Öğr.Gör. Dr. Bülent ÇOBANOĞLU

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Öğr.Gör. Dr. Bülent ÇOBANOĞLU"

Transkript

1 Öğr.Gör. Dr. Bülent ÇOBANOĞLU B

2 'Bilgisayar' terimi, latincede hesaplamak anlamına gelen 'computere' kelimesinden üretilen 'computer' sözcüğünün Türkçe'ye çevrilmesinden gelmektedir. Bilgisayar sistemleri iki temel öğeden oluşmaktadır. Bunlar; yazılım ve donanımdır. Her ikisi de birbirinin tamamlayıcıdır, birisi olmazsa diğeri pek bir anlam ifade etmez. Bilgisayarın gözle görülen, elle dokunulan fiziksel parçalarına donanım, donanıma hayat veren onun çalışmasını sağlayan her türlü program ise yazılım olarak adlandırılır.

3 Mikrobilgisayar kavramını tanıyacak Bir mikrobilgisayar sistemi, klasik bilgisayar sistemleri gibi ve aşağıdaki blok şemadaki görülen mikroişlemci, bellekler, giriş-çıkış birimleri ve her birimi birbirine bağlayan yollardan oluşur. Ancak bu birimler mikrobilgisayarlar için farklı donanımlarla gerçekleştirilebilir. Örneğin bir mikrobilgisayar sisteminde genellikle geleneksel bir klavyeden daha çok tuş takımları, bir ekrandan daha çok LED veya bir kaç satırlık LCD göstergeler bulunur. Giriş ve çıkışları da PCI, PCI-E, SATA gibi gelişmiş portlardan ziyade 8-bitlik paralel portlar, USB veya RS232 gibi seri portlardır. Temel Bilgisayar Sisteminin Bileşenleri Bellek birimleri de son derece küçük boyutta (Kilobayt) olup hızları da (10-40Mhz) PC belleklerin yanında çok düşük kalır. Mikrobilgisayarlarda kullanılan mikroişlemci de düşük hızlarda çalışan bir işlemcidir ve genellikle hızları bir kaç 100Mhz den fazla olamaz.

4 Mikrobilgisayar kavramını tanıyacak Mikrobilgisayar terimi 1980li yıllardan önce küçük boyutlu bilgisayarları (PC, Commodore 64, Apple II) ifade etmek için kullanılsa da, VLSI (Very Large Scale Integrated Circuit- Çok Geniş Ölçekli Tümleşik Devre) tasarım ve üretim tekniğinin gelişmesi ile farklı bir tasarım mimarisine kavram olarak hizmet etmeye başlamıştır. Günümüzde de kullandığımız kişisel bilgisayarların (PC) mikro bir modeli olan mikrobilgisayarlar; tek bir çip içerisinde bilgisayar yeteneklerinin düşük performanslı olarak bir araya getirilmesini ifade eder. Doğal olarak bir bilgisayarın bir çipe sığdırılmasında bazı parametrelerden feragat etmek zorunludur. Bu parametrelerin başında da kapasite ve hız gelir. Bu yüzden mikrobilgisayarlar, sadece bir veya bir kaç belirlenmiş görev için tasarlanan gömülü sistemlerde (embedded systems) kullanılır. Mikrobilgisayarlardan mikroişlemcili genel bir bilgisayarın (PC) yeteneklerini beklemek mantıklı değildir. Ancak özellikle cep telefonu ve avuç-içi bilgisayar alanındaki teknolojik gelişmeler, mikrobilgisayarların kullanım alanlarını süratle artırmaktadır.

5 Mikroişlemci ve Mikrodenetleyici kavramlarını ayırt edebilmek MİKROİŞLEMCİ Mikroişlemci bir bilgisayar sisteminde programların işletilmesinden sorumlu olan ve tüm bileşenleri merkezi şekilde kontrol eden tümleşik devredir. Aşağıdaki şekilde görüldüğü gibi, temel dört birimden oluşur: ALU: Aritmetik ve mantıksal hesaplamalardan, transferlerden, kaydırmalardan sorumlu olan işlemcinin en önemli birimidir. ALU içerisindeki yazmaçlar ile mikroişlemcinin kaç bitlik bir işlemci olduğu belirlenir. Kontrol birimi: Tüm işlemlerin sırasını belirler ve gerekli denetim işaretlerini üretir. Aynı zamanda bellekten okunan kodların çözümü de bu birimde yapılır Kaydediciler: Hesaplama ve transfer için gerekli olan değerlerin tutulduğu kaydedicilerdir. Sayıları her mikroişlemci ailesi için farklı olabilir. Dahili Yollar: Mikroişlemci içindeki tüm birimlerin veri alışverişini ve birimlerin kontrolünü sağlamak için birimleri birbirine bağlayan yollara denir. Adres, veri ve kontrol yolları olarak üç tiptir. Yolların bit genişliği mikroişlemcilere özeldir. Bununla birlikte, günümüz mikroişlemcileri cep bellek (cache), grafik hızlandırma birimleri (MMX), matematik işlemci birimi (FPU) ve diğer birimleri de içermektedir.

6 Mikroişlemci ve Mikrodenetleyici kavramlarını ayırt edebilmek Veri,adres ve kontrol yolu Kontrol Birimi ve Kod Çözücü ALU Kaydediciler Veri,adres ve kontrol yolu Merkezi İşlem Biriminin iç yapısı Dikkat: Mikroişlemci ile Merkezi İşlem Birimi (MİB, CPU) aynı kavram değildir. Temel mikroişlemci birimleri ile MİB birimleri aynı birimleri kapsamaktadır. Ancak mikroişlemci daha kapsamlı bir kavramdır. Bu iki terim birbirinin yerine kullanılmakla birlikte ifade ettikleri kavramlar farklı birimleri içerebilir.

7 Mikroişlemci ve Mikrodenetleyici kavramlarını ayırt edebilmek MİKRODENETLEYİCİ Mikrodenetleyici kavramı hem MİB hem de mikroişlemci kavramlarını içermektedir. Mikrodenetleyici kavramı aynı zamanda mikrobilgisayar kavramı ile örtüşmektedir, çünkü mikrodenetleyici çevresel birimleri de içeren bir mikrobilgisayardır. Mikrodenetleyiciler yukarıdan da görüldüğü gibi temel bir bilgisayar sisteminde bulunması gereken mikroişlemci, RAM (veri belleği), ROM (program belleği) birimleri yanında Giriş/Çıkış portları, osilatör ve zamanlayıcı/sayıcı birimlerini de kapsayabilmektedir.

8 MİKRODENETLEYİCİ Mikro denetleyici (Microcontroller, MCU veya µc ), işlemci (CPU), hafıza (RAM/ROM) ve giriş-çıkış (I/O ports) birimlerinin tek bir entegre paketi içerisine yerleştirilmesi ile gerçekleştirilmiş özel amaçlı bir mikro bilgisayardır. Günümüzde üretilen birçok mikro denetleyici, özellik ve türlerine göre PWM, ADC, USB, USART, CAN, SPI, I 2 C gibi ara birim ve özel amaçlı kaydedicilere de sahiptir. Günümüzde entegre üretimi yapan birçok firma (Intel, Atmel, Michrochip, National Semiconductror, Texas Instruments, vb.) mikro denetleyici üretmektedir. Mikro denetleyiciler birbirlerinden sahip oldukları üniteler(adc, PWM, Zamanlayıcı, SPI, vb), giriş/çıkış bacak sayıları, çalışma hızları, veri ve program yolu genişliği, bellek kullanım şekilleri açılarından farklılıklar arz etmektedirler.

9 Mikro denetleyici temel bileşenleri Bir mikro denetleyici genel olarak aşağıdaki birimlerden oluşur: 1. Mikroişlemci 2. Bellek 3. Giriş/çıkış birimi 4. Saat darbe üretici Formülize edersek; MCU = CPU + RAM/ROM + I/O portları + Saat darbe üreteci

10 Mikroişlemci ve Mikrodenetleyici kavramlarını ayırt edebilmek Mikrodenetleyici temel olarak dört bileşenden oluşur: 1-MİB (Merkezi İşlem Birimi): CPU( Central Processing Unit) olarak bilinen işlemci çekirdeği programın çalışması için gerekli aritmetik ve mantıksal işlemleri yürütür. Çekirdek aynı zamanda bellek ünitelerindeki verileri okur veya depolar. Mikrodenetleyici çekirdeği saklayıcılar, Aritmetik Mantık Birimi (ALU-Arithmetic Logic Unit), sayıcılar, yığın işaretçisi/göstericisi gibi fonksiyonel birimlerden oluşmaktadır. 2- Bellek birimleri: ROM program kodunun depolandığı, RAM ise geçici veya program verilerinin depolandığı bellek türüdür. RAM bir bakıma mikrodenetleyicinin kullandığı bir çeşit müsvedde kağıttır. Bu bellek sürekli yazılır ve silinir; ancak ROM bellek bir kere programlandıktan sonra programın çalışması boyunca değiştirilmez (IAP Uygulama Esnası Programlama teknolojisi hariç). 3-Giriş/çıkış birimi :Mikrodenetleyiciden dış dünyaya giden sinyallerin gönderilmesinde veya dış dünyadan mikrodenetleyiciye gelen sinyallerin alınmasında kullanılır. 4-Saat darbe üretici: Tümdevre içerisindeki birçok fonksiyonel birimin senkronize bir şekilde çalışması için gerekli olan saat işaretini üretir.

11 Mikro denetleyici temel bileşenleri

12 Mikro denetleyici temel bileşenleri

13 Mikro denetleyici uygulama devresi bileşenleri Bir PIC mikro denetleyici ile uygulama gerçekleştirebilmek için ; Besleme devresi, Reset sinyali, Osilatör devresi, Uygulama devresi elemanlarına İhtiyaç vardır.

14 Mikroişlemci ve Mikrodenetleyici kavramlarını ayırt edebilmek Mikrodenetleyiciler: Yalnız başlarına çalışabilirler Tek-tümdevre elemandırlar Sistem kararları genellikle harici sinyallere bağlıdır Elektronik bir cihazın davranışlarını denetlerler Bir devrenin beyni konumundadırlar. Genel olarak bir mikrodenetleyici aşağıdaki birimlerden oluşmaktadır: Bir mikroişlemci çekirdeği (CPU) Program ve veri belleği (ROM, RAM) Giriş/Çıkış (I/O) birimleri Saat darbesi üreteçleri Zamanlayıcı/Sayıcı birimleri Kesme kontrol birimi A/D ve D/A (Analog/Dijital Dijital/Analog) çeviriciler Darbe genişlik üreteci (PWM) Seri Haberleşme Birimi (UART, RS-232, CAN, I2C vb.) Diğer çevresel birimler Mikrodenetleyiciler, harici işaretleri temel alarak sistem kararlarını verebilecek tüm donanımlara sahiptirler. Diğer bir değişle, bir mikrodenetleyici özel bir elektronik sistem veya bir cihazın, fonksiyon ve davranışlarını kontrol etmede bir beyin gibi rol oynar

15 Mikro denetleyici Kullanım Alanları Mikro denetleyici uygulama alanlarına veya mikrodenetleyicilerin kullanıldığı cihazlara örnek olarak; yalnızca evimizde kullandığımız buzdolabı, çamaşır ve bulaşık makineleri, mikrodalga fırın, TV, video, vb cihazlar değil, kullandığımız otomobildeki motor kontrol ünitelerini, ABS fren sistemlerini ve hız sabitleyicileri (cruise control) ile birlikte modern yaşamın parçası olarak gördüğümüz dijital kameralarını, cep telefonlarını, telefon ve faks cihazlarını, lazer yazıcıları, fotokopileri, vb cihazları sıralayabiliriz.

16 Mikro denetleyici seçimi Başlangıçta 'Intel' ve 'Texas Instruments' firmaları tarafından üretilen mikrodenetleyiciler günümüzde, birçok firma { Motorola, Microchip, Hitachi, Siemens, AMD, Intel, Atmel, Dallas Semiconductor, vb.} tarafından üretilmektedir. Entegre üretimi yapan birçok firma aynı zamanda mikro denetleyici de üretmektedir. En büyük iki üretici olan Microchip ve Motorola yı NXP(Philips) ve Texas, National, Renesas (Hitachi), Atmel ve diğerleri izlemektedir. Yaşanan teknolojik gelişmelerin yanında, firmalar arası rekabet de mikrodenetleyici fiyatlarının önemli ölçüde ucuzlamasını sağlamıştır. Fiyatlarının düşmesine paralel olarak içerdikleri özel fonksiyonel birimlerin çeşit (A/D çevirici, EEPROM bellek, CAN ve I2C seri haberleşme, ve farklı sensorlar) ve sayılarının artması daha ekonomik, hızlı ve esnek sistemlerin tasarlanabilmesi sonucunu doğurmuştur. Günümüzde yaygın olarak kullanılan mikro denetleyiciler ve üretici firmaları şunlardır; * Motorola tarafından geliştirilen 68HC serisi. * Atmel tarafından geliştirilen AVR serisi. * Intel tarafından geliştirilen 8051 veya MSC-51 ailesi. * Microchip firması tarafından geliştirilen PIC mikro denetleyici ailesi. * Texas Instruments firması tarafından geliştirilen MSP430 ve ARM ailesi Her mikro denetleyici üreticisi, ürün yelpazesinde birçok farklı mikro denetleyici bulundurmaktadır. Bu kadar çok çeşit içinden hangisinin seçileceğine karar vermek için mikro denetleyicilerin genel özelliklerini bilmek gerekir.

17 Mikro denetleyici seçimi * Farklı üreticiler tarafından üretilen mikro denetleyicilerin çekirdekleri/mimarileri de farklı yapıda ve özellikte üretilmektedir. Mikro denetleyiciler arasında aşağıdaki farklar bulunabilir: * Mimari farkı: Harvard, Von Neuman. * Kelime genişliği: 4, 8, 16, 32, 64 bit. * Komut setleri: RISC, CISC komut işleme tekniği. * Kaydedici çeşitleri ve sayıları, * Adresleme yöntemleri. * Kesme sayıları ve özellikleri. * Hız / güç / boyut özellikleri, * Çalışma frekansları * Gerekli çevresel birimler (USART,CAPTURE/COMPARE/PWM CCP modülü vs) * Programlama dilleri çeşitliliği (Basic, C, Pascal, Assembly, vs) Hangi üreticinin seçileceği konusunda genellikle tasarımcılar komut setini, programlamasını ve programlama için gerekli programları iyi bildikleri üreticiyi seçmektedir. Zaten her üreticinin bir ürünü için, bir başka üreticinin ürettiği hemen hemen aynı işi yapacak bir ürün bulunabilmektedir. Hangi üreticinin seçileceğine karar verildikten sonra sıra o üreticiye ait hangi mikrodenetleyicinin seçileceğine gelmiştir.

18 Mikro denetleyici seçimi * Piyasada birçok mikro denetleyici üreten firma olduğundan bahsetmiştik. Bunlar içinde neden Microchip firmasının ürettiği PIC'lerin seçildiği sorusu akla gelebilir. * Bunun en temel sebebi Microchip firmasının web sayfalar ı üzerinden sağladığı teknik destektir. Tüm mikrodenetleyicilere ilişkin ayrıntılı bilgiler ve farklı mikrodenetleyiciler ile yapılmış, farklı uygulama örnekleri firma tarafından ücretsiz olarak dağıtılmaktadır. Hepsinden önemlisi, firma devamlı geliştirme kte olduğu MPLAB adlı simülasyon programını da ücretsiz olarak dağıtmaktadır. Böylece PIC programlamak isteyen bir kişi, assembly editor, derleyici, simülatör ve programlayıcı ihtiyaçlarının hepsini tek bir program ile ve ücretsiz olarak gidermiş olmaktadır. Ayrıca bir çok programlama dili ile PIC programlayıcı programlanabilmektedir. * Firmanın sağladığı bu desteğe bağlı olarak gelişen bir başka avantaj ise, bu konu ile ilgili kaynağın çok olmasıdır.

19 Mikroişlemci ve Mikrodenetleyici kavramlarını ayırt edebilmek Mikrodenetleyiciler hakkında bazı yanlış kanılar birçok insanın bu alanı uzmanlara bırakmalarına neden olmuştur. Bunlardan bazıları şunlardır: Öğrenilmelerinin uzun bir süreci gerektirmesi Geleneksel dijital entegrelerden pahalı olması Çok pahalı geliştirme ve destek cihazlarına ihtiyaç duyması Üretici firmalardan yakın destek alınamaması Zor ve özel şartlar için geliştirilmiş örneklerin kolayca elde edilememesi Tek elemanlı çözümlerin gerçekleştirilmesinin zor olması ve harici elemanlara olan ihtiyaç Bu kanıların birçoğu teknolojik gelişmelerin sonucu olarak artık tarihe gömülmüştür. Örnek olarak, şu anda piyasada satılan bazı mikrodenetleyicilerin fiyatları çok basit fonksiyonlu geleneksel sayısal tümdevrelerden daha da ekonomik hale gelmiştir. Buna bağlı olarak mikrodenetleyicilere ait geliştirme donanımları (emulatörler, lojik analizörler) ve yazılımları (derleyiciler, simülatörler ve kaynak kodu analizörleri) çok daha ucuza alınabilir hale gelmiştir. Artık kaliteli bir C dili derleyicisi 500 $ civarında elde edilebilmektedir. Bundan 10 yıl öncesi böyle bir kolaylık ve maddi erişilebilirlik söz konusu değildi.

20 1) Mikrodenetleyici ve mikroişlemci arasındaki fark nelerdir? 2) Bir mikrodenetleyicinin temel birimleri nelerdir? 3) Mikrodenetleyicilerin popüler olma sebepleri nelerdir? 4) Mikrodenetleyici seçiminde dikkat edilecek kriterleri listeleyiniz? 5) Mikrodenetleyicili sistemlerin endüstriyel alanlarda kullanılırken karşılaşılabilecek zorlukları ve uygulama sınırlandırmalarını maddeler halinde yorumlayınız? 6) Niçin PIC MCU ları tercih ederiz?

21 Bilgisayar Mimarisi kavramını açıklayabilmek Mikroişlemcili bir sistemde bulunan mikroişlemcinin temel işlevi; işlenen ve kullanılan verileri birimler arasında iletme, iletilen verileri işleme, verileri bir durumdan diğerine çevirme ve verileri uygun yerde saklamadır. Verileri iletme/işleme işlevlerini gerçekleştiren ve bir programın mantıksal çalışmasına doğrudan etki eden mikroişlemcinin mimarisini; mikroişlemci içerisinde bulunan birimlerin özellikleri, yapıları, birimler arasında oluşan veri iletimi ile verilerin saklanma şekli ve mikroişlemcide kullanılan komut seti belirler. Diğer bir değişle, mikroişlemci mimarisi; mikroişlemci kapasitesi, bellek yapısı ve tasarım felsefesi tarafından şekillendirilir. Mikroişlemcinin kapasitesi; mikroişlemcide bulunan birimlerin özellikleri, kaydedici sayısı, kaydedicilerin büyüklüğü, kullanılan yollardaki hat sayısı, kayar noktalı hesaplama birimi, vb. etkenler tarafından belirlenir. Mikroişlemci bellek yapısı; bellek bölgelerinin sayısı, her bir bellek bölgesinde saklanabilecek bit sayısı, adreslenebilecek toplam bellek bölgesi sayısı ve bir bellek bölgesine erişim şekline göre tanımlanır. 21

22 Bilgisayar Mimarisi kavramını açıklayabilmek Mikroişlemcinin tasarım felsefesi; Komut Kümesi-yazılım Mimarisi (Instruction Set Architecture ISA) ve Donanım Sistem Mimarisi (Hardware System Architecture HSA) ölçütlerine göre farklılık arz eder. Mikroişlemci tarafından kullanılan komut yapısı ve sayısı, yani komut seti ve komut setinde bulunan komutların özellikleri bakımından iki tür mimari ön plana çıkmıştır: Karmaşık komut kümeli mikroişlemciler (Complex Instruction Set Computers CISC) Azaltılmış komut kümeli mikroişlemciler (Reduced Instruction Set Computers - RISC) Mikroişlemcinin bellekleri kullanım şekli ve bellek yapısı da farklı iki mimariye yön vermiştir: Von Neuman Mimarisi (Tümleşik Tek bellek) Harvard Mimarisi (Yalıtılmış Çift bellek) Mikroişlemcileri yukarıdaki ölçütlerin dışında da sınıflamak mümkündür. Örneğin bit sayısı, çekirdek sayısı, güvenirlilik, dayanıklılık, enerji verimliliği gibi bir çok parametre kullanılarak sınıflandırma yapılabilir. Ayrıca bu mimarilerin dışında da bir çok mimari türü mevcuttur. Ancak bir mikroişlemcinin performansını ve çalışma şeklini belirleyen en önemli kriterler bellek kullanımı ve komut yapısıdır. 22

23 RISC ve CISC mimarilerinin farklarını sayabilmek Bellek gereksiniminin en aza indirilmesini sağlayan temel CISC mimarisi mikroişlemcinin karmaşıklığını artırsa da ve mikroişlemci performansının düşmesine neden olsa da, programlama işlemlerini basit hale getirmektedir. Bu mimaride mikroişlemci çok sayıda komut içerir ve her eylem için bir komut tanımlanmıştır. CISC mimaride "donanım yazılımdan hızlıdır" prensibi geçerlidir. Böylece CISC işlemciler karmaşık kodları çözmek için daha yoğun donanım kullanırlar bu da çipin maliyetini artıran bir unsurdur. Ayrıca daha fazla güç de tüketirler. Karmaşık yapıda ve farklı uzunluktaki komutlara sahip olan CISC mimarisi, birden fazla işlem ile ilgili emirleri bir komut içerisine yerleştirmesi nedeni ile komut sayısında ve gerekli bellek gereksiniminde tasarruf sağlar larda geliştirilen ve ilk mimari yapı olan CISC mimarisi, az bellek kapasitesine gereksinim duyulan yerlerde yaygın olarak kullanılması yanında, Intel 80x86, Pentium ve Motorola 68030, vb. gibi işlemciler ile IBM 360 ve DEL WAX gibi büyük sistemlerde kullanılmaktadır. CISC tasarım felsefesi ile geliştirilen mikroişlemcili sistemlerde, kademeli komut işleme tekniği olarak adlandırılan ve aynı anda yalnızca bir komut üzerinde işlem yapılan komut işleme tekniği kullanılır. 23

24 RISC ve CISC mimarilerinin farklarını sayabilmek Komut kodu bellekte ve işlenecek verilerin MİB deki kaydedicilerde bulunduğu varsayılarak, kademeli komut işleme tekniğinde oluşacak işlem sırası listelenirse; 1. Program sayıcısının gösterdiği adresten (bellekten) komutu al getir (FI-Fetch Instruction) 2. Getirilen komutun kodunun çözülmesi ve mikro-kodların elde edilmesi (DI- Decode Instruction) 3. Komutun ALU da çalıştırılması (EI-Execute Instruction) 4. Sonucun ilgili kaydediciye yüklenmesi (WB- Write back Result) Açıklanan bu işlemlere göre, bir komutun işlenebilmesi dört adımda gerçekleştirilir. Gerçekleştirilen adımlardan birisi bitmeden diğer adıma geçilemez. Dört adım sonucunda tek bir komutun işlemesi biter ve yeni bir komut işlenmeye başlar. Komut Aşaması FI DI EI WB FI DI EI WB FI Zaman CISC bir komutun çalışma evreleri 24

25 RISC ve CISC mimarilerinin farklarını sayabilmek CISC mimarisinde oldukça çeşitli olan komutları çalıştırmak için mikro-kod kullanılmaktadır. Farklı uzunlukta olan bu komutların çözümünde oldukça karmaşık devrelere (kod çözücülere) ihtiyaç vardır. CISC bir komutun mikrokod çevrimi 25

26 RISC ve CISC mimarilerinin farklarını sayabilmek Neredeyse hiç kimse bir CISC makinedeki karmaşık assembly dili komutlarının tamamını kullanmamaktadır. Günümüzde programcılar tüm karmaşık komut kümelerini neredeyse hiç kullanmayan yüksek-düzeyli dil derleyicilerini tercih etmektedirler. Karmaşık komut seti kullanan mimarilerin işlemlerin belirli bir hızda yapılması gereksinimini karşılayamaması, komutların basitleştirilmesine ve RISC işlemci mimarisinin oluşmasına neden oldu. RISC işlemcilerde işlemler, az sayıda basit komut ile gerçekleştirilir. RISC işlemciler hala hazırda, IBM, DEC, HP, Motorola, APPLE ve SUN gibi süper bilgisayarlar yanında işistasyonları ve PC lerde kullanılmaktadırlar. İşlemcilerin kullandığı komutların basitleştirilmesi ve komutların sayısının azaltılması, komut işleme hızını artırır. Diğer bir deyişle, daha az sayıda ve basit yapıya sahip komutlar kullanan işlemci, karmaşık komut seti kullanan işlemciye göre daha hızlı çalışır. RISC işlemlerde işlemcinin performansını artıran önemli bir etken, Kanal Komut İşleme Tekniği (pipelining) olarak isimlendirilen ve aynı anda birden fazla komutun işlenmesini sağlayan teknolojidir. Bu teknolojinin kullanımı, daha fazla bellek ve daha gelişmiş derleme tekniği gereksinimlerini ortaya çıkarır. Bu gereksinimleri tam anlamıyla karşılayabilen çok geniş ölçekli entegre (VLSI) teknolojisinin 1990 larda geliştirilmesi ile RISC işlemciler büyük sistemlerin yanı sıra PC lerde kullanılmaya başlandı. 26

27 RISC ve CISC mimarilerinin farklarını sayabilmek RISC mimari, daha basit komutlar kullanarak tümdevre karmaşıklığını azaltmaktadır. Ancak RISC komutlarının daha kısa olması belirli bir görevin tamamlanabilmesi için daha fazla komuta gereksinim duyulmasına yol açabilir. Ayrıca RISC mimariler için üretilen derleyiciler daha önce CISC mimarisinde bulunan donanım birimlerinin görevini üstlenmek üzere ekstra komutlar kullanmaktadır. RISC işlemci çekirdeği çalışma akışı Komut evreleri FI DI EI WB FI DI EI WB FI DI EI WB FI DI EI FI DI EI WB FI DI FI DI EI WB FI FI DI EI WB Tamamlanan Komut adedi RISC mimariye uyumlu kanal işleme (pipelining) tekniği ile komutların işletilmesi 27

28 RISC ve CISC mimarilerinin farklarını sayabilmek RISC ve CISC işlemciler birbirleri ile hızlarına, komut işleme tekniklerine, kullanılan transistor sayılarına, vb. kriterlere göre karşılaştırılabilirler. İki mimari arasındaki farklar şöyle özetlenebilir: 1- Hız: İki işlemci mimarisinin karşılaştırılmasından ilk önemli farkın; hızları olduğu bulunur. İki işlemci mimarisi arasındaki hız farkı, kullanılan komut işleme teknikleri sonucu oluşur. RISC işlemciler, genellikle aynı saat frekansında çalışan CISC işlemcilere göre daha hızlıdır. 2- Komut işleme tekniği: Mimariler arasındaki ikinci önemli fark; komut işleme tekniğidir. CISC işlemcilerde kademeli komut işleme tekniği kullanılırken, RISC işlemcilerde kanal komut işleme tekniği (pipeline) kullanılır. CISC tekniği ile aynı anda tek bir komut işlenebildiği ve komutun, işlenmesi bitmeden yeni bir komut üzerinde çalışmaya başlanamaz. RISC tekniğinde ise, aynı anda çok sayıda komut işlenmektedir. Komutların birbirini takip etmesi nedeni ile her bir komut bir birim uzunluktadır ve her işlem adımında bir komuta ait işlemler bitirilir. 3- Transistör sayısı: CISC ve RISC yapıları arasındaki üçüncü önemli fark; işlemcilerde kullanılan transistor sayısıdır. CISC işlemcilerde kullanılan transistor sayısı, RISC işlemcilere göre daha fazladır. Daha fazla sayıda transistor kullanılması, daha geniş alan gereksinimi ve daha fazla ısı ortaya çıkarır, Oluşan daha fazla ısı nedeniyle soğutma ihtiyacı ortaya çıkar ve soğutma işlemi, ısı dağıtıcısı veya fanlar kullanılarak gerçekleştirilir. 4- Donanımsal yapı (Tasarım şekli): İki mimari arasındaki bir diğer fark; donanımsal yapıları ve tasarım şekilleridir. RISC işlemciler, CISC işlemcilere göre daha basit yapıda olduklarından daha kolay tasarlanırlar. 5. Komut yapısı; RISC mimarisi, CISC in güçlü komutlarından yoksundur ve aynı işlemi yapmak için daha fazla komuta gereksinim duyar. RISC mimaride aynı uzunlukta basit komutlar kullanılırken CISC mimaride karmaşık yapıda değişken uzunlukta komutlar kullanılır. 28

29 RISC ve CISC mimarilerinin farklarını sayabilmek RISC mimarisinin yukarıdaki üstünlükleri yanında bazı mahsurları da bulunmaktadır. Sakıncalar olarak; daha fazla bellek kapasitesi gereksinimi ve güçlü komutlara sahip olunmaması sayılabilir. RISC mimarisi, CISC in güçlü komutlarından yoksundur ve aynı işlemi yapmak için daha fazla komuta gereksinim duyar. Diğer bir deyişle, RISC mimarisinin sakıncası, CISC mimariye göre daha karmaşık yazılımlara gereksinim duymasıdır. Sistemde güçlü komut eksikliği, ikinci bir yardımcı işlemci yada ayrı bir pipeline bölümü yardımı ile giderilebilir. Yarı iletken teknolojisindeki gelişmeler, CISC sisteminin az bellek gereksinimi ve basit program yazılımı gibi üstünlüklerin öneminin kaybolması sonucunu ortaya çıkarmakta ve RISC mimarisine daha önem kazandırmaktadır. Bu karsılaştırma sonucunda, 'hangi mikro denetleyici mimarisi tercih edilmelidir?' sorusunun tam olarak tek bir cevabı yoktur. Bu sorunun cevabı, tasarımcının hangi kriterleri önemsediği ile ilgidir. Bu kriterler; yonga alanı ve esnekliktir. Daha hızlı çalıştıklarından dolayı günümüzde çoğu mikro denetleyici ve işlemciler RISC mimarisi kullanmaktadırlar. Bununla beraber her iki mimarinin özelliklerini de ta ş ıyan karma mimariler de söz konusudur. 29

30 Harvard ve Von Neuman mimarilerinin farklarını sayabilmek Giriş: Mikroişlemci ve mikrodenetleyiciler bellek kullanımı açısından Von Neuman ve Harvard olarak adlandırılan iki mimariden biri üzerine tasarlanırlar. Von Neuman mimarisi Princeton Üniversitesi tarafından diğeri de adından da anlaşılacağı üzere Harvard Üniversitesi tarafından tasarlanmıştır. O günkü teknolojiye uygun olan Von Neuman mimarisi tercih edilse de ilerideki yıllarda teknolojinin uygun hale gelmesi sonucu Harvard mimarisi 1970 li yılların sonlarında özellikle mikrodenetleyici tasarımında standart hale gelmiştir. Günümüzde her iki mimari yapının özelliklerini içeren mikrodenetleyiciler (MAXQ ailesi) de bulunmaktadır. Bu mikrodenetleyiciler karma mimariye sahip olup iki mimarinin üstün olan özelliklerini kullanarak performans artışı elde ederler. Von Neuman Mimarisi İşlem biriminin bellek biriminden ayrıştırılması bu mimarinin en önemli özelliğidir. Komut ve veri için aynı belleğin kullanıldığı Von Neuman Mimarisinde, komut ve veriler aynı yol kullanılarak iletilirler. Bu durum, komut ve verinin iletilmesinin gerektiği durumlarda veri ile ilgili iletişim sistemlerinin, komut ile ilgili iletişim işlemlerini beklemesini gerektirir. Von Neuman Mimarisi kullanan mikroişlemcilerde de komutlar bellekten alındıktan sonra kodu çözülerek gerekli işlemler gerçekleştirilir ve elde edilen sonuçlar belleğe tekrar gönderilir. Bu işlemler sırasında, yolların hızının mikroişlemcinin hızına yetişememesi nedeni ile sistemde darboğaz (bottleneck) olarak isimlendirilen olay gerçekleşebilir. Bu sakıncanın yanında oluşabilecek diğer bir sakıncalı işlem; veri ve komutların aynı bellekte sıralı olarak bulunması nedeni ile bu iki bilginin birbirine karışması ihtimalinin yüksek olmasıdır. 30

31 Harvard ve Von Neuman mimarilerinin farklarını sayabilmek Von Neuman (Princeton) mimari blok diyagramı Detaylandırılan iki sakıncayı ortadan kaldırmaya ve Von Neuman Mimarisi kullanan sistemlerin performansını artırmaya yönelik olarak önbellek (cache) sistemi geliştirilmiştir. Önbellekler, işlenecek komutların ve verilerin ana bellekten getirilerek işlem birimine yakın bir bellekte tutulması amacıyla kullanılmaktadır. Ana bellekten alınan komut ve veriler ayrı önbelleklere yerleştirilerek hem ayrıştırılması sağlamakta, hem de oluşan darboğaz ortadan kaldırılmaktadır. Günümüz kişisel bilgisayarları da Von Neuman mimarisinde çalışmaktadırlar sistemde sadece tek bellek (RAM) vardır ve tüm komutlar ve veriler aynı ortamda saklanır. Mikroişlemcili sistemlerin büyük çoğunluğu Von Neuman mimarisinde çalışırken mikrodenetleyici sistemlerin çoğu Harvard mimaride çalışır. 31

32 Harvard ve Von Neuman mimarilerinin farklarını sayabilmek Harvard Mimarisi Komutlar ve veri ile ilgili bilgilerin ayrı belleklerde saklandığı Harvard Mimarisi kullanan mikroişlemcili sistemlerde, veri ve komutları iletmek amacıyla kullanılan yollar birbirinden bağımsızdır. İletim için kullanılan yolların farklı olması, aynı anda veri ve komutun iletilmesini mümkün hale getirir. Diğer bir ifadeyle, komut kod bellekten okunurken, komutun gerçekleştirilmesi sırasında ihtiyaç duyulan veri, veri belleğinden okunabilir. Harvard Mimarisi, performansın çok önemli olduğu sistemlerde ve günümüzde özellikle sayısal işaret işleme görevini yapan tümleşik devrelerde (DSP: Digital Signal Processor) ve güvenliğin önemsendiği mikrodenetleyicilerde tercih edilmektedir. Harvard mimari blok diyagramı 32

33 1.Mikroişlemci sistem mimarisi neyi ifade etmektedir? 2.Mikroişlemci kapasitesini belirleyen unsur nedir? 3. CISC terimini açıklayınız? 4. RISC terimini tanımlayınız? 5. CISC yapısında komut işleme şeklini detaylandırınız? 6. CISC yapısını kullanan mikroişlemcilere örnekler veriniz? 7. RISC yapısını kullanan mikroişlemcilere örnekler veriniz? 8. PIC Mikro denetleyiciler hangi mimarileri kullanır? 9. Von Neuman mimarisinin diğer adı nedir? 10. Komutların karmaşık ve daha yetenekli olduğu, düşük ana belleğin daha etkili kullanımının sağlandığı mikroişlemci / mikro denetleyici mimarisi hangisidir? 11. RISC yapısında komut işleme aşamalarını açıklayınız? 12. CISC yapısında komut işleme aşamalarını açıklayınız? 13. RISC ve CISC yapılarını karşılaştırınız? 14. Bütün komutların aynı uzunlukta olmaları nedeniyle donanımı basit ve komutların icra süresinin kısa olduğu mikroişlemci / mikro denetleyici mimarisi hangisidir? 15. Program ve verilerin aynı belleği kullandığı ilk mikroişlemci / mikro denetleyici mimari yapısı hangisidir? 16. RISC mimarisinin CISC e göre üstünlüklerini sıralayınız? 17. Veri ve program komutlarının farklı belleği kullandığı mikroişlemci / mikro denetleyici mimari yapısı hangisidir? 33

Yrd. Doç. Dr. Bülent ÇOBANOĞLU

Yrd. Doç. Dr. Bülent ÇOBANOĞLU Yrd. Doç. Dr. Bülent ÇOBANOĞLU Kaynakça; Interfacing PIC Microcontrollers Embedded Design by Interactive Simulation, Martin BATES, PIC Microcontroller and Embedded Systems, Muhammed Ali Mazidi, www.cobanoglu.wikispaces.com

Detaylı

EEM 306 Mikroişlemciler ve Lab. Doç.Dr. Mehmet SAĞBAŞ

EEM 306 Mikroişlemciler ve Lab. Doç.Dr. Mehmet SAĞBAŞ EEM 306 Mikroişlemciler ve Lab. Doç.Dr. Mehmet SAĞBAŞ Sayısal Sistemler ASIC (Application Specific Integrated Circuits) Belirli bir işlev için tasarlanırlar Performansları yüksektir Maliyetleri yüksektir

Detaylı

MİKROİŞLEMCİLER. MİKROBİLGİSAYARLAR ve MİKROİŞLEMCİ MİMARİSİ. Doç.Dr. Mehmet Recep BOZKURT ADAPAZARI MESLEK YÜKSEKOKULU

MİKROİŞLEMCİLER. MİKROBİLGİSAYARLAR ve MİKROİŞLEMCİ MİMARİSİ. Doç.Dr. Mehmet Recep BOZKURT ADAPAZARI MESLEK YÜKSEKOKULU MİKROİŞLEMCİLER MİKROBİLGİSAYARLAR ve MİKROİŞLEMCİ MİMARİSİ Doç.Dr. Mehmet Recep BOZKURT ADAPAZARI MESLEK YÜKSEKOKULU Öğrenme Hedefleri Bu konuyu çalıştıktan sonra: Mikrobilgisayar kavramını anlayacak,

Detaylı

BİLGİSAYAR MİMARİSİ. Komut Seti Mimarisi. Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. Komut Seti Mimarisi. Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ Komut Seti Mimarisi Özer Çelik Matematik-Bilgisayar Bölümü Komut Seti Mimarisi Bilgisayarın hesaplama karakteristiklerini belirler. Donanım sistemi mimarisi ise, MİB(Merkezi İşlem Birimi),

Detaylı

Embedded(Gömülü)Sistem Nedir?

Embedded(Gömülü)Sistem Nedir? Embedded(Gömülü)Sistem Nedir? Embedded Computing System de amaç; elektronik cihaza bir işlevi sürekli tekrar ettirmektir. Sistem içindeki program buna göre hazırlanmıştır. PC lerde (Desktop veya Laptop)

Detaylı

Mikroişlemciler. Alper Bayrak Abant İzzet Baysal Üniversitesi Bolu

Mikroişlemciler. Alper Bayrak Abant İzzet Baysal Üniversitesi Bolu Mikroişlemciler Alper Bayrak Abant İzzet Baysal Üniversitesi Bolu 2014 Sunuma Genel Bakış Sunuma Genel Bakış I 1 Mikroişlemci Mikroişlemci Nedir? Mikroişlemci İç Yapısı 2 Mikrodenetleyici Mikrodenetleyici

Detaylı

Mikrobilgisayar Sistemleri ve Assembler

Mikrobilgisayar Sistemleri ve Assembler Mikrobilgisayar Sistemleri ve Assembler Bahar Dönemi Öğr.Gör. Vedat MARTTİN Konu Başlıkları Mikrobilgisayar sisteminin genel yapısı,mimariler,merkezi işlem Birimi RAM ve ROM bellek özellikleri ve Çeşitleri

Detaylı

MİKROİŞLEMCİLER. Mikroişlemcilerde Kullanılan Yeni Teknolojiler ve Mikroişlemcilerin Rakipleri

MİKROİŞLEMCİLER. Mikroişlemcilerde Kullanılan Yeni Teknolojiler ve Mikroişlemcilerin Rakipleri MİKROİŞLEMCİLER MİKROİŞLEMCİLER Mikroişlemcilerde Kullanılan Yeni Teknolojiler ve Mikroişlemcilerin Rakipleri Mikroişlemcilerde Kullanılan Yeni Teknolojiler Mikroişlemcilerin performanslarının arttırılmasına

Detaylı

MİKROBİLGİSAYAR SİSTEMLERİ. Teknik Bilimler Meslek Yüksekokulu

MİKROBİLGİSAYAR SİSTEMLERİ. Teknik Bilimler Meslek Yüksekokulu MİKROBİLGİSAYAR SİSTEMLERİ Teknik Bilimler Meslek Yüksekokulu Dersin Amacı Mikroişlemciler Mikrodenetleyiciler PIC Mikrodenetleyiciler Micro BASIC Programlama Kullanılacak Programlar MSDOS DEBUG PROTEUS

Detaylı

İçİndekİler. 1. Bölüm - Mİkro Denetleyİcİ Nedİr? 2. Bölüm - MİkroDenetleyİcİlerİ Anlamak

İçİndekİler. 1. Bölüm - Mİkro Denetleyİcİ Nedİr? 2. Bölüm - MİkroDenetleyİcİlerİ Anlamak XIII İçİndekİler 1. Bölüm - Mİkro Denetleyİcİ Nedİr? Mikrodenetleyici Tanımı Mikrodenetleyicilerin Tarihçesi Mikroişlemci- Mikrodenetleyici 1. İki Kavram Arasındaki Farklar 2. Tasarım Felsefesi ve Mimari

Detaylı

Bilgisayar Mimarisi ve Organizasyonu Giriş

Bilgisayar Mimarisi ve Organizasyonu Giriş + Bilgisayar Mimarisi ve Organizasyonu Giriş Bilgisayar Mimarisi Bilgisayar Organizasyonu Programcının görebileceği bir sistemin nitelikleri Bir programın mantıksal yürütülmesi üzerinde direk bir etkisi

Detaylı

MİKROİŞLEMCİLER. Mikroişlemcilerin Tarihsel Gelişimi

MİKROİŞLEMCİLER. Mikroişlemcilerin Tarihsel Gelişimi MİKROİŞLEMCİLER Mikroişlemcilerin Tarihsel Gelişimi Mikroişlemcilerin Tarihi Gelişimi Mikroişlemcilerin tarihi gelişimlerini bir kerede işleyebildikleri bit sayısı referans alınarak dört grupta incelemek

Detaylı

8. MİKROİŞLEMCİ MİMARİSİ

8. MİKROİŞLEMCİ MİMARİSİ 1 8. MİKROİŞLEMCİ MİMARİSİ Gelişen donanım ve yazılım teknolojilerine ve yonga üreticisine bağlı olarak mikroişlemcilerin farklı komut tipleri, çalışma hızı ve şekilleri vb. gibi donanım ve yazılım özellikleri

Detaylı

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN Bilgisayar Mühendisliğine Giriş Yrd.Doç.Dr.Hacer KARACAN Mikroişlemci Nedir? Bir bilgisayarın en önemli parçası Mikroişlemcisidir. Hiçbir bilgisayar mikroişlemci olmadan çalışamaz. Bu nedenle Mikroişlemci

Detaylı

Hacettepe Robot Topluluğu

Hacettepe Robot Topluluğu Hacettepe Robot Topluluğu PIC Assembly Dersleri 1. Ders: PIC Programlamaya Giriş HUNRobotX - PIC Assembly Dersleri 1. Ders: PIC Programlamaya Giriş Yazan: Kutluhan Akman, Düzenleyen: Canol Gökel - 4 Haziran

Detaylı

1. Ders Giriş. Mikroişlemcili Sistem Uygulamaları

1. Ders Giriş. Mikroişlemcili Sistem Uygulamaları 1. Ders Giriş Hazırlayan: Arş. Gör. Hakan ÜÇGÜN Mikroişlemcili Sistem Uygulamaları Dikkat ettiniz mi: Etrafımızdaki akıllı cihazların sayısı ne kadar da arttı. Cep telefonlarımız artık sadece iletişim

Detaylı

Mikroişlemci Nedir? Mikrodenetleyici Nedir? Mikroişlemci iç yapısı Ders Giriş. Mikroişlemcili Sistem Uygulamaları

Mikroişlemci Nedir? Mikrodenetleyici Nedir? Mikroişlemci iç yapısı Ders Giriş. Mikroişlemcili Sistem Uygulamaları Mikroişlemcili Sistem Uygulamaları 1. Ders Giriş Dikkat ettiniz mi: Etrafımızdaki akıllı cihazların sayısı ne kadar da arttı. Cep telefonlarımız artık sadece iletişim sağlamakla kalmıyor, müzik çalıyor,

Detaylı

Bilgisayar Donanım 2010 BİLGİSAYAR

Bilgisayar Donanım 2010 BİLGİSAYAR BİLGİSAYAR CPU, bellek ve diğer sistem bileşenlerinin bir baskı devre (pcb) üzerine yerleştirildiği platforma Anakart adı verilmektedir. Anakart üzerinde CPU, bellek, genişleme yuvaları, BIOS, çipsetler,

Detaylı

27.10.2011 HAFTA 1 KALICI OLMAYAN HAFIZA RAM SRAM DRAM DDRAM KALICI HAFIZA ROM PROM EPROM EEPROM FLASH HARDDISK

27.10.2011 HAFTA 1 KALICI OLMAYAN HAFIZA RAM SRAM DRAM DDRAM KALICI HAFIZA ROM PROM EPROM EEPROM FLASH HARDDISK Mikroişlemci HAFTA 1 HAFIZA BİRİMLERİ Program Kodları ve verinin saklandığı bölüm Kalıcı Hafıza ROM PROM EPROM EEPROM FLASH UÇUCU SRAM DRAM DRRAM... ALU Saklayıcılar Kod Çözücüler... GİRİŞ/ÇIKIŞ G/Ç I/O

Detaylı

MEKATRONİĞİN TEMELLERİ

MEKATRONİĞİN TEMELLERİ MEKATRONİĞİN TEMELLERİ Teknik Bilimler Meslek Yüksek Okulu Elektronik Teknolojisi Programı Bölüm-2 12/15/2015 MEKATRONİĞİN TEMELLERİ 1 Mikroişlemciler Mikroişlemci bir bilgisayar sisteminde programların

Detaylı

Bahar Dönemi. Öğr.Gör. Vedat MARTTİN

Bahar Dönemi. Öğr.Gör. Vedat MARTTİN Bahar Dönemi Öğr.Gör. Vedat MARTTİN Merkezi İşlemci Biriminde İletişim Yolları Mikroişlemcide işlenmesi gereken komutları taşıyan hatlar yanında, işlenecek verileri taşıyan hatlar ve kesme işlemlerini

Detaylı

Haftalık Ders Saati Okul Eğitimi Süresi

Haftalık Ders Saati Okul Eğitimi Süresi DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE YETERLİKLER DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI)

Detaylı

Mikrobilgisayar Mimarisi ve Programlama

Mikrobilgisayar Mimarisi ve Programlama Mikrobilgisayar Mimarisi ve Programlama 1. Hafta Mikroişlemcilere Giriş Doç. Dr. Akif KUTLU Yrd. Doç. Dr. Ahmet ÖZCERİT akutlu@sdu.edu.tr aozcerit@sakarya.edu.tr Ders web sitesi: http://www.8051turk.com/

Detaylı

Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü

Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 1 BİLGİSAYAR MİMARİSİ Dr. Feza BUZLUCA İstanbul Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü http:// http:// Ders Notlarının Creative Commons lisansı Feza BUZLUCA ya aittir. Lisans: http://creativecommons.org/licenses/by-nc-nd/3.0/

Detaylı

Bilgisayar Sistemleri

Bilgisayar Sistemleri Bilgisayar Sistemleri Bilgiyi giriş olarak alan, bunu belli bir kurala göre işleyen ve sonucu çıktı olarak veren sisteme basit olarak bilgisayar denir. Makine olarak tanımlanan bilgisayar, veriyi belli

Detaylı

İşletim Sistemlerine Giriş

İşletim Sistemlerine Giriş İşletim Sistemlerine Giriş İşletim Sistemleri ve Donanım İşletim Sistemlerine Giriş/ Ders01 1 İşletim Sistemi? Yazılım olmadan bir bilgisayar METAL yığınıdır. Yazılım bilgiyi saklayabilir, işleyebilir

Detaylı

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELİŞTİRME PROJESİ. 1. Tipik bir mikrobilgisayar sistemin yapısı ve çalışması hakkında bilgi sahibi olabilme

MEB YÖK MESLEK YÜKSEKOKULLARI PROGRAM GELİŞTİRME PROJESİ. 1. Tipik bir mikrobilgisayar sistemin yapısı ve çalışması hakkında bilgi sahibi olabilme PROGRAMIN ADI DERSIN KODU VE ADI DERSIN ISLENECEGI DÖNEM HAFTALIK DERS SAATİ DERSİN SÜRESİ ENDÜSTRİYEL ELEKTRONİK MİK.İŞLEMCİLER/MİK.DENETLEYİCİLER-1 2. Yıl, III. Yarıyıl (Güz) 4 (Teori: 3, Uygulama: 1,

Detaylı

DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ. İçerik

DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ. İçerik DERS 3 MİKROİŞLEMCİ SİSTEM MİMARİSİ İçerik Mikroişlemci Sistem Mimarisi Mikroişlemcinin yürüttüğü işlemler Mikroişlemci Yol (Bus) Yapısı Mikroişlemci İç Veri İşlemleri Çevresel Cihazlarca Yürütülen İşlemler

Detaylı

GAZİANTEP ÜNİVERSİTESİ

GAZİANTEP ÜNİVERSİTESİ GAZİANTEP ÜNİVERSİTESİ Fizik Mühendisliği Bölümü Pic Basic Pro ile PIC Programlama Ders Notları Hazırlayan: Kamil KAYA 2012 Mikrodenetleyiciler: Mikrodenetleyicilerin tanımına girmeden önce kısaca mikroişlemcilere

Detaylı

MİKROİŞLEMCİ MİMARİLERİ

MİKROİŞLEMCİ MİMARİLERİ MİKROİŞLEMCİ MİMARİLERİ Mikroişlemcilerin yapısı tipik olarak 2 alt sınıfta incelenebilir: Mikroişlemci mimarisi (Komut seti mimarisi), Mikroişlemci organizasyonu (İşlemci mikromimarisi). CISC 1980 lerden

Detaylı

BÖLÜM 2 8051 Mikrodenetleyicisine Giriş

BÖLÜM 2 8051 Mikrodenetleyicisine Giriş C ile 8051 Mikrodenetleyici Uygulamaları BÖLÜM 2 8051 Mikrodenetleyicisine Giriş Amaçlar 8051 mikrodenetleyicisinin tarihi gelişimini açıklamak 8051 mikrodenetleyicisinin mimari yapısını kavramak 8051

Detaylı

Merkezi İşlem Birimi MİKROİŞLEMCİ SİSTEMLERİ. MİB Yapısı. MİB Altbirimleri. Durum Kütüğü. Yardımcı Kütükler

Merkezi İşlem Birimi MİKROİŞLEMCİ SİSTEMLERİ. MİB Yapısı. MİB Altbirimleri. Durum Kütüğü. Yardımcı Kütükler Merkezi İşlem Birimi MİKROİŞLEMCİ SİSTEMLERİ Yrd. Doç. Dr. Şule Gündüz Öğüdücü Merkezi İşlem Birimi (MİB): Bilgisayarın temel birimi Hız Sözcük uzunluğu Buyruk kümesi Adresleme yeteneği Adresleme kapasitesi

Detaylı

Mikroişlemciler Dersi. PIC Mikro denetleyiciler ve Programlama

Mikroişlemciler Dersi. PIC Mikro denetleyiciler ve Programlama Mikroişlemciler Dersi PIC Mikro denetleyiciler ve Programlama Kaynaklar ile ilgili iki web sitesi: - http://www.mikroe.com - http://www.microchip.com/ - Ders sunuları - Sakarya üniversitesi e-kütüphane

Detaylı

Adres Yolu (Address Bus) Bellek Birimi. Veri Yolu (Databus) Kontrol Yolu (Control bus) Şekil xxx. Mikrodenetleyici genel blok şeması

Adres Yolu (Address Bus) Bellek Birimi. Veri Yolu (Databus) Kontrol Yolu (Control bus) Şekil xxx. Mikrodenetleyici genel blok şeması MİKRODENETLEYİCİLER MCU Micro Controller Unit Mikrodenetleyici Birimi İşlemci ile birlikte I/O ve bellek birimlerinin tek bir entegre olarak paketlendiği elektronik birime mikrodenetleyici (microcontroller)

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR

Yrd.Doç.Dr. Celal Murat KANDEMİR Bilgisayar Mimarisi Anahatlar ve Mimariye Giriş Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Yardımcı Kaynaklar Computer organization and architecture : principles

Detaylı

BM-311 Bilgisayar Mimarisi

BM-311 Bilgisayar Mimarisi 1 BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Giriş Mikro işlemler Fetch cycle Indirect cycle Interrupt cycle Execute cycle Instruction

Detaylı

EEM 419-Mikroişlemciler Güz 2016

EEM 419-Mikroişlemciler Güz 2016 EEM 419-Mikroişlemciler Güz 2016 Katalog Bilgisi : EEM 419 Mikroişlemciler (3+2) 4 Bir mikroişlemci kullanarak mikrobilgisayar tasarımı. Giriş/Çıkış ve direk hafıza erişimi. Paralel ve seri iletişim ve

Detaylı

BM-311 Bilgisayar Mimarisi. Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü

BM-311 Bilgisayar Mimarisi. Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü BM-311 Bilgisayar Mimarisi Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Bilgisayar Bileşenleri Bilgisayarın Fonksiyonu Instruction Cycle Kesmeler (Interrupt lar) Bus

Detaylı

Mikroişlemcili Sistemler ve Laboratuvarı 6.Hafta

Mikroişlemcili Sistemler ve Laboratuvarı 6.Hafta SAKARYA ÜNİVERSİTESİ Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Mikroişlemcili Sistemler ve Laboratuvarı 6.Hafta Doç.Dr. Ahmet Turan ÖZCERİT Doç.Dr. Cüneyt BAYILMIŞ Yrd.Doç.Dr.

Detaylı

ENF 100 Temel Bilgi Teknolojileri Kullanımı Ders Notları 2. Hafta. Öğr. Gör. Dr. Barış Doğru

ENF 100 Temel Bilgi Teknolojileri Kullanımı Ders Notları 2. Hafta. Öğr. Gör. Dr. Barış Doğru ENF 100 Temel Bilgi Teknolojileri Kullanımı Ders Notları 2. Hafta Öğr. Gör. Dr. Barış Doğru 1 Konular 1. Bilgisayar Nedir? 2. Bilgisayarın Tarihçesi 3. Günümüz Bilgi Teknolojisi 4. Bilgisayarların Sınıflandırılması

Detaylı

Gömülü Sistemler, Uygulama Alanları ve Dünya daki Ekonomik Boyutu

Gömülü Sistemler, Uygulama Alanları ve Dünya daki Ekonomik Boyutu İçerik Sakarya Üniversitesi Bilgisayar Mühendisliği Bölümü Yrd.Doç.Dr. Murat İSKEFİYELİ Gömülü Sistemler, Uygulama Alanları ve Dünya daki Ekonomik Boyutu Dr. Ahmet Kaya 2 1 Gömülü Sistem Kavramı Bir ana

Detaylı

DONANIM. 1-Sitem birimi (kasa ) ve iç donanım bileşenleri 2-Çevre birimleri ve tanımlamaları 3-Giriş ve çıkış donanım birimleri

DONANIM. 1-Sitem birimi (kasa ) ve iç donanım bileşenleri 2-Çevre birimleri ve tanımlamaları 3-Giriş ve çıkış donanım birimleri DONANIM 1-Sitem birimi (kasa ) ve iç donanım bileşenleri 2-Çevre birimleri ve tanımlamaları 3-Giriş ve çıkış donanım birimleri DONANIM SİSTEM BİRİMİ ÇEVREBİRİMLERİ Ana Kart (Mainboard) Monitör İşlemci

Detaylı

BİLGİSAYAR MİMARİSİ. Mimariye Giriş. Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. Mimariye Giriş. Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ Mimariye Giriş Özer Çelik Matematik-Bilgisayar Bölümü Ders Bilgileri Not Değerlendirmesi: Pop-up Quiz/Ödev : % 20 Ara Sınav : % 30 Final : % 50 Ders İçeriği Temel Bilgisayar Mimarisi

Detaylı

4-Deney seti modüler yapıya sahiptir ve kabin içerisine tek bir board halinde monte edilmiştir.

4-Deney seti modüler yapıya sahiptir ve kabin içerisine tek bir board halinde monte edilmiştir. MDS 8051 8051 AİLESİ DENEY SETİ 8051 Ailesi Deney Seti ile piyasada yaygın olarak bulunan 8051 ailesi mikro denetleyicileri çok kolay ve hızlı bir şekilde PC nizin USB veya Seri portundan gönderdiğiniz

Detaylı

SORULAR (37-66) Aşağıdakilerden hangisi günümüz anakartlarının en çok kullanılan veriyoludur?

SORULAR (37-66) Aşağıdakilerden hangisi günümüz anakartlarının en çok kullanılan veriyoludur? SORULAR (37-66) SORU -37 Aşağıdakilerden hangisi günümüz anakartlarının en çok kullanılan veriyoludur? A) ISA B) AGP C) PCI D) PCI-e SORU -38 Aşağıdakilerden hangisi yavaş olması sebebiyle günümüz anakartlarında

Detaylı

Sunucu Bilgisayarlarda Kullanılan CISC ve RISC İşlemcilerin Performans Karşılaştırımı

Sunucu Bilgisayarlarda Kullanılan CISC ve RISC İşlemcilerin Performans Karşılaştırımı Sunucu Bilgisayarlarda Kullanılan CISC ve RISC İşlemcilerin Performans Karşılaştırımı Aylin Kantarcı Ege Üniversitesi Akademik Bilişim 2015 Eskişehir, 2015 GİRİŞ CISC işlemciler Geriye uyumluluk Karmaşık

Detaylı

8051 Ailesi MCS51 ailesinin orijinal bir üyesidir ve bu ailenin çekirdeğini oluşturur çekirdeğinin temel özellikkleri aşağıda verilmiştir:

8051 Ailesi MCS51 ailesinin orijinal bir üyesidir ve bu ailenin çekirdeğini oluşturur çekirdeğinin temel özellikkleri aşağıda verilmiştir: 8051 Ailesi 8051 MCS51 ailesinin orijinal bir üyesidir ve bu ailenin çekirdeğini oluşturur. 8051 çekirdeğinin temel özellikkleri aşağıda verilmiştir: 1. Kontrol uygulamaları için en uygun hale getirilmiş

Detaylı

Bölüm 4. Sistem Bileşenleri. Bilgisayarı. Discovering. Keşfediyorum 2010. Computers 2010. Living in a Digital World Dijital Dünyada Yaşamak

Bölüm 4. Sistem Bileşenleri. Bilgisayarı. Discovering. Keşfediyorum 2010. Computers 2010. Living in a Digital World Dijital Dünyada Yaşamak Sistem Bileşenleri Bilgisayarı Discovering Keşfediyorum 2010 Computers 2010 Living in a Digital World Dijital Dünyada Yaşamak Sistem Sistem, bilgisayarda veri işlemek amacıyla kullanılan elektronik bileşenleri

Detaylı

MİKROİŞLEMCİLER 1 Ders 1

MİKROİŞLEMCİLER 1 Ders 1 MİKROİŞLEMCİLER 1 Ders 1 Ders Kitabı: The 80x86 IBM PC and Compatible Computers Assembly Language, Design, and Interfacing Muhammad ali Mazidi, Janice Gillipsie Mazidi Öğr.Gör. Mahmut YALÇIN 09.03.2011

Detaylı

DERS 1 GİRİŞ İÇERİK - PIC DSP

DERS 1 GİRİŞ İÇERİK - PIC DSP DERS 1 GİRİŞ İÇERİK Mekanik Bilgisayarlar Elektronik Bilgisayarlar Mikroişlemciler Mikroişlemci Uygulama Alanları Mikroişlemci Türleri Mikrodenetleyiciler - PIC DSP İşlemciler TMS32C6000 Ders 1, Slayt

Detaylı

Donanımlar Hafta 1 Donanım

Donanımlar Hafta 1 Donanım Donanımlar Hafta 1 Donanım Donanım Birimleri Ana Donanım Birimleri (Anakart, CPU, RAM, Ekran Kartı, Sabit Disk gibi aygıtlar, ) Ek Donanım Birimleri (Yazıcı, Tarayıcı, CD-ROM, Ses Kartı, vb ) Anakart (motherboard,

Detaylı

Von Neumann Mimarisi. Mikroişlemciler ve Mikrobilgisayarlar 1

Von Neumann Mimarisi. Mikroişlemciler ve Mikrobilgisayarlar 1 Von Neumann Mimarisi Mikroişlemciler ve Mikrobilgisayarlar 1 Sayısal Bilgisayarın Tarihsel Gelişim Süreci Babage in analitik makinası (1833) Vakumlu lambanın bulunuşu (1910) İlk elektronik sayısal bilgisayar

Detaylı

1. PS/2 klavye fare 2. Optik S/PDIF çıkışı 3. HDMI Giriş 4. USB 3.0 Port 5. USB 2.0 Port 6. 6 kanal ses giriş/çıkış 7. VGA giriş 8.

1. PS/2 klavye fare 2. Optik S/PDIF çıkışı 3. HDMI Giriş 4. USB 3.0 Port 5. USB 2.0 Port 6. 6 kanal ses giriş/çıkış 7. VGA giriş 8. İşlemci: İşlemci,kullanıcıdan bilgi almak, komutları işlemek ve sonuçları kullanıcıya sunmak gibi pek çok karmaşık işlemi yerine getirir. Ayrıca donanımların çalışmasını kontrol eder. İşlemci tüm sistemin

Detaylı

Bilgisayar, elektronik bir cihazdır ve kendi belleğinde depolanan talimatları sırasıyla uygulayarak çalışır. İşler. Bilgi İşlem Çevrimi

Bilgisayar, elektronik bir cihazdır ve kendi belleğinde depolanan talimatları sırasıyla uygulayarak çalışır. İşler. Bilgi İşlem Çevrimi Bilgisayar nedir? Bilgisayar, elektronik bir cihazdır ve kendi belleğinde depolanan talimatları sırasıyla uygulayarak çalışır. Veriyi toplar (girdi) İşler Bilgi üretir (çıktı) Bilgi İşlem Çevrimi 1 Bir

Detaylı

MİKRODENETLEYİCİLER. Yrd.Doç.Dr. İlker ÜNAL

MİKRODENETLEYİCİLER. Yrd.Doç.Dr. İlker ÜNAL MİKRODENETLEYİCİLER Yrd.Doç.Dr. İlker ÜNAL DERSİN AMACI Mikroişlemciler Mikroişlemcilerin Yapısı Mikrodenetleyiciler PIC mikrodenetleyiciler KULLANILACAK PROGRAMLAR PROTEUS ISIS 7 PROF Micro BASIC EDITOR

Detaylı

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi

Bil101 Bilgisayar Yazılımı I. M. Erdem ÇORAPÇIOĞLU Bilgisayar Yüksek Mühendisi Bil101 Bilgisayar Yazılımı I Bilgisayar Yüksek Mühendisi Kullanıcıdan aldığı veri ya da bilgilerle kullanıcının isteği doğrultusunda işlem ve karşılaştırmalar yapabilen, veri ya da bilgileri sabit disk,

Detaylı

DERS 5 PIC 16F84 PROGRAMLAMA İÇERİK. PIC 16F84 bacak bağlantıları PIC 16F84 bellek yapısı Program belleği RAM bellek Değişken kullanımı Komutlar

DERS 5 PIC 16F84 PROGRAMLAMA İÇERİK. PIC 16F84 bacak bağlantıları PIC 16F84 bellek yapısı Program belleği RAM bellek Değişken kullanımı Komutlar DERS 5 PIC 16F84 PROGRAMLAMA İÇERİK PIC 16F84 bacak bağlantıları PIC 16F84 bellek yapısı Program belleği RAM bellek Değişken kullanımı Komutlar Ders 5, Slayt 2 1 BACAK BAĞLANTILARI Ders 5, Slayt 3 PIC

Detaylı

Bir mikroişlemci temel olarak üç kısımdan oluşur. Bunlar merkezi işlem birimi (CPU), giriş çıkış birimi (G/Ç) ve bellektir.

Bir mikroişlemci temel olarak üç kısımdan oluşur. Bunlar merkezi işlem birimi (CPU), giriş çıkış birimi (G/Ç) ve bellektir. 1 1.GİRİŞ 1.1 Mikroişlemciler Mikroişlemci herhangi bir sistemde merkezi işlem birimidir ve bulunduğu sistemde aritmetik ve mantıksal işlemleri yürütür. Merkezi İşlem Birimi (Central Processing Unit: CPU),

Detaylı

Ünite-2 Bilgisayar Organizasyonu. www.cengizcetin.net

Ünite-2 Bilgisayar Organizasyonu. www.cengizcetin.net Ünite-2 Bilgisayar Organizasyonu Bilgisayar Nedir? Belirli bir sonuç üretmek amacıyla; mantıksal kıyaslamalardan sonuç çıkarabilen, büyük miktarlarda bilgiyi depolayabilen ve gerektiğinde bu bilgileri

Detaylı

Optik Sürücüler CD/CD-ROM DVD HD-DVD/BLU-RAY DİSK Disket Monitör LCD LED Projeksiyon Klavye Mouse Mikrofon Tarayıcı

Optik Sürücüler CD/CD-ROM DVD HD-DVD/BLU-RAY DİSK Disket Monitör LCD LED Projeksiyon Klavye Mouse Mikrofon Tarayıcı 1 Donanım Bileşenleri ve Çalışma Prensipleri Anakart (Mainboard) İşlemci (Cpu) Ekran Kartı Bellekler Ram Rom Ses Kartı Ağ Kartı TV Kartı Sabit Diskler HDD HHD SSD Optik Sürücüler CD/CD-ROM DVD HD-DVD/BLU-RAY

Detaylı

BİLGİSAYAR MİMARİSİ. Bilgisayar Bileşenleri Ve Programların Yürütülmesi. Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. Bilgisayar Bileşenleri Ve Programların Yürütülmesi. Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ Bilgisayar Bileşenleri Ve Programların Yürütülmesi Özer Çelik Matematik-Bilgisayar Bölümü Program Kavramı Bilgisayardan istenilen işlerin gerçekleştirilebilmesi için gereken işlem dizisi

Detaylı

BİLGİSAYAR MİMARİSİ. << Bus Yapısı >> Özer Çelik Matematik-Bilgisayar Bölümü

BİLGİSAYAR MİMARİSİ. << Bus Yapısı >> Özer Çelik Matematik-Bilgisayar Bölümü BİLGİSAYAR MİMARİSİ > Özer Çelik Matematik-Bilgisayar Bölümü Veri yolu (BUS), anakarttaki tüm aygıtlar arası veri iletişimini sağlayan devrelerdir. Yani bilgisayarın bir bileşeninden diğerine

Detaylı

Bilgisayar Donanımı. Temel Birimler ve Çevre Birimler. Öğr.Gör.Günay TEMÜR / KAYNAŞLI MESLEK YÜKSEOKULU

Bilgisayar Donanımı. Temel Birimler ve Çevre Birimler. Öğr.Gör.Günay TEMÜR / KAYNAŞLI MESLEK YÜKSEOKULU Bilgisayar Donanımı Temel Birimler ve Çevre Birimler Öğr.Gör.Günay TEMÜR / KAYNAŞLI MESLEK YÜKSEOKULU İçerik Bilgisayarın birimleri; Giriş Çıkış Depolama İşlem Donanım Bileşenleri ve Çalışma Prensipleri

Detaylı

CPU (Merkezi İşlem Birimi) Nedir?

CPU (Merkezi İşlem Birimi) Nedir? Merkezi İşlem Birimi (Central Processing Unit) ya da CPU olarak ta bilinir. İşlemci, Merkezi İşlem Birimi (Central Processing Unit) ya da CPU olarak ta bilinir. 1 2 Bilgisayarın program komutlarını bellekten

Detaylı

BİLGİSAYAR KULLANMA KURSU

BİLGİSAYAR KULLANMA KURSU 1 2 KURS MODÜLLERİ 1. BİLGİSAYAR KULLANIMI 3 1. Bilişim (Bilgi ve İletişim) Kavramı Bilişim, bilgi ve iletişim kelimelerinin bir arada kullanılmasıyla meydana gelmiştir. Bilişim, bilginin teknolojik araçlar

Detaylı

BLG2109 BİLGİSAYAR DONANIMI DERS 3. Öğr. Grv. Aybike ŞİMŞEK

BLG2109 BİLGİSAYAR DONANIMI DERS 3. Öğr. Grv. Aybike ŞİMŞEK BLG2109 BİLGİSAYAR DONANIMI DERS 3 Öğr. Grv. Aybike ŞİMŞEK Haftanın Konuları Giriş İşlemciler İşlemci Tarihçesi İşlemci Parametreleri Saat Hızı Komut Seti Cache Bellek Bus Giriş Bir mikroişlemci bağımsız

Detaylı

Temel Kavramlar-2. Aşağıda depolama aygıtlarının kapasitelerini inceleyebilirsiniz.

Temel Kavramlar-2. Aşağıda depolama aygıtlarının kapasitelerini inceleyebilirsiniz. Temel Kavramlar-2 Byte = 8 Bit in bir araya gelmesiyle oluşan bellektir. Bilgisayarın tanıdığı harf rakam ve özel karakterlerden her biri 1 byte lık yer kaplar. Yani her bir harfin 1 veya 0 dan oluşan

Detaylı

4. HAFTA KBT104 BİLGİSAYAR DONANIMI. KBUZEM Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi

4. HAFTA KBT104 BİLGİSAYAR DONANIMI. KBUZEM Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 4. HAFTA KBT104 BİLGİSAYAR DONANIMI Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 Konu Başlıkları Merkezî İşlem Birimi Mikroişlemci(CPU) Çok Çekirdekli Kavramı Çoklu Çekirdek Tasarımı

Detaylı

RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ

RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ Fevzi Zengin f_zengin@hotmail.com Musa Şanlı musanli@msn.com Oğuzhan Urhan urhano@kou.edu.tr M.Kemal Güllü kemalg@kou.edu.tr Elektronik ve Haberleşme Mühendisliği

Detaylı

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay.

PROGRAMLAMAYA GİRİŞ. Öğr. Gör. Ayhan KOÇ. Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay. PROGRAMLAMAYA GİRİŞ Öğr. Gör. Ayhan KOÇ Kaynak: Algoritma Geliştirme ve Programlamaya Giriş, Dr. Fahri VATANSEVER, Seçkin Yay., 2007 Algoritma ve Programlamaya Giriş, Ebubekir YAŞAR, Murathan Yay., 2011

Detaylı

Bilişim Teknolojilerine Giriş

Bilişim Teknolojilerine Giriş Bilişim Teknolojilerine Giriş Bilginin toplanması, işlenmesi, saklanması ve iletilmesini sağlayan teknolojilerin bütününe bilişim teknolojileri denir. Bilişim Teknolojisi Girilen verileri saklayan, işleyen,

Detaylı

Bitirme Ödevi Sunumu PLATFORM BAĞIMSIZ BENZETİM PROGRAMI. Danışman : Yrd.Doç.Dr. D Feza BUZLUCA Gökhan Akın ŞEKER

Bitirme Ödevi Sunumu PLATFORM BAĞIMSIZ BENZETİM PROGRAMI. Danışman : Yrd.Doç.Dr. D Feza BUZLUCA Gökhan Akın ŞEKER Bitirme Ödevi Sunumu BERKELEY RISC I işlemcisi İÇİN PLATFORM BAĞIMSIZ BENZETİM PROGRAMI Danışman : Yrd.Doç.Dr. D Feza BUZLUCA 0495 0639 Sunum Planı Ödev konusu hakkında Berkeley RISC I işlemcisi hakkında

Detaylı

PORTLAR Bilgisayar: VERİ:

PORTLAR Bilgisayar: VERİ: PORTLAR 1.FARE 2. YAZICI ÇİZİCİ TARAYICI 3.AĞ-İNTERNET 4.SES GİRİŞİ 5.SES ÇIKIŞI(KULAKLIK) 6.MİKROFON 7.USB-FLASH 8.USB-FLASH 9.MONİTÖR 10.PROJEKSİYON 11.KLAVYE BİLGİSAYAR NEDİR? Bilgisayar: Kullanıcıdan

Detaylı

Mikrobilgisayarlar. Mikroişlemciler ve. Mikrobilgisayarlar

Mikrobilgisayarlar. Mikroişlemciler ve. Mikrobilgisayarlar 1 Sayısal Bilgisayarın Tarihsel Gelişim Süreci Babage in analitik makinası (1833) Vakumlu lambanın bulunuşu (1910) İlk elektronik sayısal bilgisayar (1946) Transistörün bulunuşu (1947) İlk transistörlü

Detaylı

1 GİRİŞ 1 Bu Kitap Kimlere Hitap Eder 1 Kitabın İşleyişi 2 Kitabın Konuları 3 Kitabı Takip Etmek İçin Gerekenler 6 Kaynak Kodu ve Simülasyonlar 6

1 GİRİŞ 1 Bu Kitap Kimlere Hitap Eder 1 Kitabın İşleyişi 2 Kitabın Konuları 3 Kitabı Takip Etmek İçin Gerekenler 6 Kaynak Kodu ve Simülasyonlar 6 İÇİNDEKİLER VII İÇİNDEKİLER 1 GİRİŞ 1 Bu Kitap Kimlere Hitap Eder 1 Kitabın İşleyişi 2 Kitabın Konuları 3 Kitabı Takip Etmek İçin Gerekenler 6 Kaynak Kodu ve Simülasyonlar 6 2 KİTAPTA KULLANILAN PROGRAMLAR

Detaylı

Görüntü Bağdaştırıcıları

Görüntü Bağdaştırıcıları Görüntü Bağdaştırıcıları Görüntü Bağdaştırıcıları (Ekran Kartları) Ekrandaki Görüntü Nasıl Oluşur? Monitörünüze yeteri kadar yakından bakarsanız görüntünün çok küçük noktalardan oluştuğunu görürsünüz.

Detaylı

MAK 1005 Bilgisayar Programlamaya Giriş. BİLGİSAYARA GİRİŞ ve ALGORİTMA KAVRAMI

MAK 1005 Bilgisayar Programlamaya Giriş. BİLGİSAYARA GİRİŞ ve ALGORİTMA KAVRAMI MAK 1005 Bilgisayar Programlamaya Giriş Uludağ Üniversitesi, Mühendislik Fakültesi Makine Mühendisliği Bölümü BİLGİSAYARA GİRİŞ ve ALGORİTMA KAVRAMI Prof. Dr. Necmettin Kaya 1 KONULAR 1. Bilgisayara giriş,

Detaylı

Komutların Yürütülmesi

Komutların Yürütülmesi Komutların Yürütülmesi Bilgisayar Bileşenleri: Genel Görünüm Program Sayacı Komut kaydedicisi Bellek Adres Kaydedicisi Ara Bellek kaydedicisi G/Ç Adres Kaydedicisi G/Ç ara bellek kaydedicisi 1 Sistem Yolu

Detaylı

Anakart ve Bileşenleri CPU, bellek ve diğer bileşenlerinin bir baskı devre (pcb) üzerine yerleştirildiği platforma Anakart adı

Anakart ve Bileşenleri CPU, bellek ve diğer bileşenlerinin bir baskı devre (pcb) üzerine yerleştirildiği platforma Anakart adı S a y f a 1 Anakart ve Bileşenleri CPU, bellek ve diğer bileşenlerinin bir baskı devre (pcb) üzerine yerleştirildiği platforma Anakart adı verilmektedir. Anakart üzerinde CPU, bellek, genişleme yuvaları,

Detaylı

Temel Mikroişlemci Tabanlı Bir Sisteme Hata Enjekte Etme Yöntemi Geliştirilmesi. Buse Ustaoğlu Berna Örs Yalçın

Temel Mikroişlemci Tabanlı Bir Sisteme Hata Enjekte Etme Yöntemi Geliştirilmesi. Buse Ustaoğlu Berna Örs Yalçın Temel Mikroişlemci Tabanlı Bir Sisteme Hata Enjekte Etme Yöntemi Geliştirilmesi Buse Ustaoğlu Berna Örs Yalçın İçerik Giriş Çalişmanın Amacı Mikroişlemciye Hata Enjekte Etme Adımları Hata Üreteci Devresi

Detaylı

Temel Bilgisayar Bilgisi

Temel Bilgisayar Bilgisi Temel Bilgisayar Bilgisi BİL131 - Bilişim Teknolojileri ve Programlama Hakan Ezgi Kızılöz Bilgisayarların Temel Özellikleri Bilgisayarlar verileri alıp saklayabilen, mantıksal ya da aritmetik olarak işleyen

Detaylı

Bilgisayarda Programlama. Temel Kavramlar

Bilgisayarda Programlama. Temel Kavramlar Bilgisayarda Programlama Temel Kavramlar KAVRAMLAR Programlama, yaşadığımız gerçek dünyadaki problemlere ilişkin çözümlerin bilgisayarın anlayabileceği bir biçime dönüştürülmesi / ifade edilmesidir. Bunu

Detaylı

Yrd.Doç.Dr. Celal Murat KANDEMİR

Yrd.Doç.Dr. Celal Murat KANDEMİR Bilgisayar Mimarisi Ara Bağlantı Yapıları ve Bus Kavramı Yrd.Doç.Dr. Celal Murat KANDEMİR ESOGÜ Eğitim Fakültesi - BÖTE twitter.com/cmkandemir Ara Bağlantı Yapıları Bir bilgisayar sistemi MİB, bellek ve

Detaylı

Bilişim Teknolojileri Temelleri 2011. Dijital Dünyada Yaşamak

Bilişim Teknolojileri Temelleri 2011. Dijital Dünyada Yaşamak Bilişim Teknolojileri Temelleri 2011 Dijital Dünyada Yaşamak Bilgisayar nedir? Bilgisayar, kullanıcı tarafından girilen bilgileri(veri) işleyen, depolayan istendiğinde girilen bilgileri ve sonuçlarını

Detaylı

Bellekler. Mikroişlemciler ve Mikrobilgisayarlar

Bellekler. Mikroişlemciler ve Mikrobilgisayarlar Bellekler 1 Bellekler Ortak giriş/çıkışlara, yazma ve okuma kontrol sinyallerine sahip eşit uzunluktaki saklayıcıların bir tümdevre içerisinde sıralanmasıyla hafıza (bellek) yapısı elde edilir. Çeşitli

Detaylı

Düşünelim? Günlük hayatta bilgisayar hangi alanlarda kullanılmaktadır? Bilgisayarın farklı tip ve özellikte olmasının sebepleri neler olabilir?

Düşünelim? Günlük hayatta bilgisayar hangi alanlarda kullanılmaktadır? Bilgisayarın farklı tip ve özellikte olmasının sebepleri neler olabilir? Başlangıç Düşünelim? Günlük hayatta bilgisayar hangi alanlarda kullanılmaktadır? Bilgisayarın farklı tip ve özellikte olmasının sebepleri neler olabilir? Bilgisayar Bilgisayar, kendisine verilen bilgiler

Detaylı

TBİL-405 Mikroişlemci Sistemleri Bölüm 2 1- % %01010 işleminin sonucu hangisidir? % %11000 %10001 %10101 %00011

TBİL-405 Mikroişlemci Sistemleri Bölüm 2 1- % %01010 işleminin sonucu hangisidir? % %11000 %10001 %10101 %00011 TBİL-405 Mikroişlemci Sistemleri Bölüm 2 1- %11010 - %01010 işleminin sonucu hangisidir? % 10000 %11000 %10001 %10101 %00011 2- %0101 1100 sayısının 1 e tümleyeni hangisidir? % 1010 0111 %11010 0011 %1010

Detaylı

ÇOK ÇEKİRDEKLİ İŞLEMCİLER VE PARALEL YAZILIM GELİŞTİRME OLANAKLARI HAKKINDA BİR İNCELEME

ÇOK ÇEKİRDEKLİ İŞLEMCİLER VE PARALEL YAZILIM GELİŞTİRME OLANAKLARI HAKKINDA BİR İNCELEME ÇOK ÇEKİRDEKLİ İŞLEMCİLER VE PARALEL YAZILIM GELİŞTİRME OLANAKLARI HAKKINDA BİR İNCELEME Ecem İren Halilcan Can Akince Aylin Kantarcı Bilgisayar Müh. Bölümü Bilgisayar Müh. Bölümü Bilgisayar Müh. Bölümü

Detaylı

BİLGİSAYAR SİSTEMLERİ

BİLGİSAYAR SİSTEMLERİ BİLGİSAYAR SİSTEMLERİ Hesaplama, saklama gibi çeşitli işlemler amacıyla bilgisayara verilen sayı, yazı, resim, ses, ölçüm vb. değerlerden oluşan her türlü sayısal, alfasayısal bilgiler veri olarak adlandırılmaktadır.

Detaylı

Mikroişlemcili Sistemler ve Laboratuvarı

Mikroişlemcili Sistemler ve Laboratuvarı SAKARYA ÜNİVERSİTESİ Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Mikroişlemcili Sistemler ve Laboratuvarı Doç.Dr. Ahmet Turan ÖZCERİT Doç.Dr. Cüneyt BAYILMIŞ Yrd.Doç.Dr. Murat

Detaylı

BİLGİ TEKNOLOJİLERİ SMO103

BİLGİ TEKNOLOJİLERİ SMO103 BİLGİ TEKNOLOJİLERİ SMO103 2. HAFTA BİLGİSAYAR SİSTEMİ, BİLGİSAYARI OLUŞTURAN BİRİMLER VE ÇALIŞMA PRENSİPLERİ ANAKART, İŞLEMCİ VE BELLEKLER SABİT DİSKLER, EKRAN KARTLARI MONİTÖRLER VE DİĞER DONANIM BİRİMLERİ

Detaylı

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 Günümüzde kullanılan elektronik kontrol üniteleri analog ve dijital elektronik düzenlerinin birleşimi ile gerçekleşir. Gerilim, akım, direnç, frekans,

Detaylı

Erzurum Teknik Üniversitesi RobETÜ Kulübü Robot Eğitimleri. ARDUİNO EĞİTİMLERİ I Arş. Gör. Nurullah Gülmüş

Erzurum Teknik Üniversitesi RobETÜ Kulübü Robot Eğitimleri. ARDUİNO EĞİTİMLERİ I Arş. Gör. Nurullah Gülmüş Erzurum Teknik Üniversitesi RobETÜ Kulübü Robot Eğitimleri ARDUİNO EĞİTİMLERİ I Arş. Gör. Nurullah Gülmüş 29.11.2016 İÇERİK Arduino Nedir? Arduino IDE Yazılımı Arduino Donanım Yapısı Elektronik Bilgisi

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CSE 5051

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CSE 5051 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Mikroişlemcilere Giriş Dersin Orjinal Adı: Introduction to Microprocessors Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisansüstü

Detaylı

Bilgisayar (Computer) Bilgisayarın fiziksel ve elektronik yapısını oluşturan ana birimlerin ve çevre birimlerin tümüne "donanım" denir.

Bilgisayar (Computer) Bilgisayarın fiziksel ve elektronik yapısını oluşturan ana birimlerin ve çevre birimlerin tümüne donanım denir. Bilgisayar (Computer) Bilgisayarın fiziksel ve elektronik yapısını oluşturan ana birimlerin ve çevre birimlerin tümüne "donanım" denir. Bilgisayar ve Donanım Ana Donanım Birimleri Anakart (Motherboard,

Detaylı

Mikroçita. Mikroçita Rapor 2:

Mikroçita. Mikroçita Rapor 2: Mikroçita Rapor 2: İşlemci projemizle ilgili olarak hazırlamış olduğumuz bu ikinci raporda öncelikli olarak vhdl kullanarak tasarladığımız işlemcimizin genel çalışmasını ilk rapora göre daha ayrıntılı

Detaylı

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği

İŞLETİM SİSTEMLERİNE GİRİŞ. Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği İŞLETİM SİSTEMLERİNE GİRİŞ Von Neumann Mimarisi Modern bilgisayar çalışma prensipleri, Von Neumann ın 1945 de geliştirdiği mimariyi temel almaktadır. Merkezi İşlem Birimi Aritmetik ve Mantık Birimi Kontrol

Detaylı

Ders devam zorunluluğu bulunmaktadır ve 2 hafta derse katılmayan öğrenci devamsızlıktan kalacaktır.

Ders devam zorunluluğu bulunmaktadır ve 2 hafta derse katılmayan öğrenci devamsızlıktan kalacaktır. DERSLE İLGİLİ HATIRLATMALAR: Ders devam zorunluluğu bulunmaktadır ve 2 hafta derse katılmayan öğrenci devamsızlıktan kalacaktır. Dönem boyunca önceden belirtilmeyen zamanlar 2 adet quiz yapılacaktır. Dersin

Detaylı

Bilgisayar Donanımı Dersi BİLGİSAYARIN MİMARI YAPISI VE ÇALIŞMA MANTIĞI

Bilgisayar Donanımı Dersi BİLGİSAYARIN MİMARI YAPISI VE ÇALIŞMA MANTIĞI Bilgisayar Donanımı Dersi BİLGİSAYARIN MİMARI YAPISI VE ÇALIŞMA MANTIĞI Bilgisayarın Mimarı Yapısı ve Çalışma Mantığı Bilgisayarı yapısal olarak; bilgilerin girilmesi, girilen bilgilerin belirtilen durumlara

Detaylı

Bir analitik cihaza bir bilgisayar takılması için en az iki neden vardır: Ölçmelerin kısmen veya tamamen otomatikleştirilmesi.

Bir analitik cihaza bir bilgisayar takılması için en az iki neden vardır: Ölçmelerin kısmen veya tamamen otomatikleştirilmesi. 1 MİKROBİLGİSAYARLAR VE MİKROİŞLEMCİLER Enstrümantal Analiz, Digital Elektronikler Mikrobilgisayarlar ve mikroişlemciler pek çok modern laboratuvar cihazının ayrılmaz bir parçası olmuşlardır. Bunlar çalışma

Detaylı