDİSLERİ ODASI GÜÇ SİSTEMLERİNDE HARMONİKLER VE FİLTRELEMELERİN İNCELENMESİ

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

SÜRÜCÜLÜ SİSTEMLERDE ENERJİ KALİTESİ PROBLEMLERİNİN İNCELENMESİ

SODYUM BUHARLI LAMBALARIN HARMONİK AKTİVİTE KESTİRİMİ VE HARMONİK ANALİZİ

REAKTİF GÜÇ KOMPANZASYONU ve REZONANS HESAPLARI

Alçak Gerilimde Aktif Filtre ile Akım Harmoniklerinin Etkisinin Azaltılması

GENİŞ SPEKTRUMLU HARMONİK FİLTRE PERFORMANSI DEĞERLENDİRMESİ

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

Alçak ve Orta Gerilim Tesislerinde Reaktif Güç Kompanzasyonu

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

Enerji Verimliliği ve Tasarrufu açısından Kompanzasyon ve Enerji Kalitesi Çalışmaları

AC-DC Dönüştürücülerin Genel Özellikleri

Bölüm 1 Güç Elektroniği Sistemleri

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

Elektrik Güç Sistemlerinde Kalite Pasif Filtreler. Yrd. Doç. Dr. M. Mustafa ERTAY DÜZCE ÜNİVERSİTESİ

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

Pasif devre elemanları (bobin, kondansatör, direnç) kullanarak, paralel kol olarak tasarlanan pasif

BİR ALÇAK GERİLİM ELEKTRİK ENERJİ TESİSİNDE HARMONİK ÖLÇÜM SONUÇLARININ MATLAB DE SİMÜLASYONU VE PASİF FİLTRE UYGULAMASI

REAKTİF GÜÇ KOMPANZASYONU VE HARMONİKLER. Dr. Bora ALBOYACI

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi

ALTERNATİF AKIMDA EMPEDANS (PARALEL DEVRELER)

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

Amps 0. msec. msec. 2,51 5,02 7,53 10,04 12,55 15,06 17, ,5 5, 7,5 10,01 12,51 15,01 17,

Enerji Kalitesi Nedir?

Enerji Sistemleri Mühendisliği Bölümü

Üç Fazlı Sistemler ALIŞTIRMALAR

AC FREKANS KONVERTÖRLERİNİN OLUŞTURDUĞU HARMONİKLER VE HARMONİK AZALTIMI YÖNTEMLERİNİN KARŞILAŞTIRILMASI

DAĞITIM SİSTEMLERİNDE KULLANILAN AYDINLATMA AYGITLARINDAKİ HARMONİĞİN ÖLÇÜMÜ, YOKEDİLMESİ VE SİMULE EDİLMESİYLE İLGİLİ YENİ BİR ALGORİTMA

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

KOMPANZASYON SİSTEMLERİ

Güç Kalitesi Problemleri ve Çözüm Yöntemleri

İÇİNDEKİLER. ÖNSÖZ...iii İÇİNDEKİLER...v 1. GÜÇ ELEKTRONİĞİNE GENEL BİR BAKIŞ YARI İLETKEN GÜÇ ELEMANLARI...13

GÜÇ SĐSTEMLERĐNDE ENERJĐ VERĐMLĐLĐĞĐ. Đlker ĐLASLANER (Elektrik-Elektronik Yük. Müh.)- Teiaş Milli Yük Tevzi Đşletme Müdürlüğü-

Anahtarlama Modlu DA-AA Evirici

Endüstriyel Isı Santrallerinde Enerji Kalitesi Ölçümü ve Değerlendirilmesi, Kahramanmaraş Sütçü İmam Üniversitesi Örneği

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Yrd. Doç. Dr. Süleyman ADAK Mardin Artuklu Üniversitesi. İstasyon Yerleşkesi / Mardin Tel Faks.:

DENEY 25 HARMONİK DİSTORSİYON VE FOURIER ANALİZİ Amaçlar :

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

PARALEL REZONANSIN ENDÜSTRİDE TESPİTİ

3 FAZLI SİSTEMLER fazlı sistemler 1

Cihazın Bulunduğu Yer: Enerji Sistemleri Mühendisliği Bölümü B-Blok, Enerji Verimliliği Laboratuvarı

YILDIZ TEKNİK ÜNİVERSİTESİ HARMONİKLİ DEVRELERDE ENERJİ ÖLÇÜMÜ

HARMONİK FİLTRELİ VE TRİSTÖRLÜ KOMPANZASYON

DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Yüksek gerilimli doğru akım iletim sistemleri için aktif doğru akım filtresi tasarımı ve simülasyonu

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DOĞRULTUCULAR VE REGÜLATÖRLER

KOMPANZASYON ve HARMONİK FİLTRE SİSTEMLERİ

Üç-faz Tam Dalga (Köprü) Doğrultucu

Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta AA dalga şekli üretmektir.

GENETEK. Güç Sistemlerinde Harmonikler. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti.

ENDÜKTİF REAKTİF AKIM NEDİR?

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)

ELEKTRİK DEVRELERİ-2 LABORATUVARI VIII. DENEY FÖYÜ

GÜÇ KALĐTESĐ & HARMONĐK FĐLTRELEME

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

ALTERNATİF AKIMDA ANİ VE ORTALAMA GÜÇ

güç Atörleri Ans çak gerilim Al kond

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

4.4. Gerilim Kararlılığının Temel Geçici Hal Durumu

KTG - AKTİF HARMONİK FİLTRE

Transkript:

Nonlineer Yükleri İçeren Enerji Sistemleri İçin Filtreli Reaktif Güç Kompanzasyonu ve Sistemin MATLAB & Simulink Modeli ile Simülasyonu Celal KOCATEPE kocatepe@yildiz.edu.tr Ömer Çağlar ONAR conar@yildiz.edu.tr Oktay ARKAN oarikan@yildiz.edu.tr Mehmet UZUNOĞLU uzunoglu@yildiz.edu.tr Yıldız Teknik Üniversitesi, Elektrik Elektronik Fakültesi, Elektrik Mühendisliği Bölümü Anahtar Kelimeler: Nonlineer yük, pasif filtre, filtreli kompanzasyon, modelleme, simülasyon ÖZET Bu çalışmada, nonlineer yük olarak kullanılan üçfazlı tam dalga bir doğrultucunun; şebekeden çektiği akımlarının harmonik spektrumu ile bu akımların tesiste neden oldukları harmonik gerilimler MATLAB&Simulink ortamında yapılan modelleme ve analizler üzerinden incelenmiştir. Sistemden çekilen harmonik akımların neden oldukları harmonik gerilimler, sistem ve kaynak empedansından dolayı tesisteki diğer alıcıların da harmonikli gerilimlere maruz kalmalarına neden olmaktadır. Öte yandan, şebekeden reaktif güç de çeken nonlineer alıcıların bulunduğu tesislerde, harmonik filtresi uygulanmadan yapılan kompanzasyon sistemi, harmonik etkinliklerinin de artmasına neden olmaktadır. Bu çalışmada, filtresiz ve kompanzasyonsuz durumdaki reaktif güç ölçümü simülasyon ortamında gerçekleştirilerek, hem bu reaktif gücü kompanze edecek, hem de yükün harmonik etkinliklerini sınırlayacak bir filtreli kompanzasyon sistemi uygulaması gerçekleştirilmiştir. Ayrıca; sistemin ilk hali, sadece kompanzasyon uygulanması durumu ile filtreli kompanzasyon uygulanması durumundaki önemli büyüklükler karşılaştırmalı olarak verilmiştir.. GİRİŞ Elektrik güç sistemlerinin tasarımı ve işletilmesi, elektriksel büyüklüklerin 50Hz frekansındaki temel bileşenleri dikkate alınarak planlanır. İlerleyen yarı iletken teknolojileri ile birlikte elektrik güç sistemlerinde; güç elektroniği dönüştürücüleri, anahtarlamalı güç kaynakları, kesintisiz güç kaynakları, frekans dönüştürücü devreler, kontrol devreleri gibi sistemler yaygın olarak kullanılmaya başlamıştır [,, 3]. Akım-gerilim karakteristiği lineer olmayan bu elemanlar, çektikleri nonsinüsoidal akımlar nedeniyle elektrik güç sistemlerindeki akım ve gerilimlerin dalga şeklinin sinüs biçiminden uzaklaşmasına neden olurlar [, ]. Elektriksel işaretler, Fourier analizi ile içerdikleri yüksek frekanslı bileşenlerine ayrıştırılabilirler. Nonlineer elemanların neden oldukları dalga biçimi bozulmaları da, Fourier dönüşümleri ile analiz edilebilir ve enerji sistemlerinde 50Hz temel bileşen frekansının tam katı frekanslarındaki harmonik bileşenler elde edilebilir. Enerji sistemindeki yüksek frekanslı bileşenlerin genlikleri ile temel bileşenin genliği kullanılarak, gerilim ve akım dalga biçiminin bozulmasının bir ölçütü olan toplam harmonik bozulma yüzdesi (Total Harmonic Distortion, THD%), sırasıyla Eşitlik. kullanılarak elde edilebilir [,, 3]. THD n= n = ve THD n= n = (.). HARMONİKLERİN ETKİLERİ Harmonikler, sadece sistemdeki dalga biçimlerinde bozulmalara neden olmayıp, aynı zamanda güç sisteminde ve güç sistemine bağlı elemanlar üzerinde de olumsuz etkiler meydana getirmektedirler [, ].. Genel Etkiler Harmonikler, generatör ve şebeke geriliminin dalga biçiminin bozulmasının yanı sıra, elektrik güç sistemi elemanlarında ve yüklerde ek kayıpların oluşması, güç üretiminde iletiminde ve dağıtımında verimin düşmesi gibi etkilere neden olurlar. Harmoniklerin farklı güç sistem elemanları üzerindeki etkileri, Tablo. deki gibi verilebilir [4]. Tablo. Harmonik etkileri G.S.Elemanı Etki Hatlar Kayıpların artması, hat veriminin düşmesi Motorlar Gürültülü ve sarsıntılı çalışma, aşırı ısınmalar Transformatör Aşırı ısınma, frekanstan ötürü reaktansların artması ve ilave kayıplar ve reaktörler Koruma Zamansız açma veya zamansız tekrar elemanları kapama Kapasitör Aşrı reaktif güç ve ısınma, izolasyon bankları delinmesi, harmonik frekanslarında rezonansa girme riski Telefonlar Harmonik frekansına bağlı gürültüler Ölçü cihazları Güç elektroniği devreleri Aydınlatma elemanları Yanlış ölçümler Yanlış anahtarlama zamanları, kontrolsüz iletime girme ve iletimden çıkma Gürültüler, kırpışmalar, ömür süresinde kısalma

. Harmoniklerin Güç Faktörüne Etkileri Lineer devrelerde, sinüsoidal gerilim ve akım dalga biçimleri altında güç faktörü, deplasman güç faktörü olarak anılır ve Eşitlik. deki ifade ile tanımlanır [5]. P P PF = = (.) S P + Q Güç faktörünün düzeltilmesinde amaç, şebekeden çekilen reaktif gücün sınırlanmasıdır. Harmoniklerin, şebekeden çekilen harmonik reaktif güçler nedeniyle güç faktörüne olumsuz etkileri bulunmaktadır. Sinüsoidal bir şebekeye nonlineer bir eleman bağlanması durumunda çekilecek harmonik akımlar nedeniyle güç faktörü, Eşitlik. deki şekilde bulunabilir. faktörünün bu maksimum değeri, bazı sistemler için dağıtım şirketinin sınırladığı değerin üzerinde olmakla birlikte, bazı sistemler için bu sınır değere ulaşmadan kapasite değerinin artmasıyla azalmaktadır. Bu durumda güç faktörünü iyileştirmek için filtreli kompanzasyon uygulaması yapmak şarttır. Öte yandan, filtre kullanılmadan yapılan kompanzasyon uygulamalarında, sistemdeki akım ve gerilim distorsiyon değerleri de artacaktır [6]. 4. SAYSAL UYGULAMA Bu çalışmada; harmonik etkilerini, harmonikli devrelerde reaktif güç kompanzasyonunu ve pasif filtre uygulamasını incelemek için Şekil 4. de verilen sistem ele alınmıştır.. PF = N. n=.cos ϕ / n =.cos ϕ (.) Şekil 4. Örnek sistemin tek hat diyagramı Burada birinci terim akımın distorsiyon faktörü olarak, ikinci terim ise kayma faktörü olarak adlandırılır. Nonsinüsoidal devrelerde birinci terim daima den küçük olacağı için güç faktörü sinüsoidal durumdaki güç faktörü değerinden küçük olacaktır. Dolayısıyla, harmoniklerin güç faktörünü düşürücü özelliği bulunmaktadır [5, 6]. 3. HARMONİKLİ SİSTEMLERDE REAKTİF GÜÇ KOMPANZASYONU Harmonikli sistemlerde güç faktörü düzeltilmesi belli sınırlar içinde mümkün olmaktadır. Devreye bağlanacak kondansatör kapasitelerinin artırılması ile güç faktörü belli bir değere kadar artacak, daha sonra ise kapasitelerin artmasına rağmen güç faktörü azalacaktır [3, 5, 6]. Sinüsoidal kaynak ve nonlineer yüklere sahip devrelerde, reaktif güç kompanzasyonu uygulandığında güç faktörü, Eşitlik 3. de verilen ifade ile tanımlanabilir [6]. Bu sistemde B barası, 35k luk şebekeyi gistermektedir ve bu baraya indirici bir transformatör bağlıdır. Transformatörden sonra yer alan bir hat empedansı üzerinden B barasına bağlı yükler beslenmektedir. Nonlineer yükün çektiği akım B4 ve lineer yüklerin çekikleri akım da B3 olarak gösterilmiştir. Dolayısıyla B akımı, sistemdeki yüklerin çektikleri toplam akım olacaktır. 4. Sistemin MATLAB & Simulink Modeli Yukarıdaki başlık altında verilen sistem üzerinde elektriksel analizleri gerçekleştirmek amacıyla lineer yükler paralel RL devreleri ve nonlineer yük de ise RL yükünü besleyen 3-fazlı tam dalga doğrultucu devre olarak modellenmiştir. Sistemin analizini gerçekleştirmek için, dinamik sistem simülasyonları için çözümler sunan Simulink ve SimPowerSystems ürünleri kullanılmıştır [7, 8]. GF = ω C +.cos ψ.. ωc sin ψ h + Yh (3.) Bu ifadeden güç faktörünü maksimum yapan kondansatör kapasitesi, dgf/dc=0 ifadesinden, C k sin ψ = (3.) ω. Bulunan optimum kondansatör değerinin Eşitlik 3. de yerine konulması ile maksimum güç faktörü bulunabilir. Böyle devrelerde güç faktörü, kompanzasyon kondansatörleri değerinin C k nın üzerine çıkması halinde azalacaktır [6]. Güç Şekil 4. Sistemin MATLAB& Simulink modeli Üç fazlı tam dalga doğrultucular; şebekeden kare dalgaya benzer (harmonik distorsiyonlu) akımlar çekerler [9]. Girişine fazlararası 380 uygulanan doğrultucu devre, DC yüklerin 3Ω ve 6mH olması

halinde dalga biçimi Şekil 4.3 te verilen akımı şebekeden çekecektir. Şekil 4.3 Nonlineer yük akımı Bu dalga biçiminin frekans sprektrumu, FFT analizi ile Şekil 4.4 te gösterildiği şekilde elde edilmiştir. Söz konusu gerilim distorsiyonu, aynı baraya bağlanacak başka yüklerin de harmonikli gerilimlere maruz kalmalarına neden olacaktır. Aynı zamanda harmonikler, transformatör ve hat kayıplarının da artmasına neden olacaktır. Tablo 4. de; simülasyonlar neticesinde bu sistem için belli başlı noktalarda elde edilen akım ve gerilim değerleri, bu büyüklüklerin THD leri ve çekilen aktif reaktif güç miktarları verilmiştir. (erilen büyüklükler ve çekilen güçler sistemin bir fazına aittir.) Tablo 4. Sistem simülasyonu sonuçları ve %THD P B 39.79 kw B4 7.7A 5.58 Q B 8.8 kar B 05.8A 5.5 P B 4.8 kw B.35A 5.4 Q B 0.77 kar B 3.6 5.0 P kyp 3.0 kw B 0.9k FN 0..96 kar Q kyp 4. Kompanzasyonlu Durumda Sistem Ele alınan sistemde şebekeden çekilen reaktif güç ihtiyacını sınırlandırmak amacıyla, şebekeden çekilen reaktif güç miktarı göz önüne alınarak bir faz için Q C =7kAr kapasitif reaktif güç sağlayan kompanzasyon kondansatörleri mevcut sisteme Şekil 4.7 deki gibi bağlanmıştır. Şekil 4.4 Nonlineer yük akımının frekans bileşenleri Sistemde bulunan lineer elemanların çektikleri sinüsoidal akımların da bu akıma eklenmesi ile birlikte, B barasından çekilen toplam akımın dalga biçimi ve THD değeri Şekil 4.5 te verilmiştir. Şekil 4.7 Kompanzasyonlu durumda sistem Şekil 4.5 B barasından çekilen akımın dalga biçimi Sistemden çekilen nonlineer akımların; kaynak, transformatör ve hat empedanslarından dolaşması nedeniyle sistem baralarında da gerilim distorsiyonları oluşacaktır. Bu sistem için B barasındaki gerilim dalga biçimi ve THD değeri Şekil 4.6 da gösterilmiştir. Sistemin reaktif güç ihtiyacı dikkate alınarak düzenlenen bu kompanzasyon tesisi ile B barasından çekilen reaktif güç sınırlanmış ve sistemin güç faktörü düzeltilmiştir. Şekil 4.8.a ve Şekil 4.9.b de, kompanzasyonlu ve kompanzasyonsuz durumda B barasından çekilen aktif ve reaktif güçler verilmiştir. Şekil 4.6 B barasının gerilim dalga biçimi Şekil 4.8.a B barası aktif, reaktif güçler

kompanzasyonlu durumda elde edilen değerleri verilmiştir. Tablo 4. Sistem simülasyonu sonuçları ve %THD P B 4.4 kw B4 9.6A 7.39 Q B 6.96 kar B 05.3A 5.65 P B 43.83 kw B.7A 34.8 Q B kar B 7.3 9.0 P kyp.59 kw B 0.0k FN 0.05 Q kyp -4.96 kar Şekil 4.8.b B barası aktif, reaktif güçler Güç faktörü düzeltilen bu sistemde filtre kullanılmadan yapılan reaktif güç kompanzasyonu uygulamasında, sistemin birçok noktasından ölçülen büyüklüklerin harmonik bozulmaları artmaktadır. Örnek olarak ilk sistemde B barasından çekilen akım için THD=%5.4 iken, kompanzasyon uygulanması durumunda toplam akım bozulması %34.8 değerine yükselmiştir. Bu akımın dalga biçimi Şekil 4.9 daki gibi elde edilmiştir. Şekil 4.9 Kompanzasyonlu durumda B akımı Bu durumda B barasındaki gerilim distorsiyonu da %5.0 değerinden %9.0 değerine yükselmiştir ve dalga biçimi Şekil 4.0 daki gibi elde edilmiştir. Şekil 4.0 Kompanzasyonlu durumda B gerilimi Sonuç olarak, kompanzasyonlu durumda güç faktörü ve gerilim düşümleri konularındaki problemler kısmen giderildiyse de sistemin birçok noktasından ölçülen büyüklüklerin distorsiyon değerleri artmıştır. Tablo 4. de, Tablo 4. de verilen büyüklüklerin Kompanzasyon durumunda, hat sonundaki yüklerin reaktif güç ihtiyaçları kompanzasyon kondansatörü tarafından sağlandığı için B barasından daha az reaktif güç çekilmektedir. 4.3 Filtreli Kompanzasyon Durumunda Sistem Nonlineer yüklerin bulunduğu sistemlerde filtresiz yapılan kompanzasyon, sistemdeki akım ve gerilim bozulmalarını artırdığı ve hatta bazı durumlarda sistemin güç faktörünü de düzeltmekte yetersiz kaldığı için çoğu zaman filtreli kompanzasyon uygulanması gerekebilir [0, ]. Filtreli kompanzasyon uygulanacak bir sistem için, sistemin reaktif güç ihtiyacı göz önüne alınarak toplam bir kapasitif reaktif güç tayin edilir. Daha sonra, kullanılacak bu reaktif güç değeri uygulanacak filtre bloğu sayısına paylaştırılarak ilgili kapasite (C) değerleri hesaplanır. Bu kapasite değerleri kullanılarak, ilgili ayar frekansında rezonansa girecek endüktans değerlerinin de bulunmasından sonra, belirlenecek bir kalite faktörüne (Q) göre filtre devresinin direnci hesaplanır [,3]. Örnek sistemdeki nonlineer yükün karakteristiği gereği, sistemde etkin olan harmonik dereceleri 5, 7,, 3 ve 7 dir. Daha yüksek frekanslardaki harmonik bileşenlerin genlikleri, frekans yükseldikçe azaldığı için ihmal edilebilir ve bu frekans bileşenleri için filtre uygulamak ekonomik olmaktan çıkar. Böyle bir sistem için çift ayarlı harmonik filtre devresi için referans 4 teki tasarım eşitlikleri kullanılarak 5., 7. harmonikler için ve., 3. harmonikler için birer çift ayarlı filtre geliştirilebilir. Çift ayarlı filtreler, iki ayrı frekans değerinde rezonans etkisi göstererek ilgili frekansları kapsayan bantlar içinde düşük empedans özelliği gösterirler. Bu sayede, düşük empedans özelliği gösterdikleri frekanslardaki bileşenleri toprağa aktararak şebekeden çekilen akımları ve yük barasındaki gerilimleri düzeltirler. 7. ve daha büyük dereceli harmonikler için de köşe kesim frekansı 7 50=850Hz olan bir yüksek geçirgen filtre kullanılabilir. Bu filtre de, 850Hz ve üzerindeki frekansların geçişine müsaade eden bir filtredir ve söz konusu yüksek frekans bileşenlerini toprağa aktarır. Yukarıda belirtilenler uyarınca geliştirilmiş iki adet çift ayarlı filtre ve bir adet yüksek geçiren filtre uygulandığı durumda, filtre devrelerinin ve sistemin yeni yapısı Şekil 4. de verilmiştir.

Şekil 4. Filtreli kompanzasyon uygulanması Filtreli kompanzasyon uygulanması durumunda, hem sistemin güç faktörü düzeltilecek hem de sistemden ölçülen büyüklüklerin distorsiyonları azaltılacaktır. Örnek olarak B barasından çekilen akımın dalga biçimi ve distorsiyon değeri Şekil 4. de verilmiştir. Şekil 4. Filtreli kompanzasyon durumunda B akımının değişimi Yük barası gerilimi dalga biçimi ve distorsiyon değeri Şekil 4.3 te verilmiştir. Şekil 4.3 Filtreli kompanzasyon durumunda B geriliminin değişimi Bu sistem için filtre devleri ile toprak arasında ölçülen eşdeğer empedansın frekansa göre değişimi, Şekil 4.3 te incelenmiştir. 350Hz 50Hz 550Hz 650Hz 850Hz Şekil 4.4 Filtre devresinin empedans-frekans diyagramı Filtreli kompanzasyon uygulanması durumunda sistemden ölçülen büyüklükler Tablo 4.3 te verilmiştir. Tablo 4.3 Sistem simülasyonu sonuçları ve %THD P B 4.5 kw B4 3.A 7.6 Q B 7.78 kar B 9.8A 4.4 P B 44.54 kw B.05A 4. Q B.5 kar B 9..08 P kyp.9 kw B 0.k FN 0.0 Q kyp -6.8 kar 5. SONUÇLAR Enerji kalitesi kriterlerinden birisi olan harmonikler, enerji sistemleri için önemli problemlere neden olabilmektedir. Harmonikli sistemler için kompanzasyon ve filtreli kompanzasyon uygulamalarının karşılaştırmalı olarak incelendiği bu çalışmada elde edilen sonuçlar şöyle sıralanabilir. Sistemin kompanzasyonu yapılmadan önce, harmonik bileşenlerin ölçümü yapılmalı ve mutlaka standart değerler ile karşılaştırılmalıdır. Mühendislik çözümlerinde pratik analizler sunan modelleme ve analiz yazılımları (MATLAB, EMTP, vb.) kullanılarak, sistem üzerinde gerçekleştirilecek değişikliklerin etkisi önceden gözlenebilir ve uygun parametre seçimi yapılabilir. Nonlineer yükleri içeren sistemlerde, güç faktörünün düzeltilmesi için yapılacak kompanzasyon uygulaması, sistemden ölçülen elektriksel büyüklüklerin distorsiyonunu artıracaktır. Harmonikli devrelerde sadece kapasite ile gerçekleştirilen kompanzasyon, güç faktörünü istenilen değerlere ulaştıramamaktadır. Güç faktörünün artışı ile, sistemdeki distorsiyon da artış göstermektedir. Bu nedenle nonsinüsoidal şartlar altında, filtreli kompanzasyon en uygun çözümü sunmaktadır. 6. TEŞEKKÜR Bu çalışma, Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğünün,. 4 04 0 0 no.lu ve,. 4 04 0 03 no.lu projeleri kapsamında desteklenmektedir. 7. REFERANSLAR [] Kocatepe, C., Uzunoğlu, M., Yumurtacı, R., Karakaş, A., Arıkan, O., Elektrik Tesislerinde Harmonikler, Birsen Yayınevi, İstanbul 003, SBN:975-5-354- [] Smith, C., Power Systems and Harmonic Factors, EEE Potentials, 00 EEE [3] Arrilaga, J., Bradley, D. A., Bodger, P. S., Power System Harmonics, John Wiley & Sons, Norwich 985, SBN: 0-47-90640-9 [4] Holland, M., Fundementals on Harmonics, EEE/PCA Cement ndustry Technical Conference, Roanoke, A, April 999 [5] Kneschke, T. A., Distortion and Power Factor of Nonlinear Loads, Power Engineering Society Summer Meeting [6] Shepherd, W., Zand, P., Energy Flow and Power Factor in Nonsinüsoidal Circuits, Cambridge University Press, 979 [7] SimPowerSystems For Use with Simulink, User s Guide ersion 4, Hydro- Québec TransÉnergie Technologies, The MathWorks nc. [8] Uzunoğlu, M., Kızıl, A., Onar, Ö. Ç., Her Yönü ile MATLAB, Türkmen Kitabevi, İstanbul 003, SBN: 97563907x [9] Talib, S. A., Bahsi, S. M., Mailah, N. F., Simulation and Analysis of Power Converter Harmonics, EEE Conference on Reearch and Development Proceedings, Shah Alam, Malaysia 00 [0] Czarnecki, L. S., Minimization of Reactive Power Under Nonsinusoidal Conditions, EEE Trans. Meas., M-36, (), pp. 8-, 987 [] Chou,. S., Liu, C. W., Chou, C. J., Hsiao, Y., T., Huang, T. L., Designing Harmonic Fitlers in ndustrial Power Systems, ndustry Applications Conference, Conference Record of the 996 EEE, ol. 3, 6-0 Oct. 996 MATLAB, Simulink ve SimPowerSystems; The Mathworks nc. Firması nın tescilli ürünleridir.