ELEKTROMANYETİZMA VE ELEKTRİK MAKİNALARI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTROMANYETİZMA VE ELEKTRİK MAKİNALARI"

Transkript

1 ELEKTROMANYETİZMA Elektromanyetizma, en genel ifadeyle, elektrik akımının manyetik etkisini inceleyen araştırma alanıdır. Bu alanda, önce 1800 lü yıllarda Danimarkalı bilim adamı Oersted, elektrik akımının daha sonra Manyetik Alan olarak anılacak olan bir takım manyetik etkiler ürettiğini deneysel olarak göstermiş ve ondan hemen sonra Fransız bilim adamı Ampére, elektrik akımı ve onun manyetik etkisini daha prosedürel bir formülasyonla sunmuştur ve bu formülasyona Ampére Kanunu adı verilmiştir. Bundan birkaç yıl sonra İngiliz bilim adamı Faraday, Ampére Kanunu nun tam tersinin de geçerli olduğunu, yani zamana göre değişen bir manyetik alanın, bir iletkende gerilim indükleyeceğini deneysel olarak ispatlamıştır. Bu kanun, Faraday İndüksiyon Kanunu olarak adlandırılmıştır. Nihayet Sırp elektrik mühendisi ve fizikçi Tesla nın çok sayıda keşfi, bugün günlük yaşantımızda kullandığımız birçok cihaz ve elektrik makinasının temelini teşkil etmiştir. 1

2 Bu derste genel olarak, Amper Kanunu ve Faraday İndüksiyon Kanunu kullanılarak, elektrik enerjisi ile mekanik enerjinin birbirine iki yönlü dönüşümü incelenecektir. Bu dönüşüm Elektromekanik Enerji Dönüşümü olarak adlandırılır. En genel tanımlama ile, elektrik enerjisini mekanik enerjiye dönüştüren makinalar Motor, mekanik enerjiyi elektrik enerjisine dönüştüren makinalar ise Generatör olarak adlandırılırlar. Mekanik Port Elektriksel Port Motor Generatör 2

3 Manyetik Alan ve Faraday İndüksiyon Kanunu Manyetik Alan, bir mıknatısın, mıknatısiyet özelliğini gösterebildiği alandır. Genel olarak iki çeşit mıknatıstan söz edebiliriz: Elektromıknatıs ve Kalıcı (Sabit) Mıknatıs Elektromıknatıs, bir nüve etrafına sarılan bir bobinden akım geçirilmesi yoluyla elde edilir. Eğer bobinden geçen akım (I) alternatif akım ise, bu akımın meydana getirdiği manyetik alan da zamana göre değişir. Eğer I akımı DC ise, bu akımın meydana getirdiği manyetik alanın değeri sabittir, zamana göre değişmez. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktadaki manyetik alan, o noktadaki genliği ve yönü ile ifade edilir. 3

4 Kalıcı (Sabit) Mıknatıs ise, demir, nikel, kobalt gibi manyetik özelliği kuvvetli bazı elementlerin ve bunların alaşımlarının yüksek manyetik alana maruz bırakılmak suretiyle manyetize edilmesi suretiyle üretilirler. Normal şartlar altında bu elementlerin atomik yapılarında bulunan manyetik domenler (dipoller) Şekil (a) daki gibi rastgele yönlenmiştir. Bu elementler harici bir manyetik alana maruz bırakıldıklarında dipoller Şekil (b) deki gibi aynı yönlü olarak hizalanırlar ve artık bu andan itibaren bu elementlerden ve onların alaşımlarından yapılan malzemeler mıknatıs özelliği gösterirler ve bir manyetik yaratırlar. Bu manyetik alanın değeri sabittir yılında Ruslar Neodymium adını verdikleri yeni bir element keşfettiler. Bu elementin, tabiattaki en yüksek manyetik özelliğe sahip element olduğu gözlendi ve bu keşif, elektrik makinaları için bir devrim niteliği kazandı. Günümüzde bu elementin alüminyum ve nikel ile oluşturulan alaşımlarından üretilen kalıcı mıknatıslar, elektrik makinalarında yaygın olarak kullanılmaktadır. (a) (b) 4

5 Her ne kadar manyetik alan gözle görülemese de, bazı gözle görülür etkiler üretir. Manyetik alanın varlığını ispatlamak için yapılan en klasik deney şekilde görülmektedir. Akım taşıyan bir iletken, bir kağıda dik bir şekilde konumlandırılır. Demir tozları kağıdın yüzeyine yerleştirilir. Daha önce vurgulandığı gibi manyetik alan vektörel bir büyüklüktür ve bir yönü vardır. Demir tozları, manyetik alan vektörüyle aynı yönde yönlenirler. Örneğin iletkenden geçen akım sinüsoidal AC ise demir tozları dönecek, DC ise belli bir şekil alıp, dönmeksizin o şekilde kalacaktır. Demir Tozları 5

6 Manyetik Akı (Φ): Manyetik alan, görsel olarak Manyetik Kuvvet Çizgileri ile karakterize edilir. Örneğin bir kalıcı mıknatısta manyetik kuvvet çizgileri, şekildeki gibi N kutbundan S kutbuna doğrudur. Manyetik akı, manyetik alan kuvvet çizgilerinin yoğunluğunun bir ölçüsüdür. Yani ne kadar yoğun (şiddetli) bir manyetik kuvvet çizgisi grubu varsa, o kadar fazla manyetik akı vardır. Manyetik akı ϕ sembolü ile gösterilir ve birimi Weber (Wb) dir. Manyetik devrelerdeki Manyetik Akı nın elektrik devrelerindeki eşdeğeri Akım dır. Zira akım, elektrik devrelerinde elektriksel yük hareketinin miktarının bir ölçüsüdür. Birim zamanda elektriksel yük hareketi ne kadar yoğun ise akımın değeri o kadar fazladır. 6

7 Manyetik Akı Yoğunluğu ya da Manyetik Alan (B): Manyetik akı yoğunluğu ya da diğer adıyla Manyetik Alan, birim yüzey alanındaki manyetik akı miktardır. Sembolü B, birimi Tesla (T) dir. 1 Tesla, 1 Wb/m 2 dir. Bu tanımdan anlaşılacağı üzere, manyetik akı yoğunluğunun formülü B şeklindedir. Burada A, manyetik kuvvet çizgilerinin kestiği yüzey alanıdır. Daha genel bir ifadeyle manyetik alan ile manyetik akı arasındaki analitik bağıntı, aşağıdaki integral ile ifade edilebilir: A (T) A B da Yani kapalı bir A alanındaki manyetik alanın integrali, manyetik akıyı verir. 7

8 Manyetik Geçirgenlik (μ): Manyetik geçirgenlik, adından da anlaşılacağı üzere bir malzemenin manyetik alana maruz kaldığında mıknatıslanma derecesinin bir ölçüsüdür. Yani diğer bir ifadeyle o malzemenin manyetik akı geçişine gösterdiği kolaylığın bir ölçüsüdür. Demir, çelik, nikel, kobalt gibi ferromanyetik malzemelerin manyetik geçirgenliği yüksektir. Manyetik geçirgenlik μ ile gösterilir ve SI birim sisteminde birimi Henry/metre (H/m) dir. Tanımından da anlaşılacağı üzere her malzemenin manyetik geçirgenliği farklıdır ve 0 r formülüyle hesaplanır. Burada μ 0 =4π 10-7 boşluğun manyetik geçirgenliği, μ r ise bağıl manyetik geçirgenlik olarak adlandırılır. μ r değeri malzemeye göre değişir ve boşluğun manyetik geçirgenliği baz alınarak hesaplanır. Yaygın olarak kullanılan bazı malzemelerin bağıl manyetik geçirgenlik değeri şu şekildedir: Malzeme Bağıl Manyetik Geçirgenlik (μ r ) (Birimsizdir) Hava 1 Demir 5195 Sert Çelik

9 Malzemeler, bağıl manyetik geçirgenliklerine göre şu şekilde sınıflandırılırlar: 1-Ferromanyetik Madde: Bağıl manyetik geçirgenlikleri 1 den çok büyük olan maddelerdir. Böyle maddeler manyetik alana maruz kaldıklarında mıknatıslanırlar. Kobalt, nikel, demir gibi maddeler ferromanyetik maddedir. 2-Paramanyetik Madde: Bağıl manyetik geçirgenlikleri 1 den biraz büyük olan maddelerdir. Böyle maddeler manyetik alana maruz kaldıklarında çok az mıknatıslanırlar. Alüminyum, hava, manganez gibi maddeler paramanyetik maddedir. 3-Diyamanyetik Madde: Bağıl manyetik geçirgenlikleri 1 den biraz küçük olan maddelerdir. Böyle maddeler manyetik alana maruz kaldıklarında alana zıt yönde ve zayıf olarak mıknatıslanırlar. Bakır, gümüş, bizmut ve karbon gibi maddeler diyamanyetik maddelerdir. 9

10 Manyetik Alan Şiddeti (H): Manyetik alan şiddeti, manyetik alanın bir ortam ya da malzemedeki büyüklüğünü (çokluğunu) ifade eder. Daha somut bir açıklamayla, manyetik alana maruz kalan bir malzemede, malzemenin manyetik geçirgenliği ile orantılı olan bir manyetik alan şiddeti oluşur. Zaten manyetik alan (B) ile manyetik alan şiddeti (H) arasında B H bağıntısı mevcuttur. Manyetik alan şiddeti H ile gösterilir ve birimi Amper/metre (A/m) dir. Tıpkı manyetik alan gibi vektörel bir büyüklüktür. Bu temel tanımlardan sonra, artık Amper Kanunu ve Faraday İndüksiyon Kanunu tanıtılabilir. 10

11 Amper Kanunu: Amper kanununun en basit ifadesi şu şekildedir: Üzerinden akım geçen bir iletkenin etrafında bir manyetik alan oluşur. Daha detaylı olarak ise şu şekilde ifade edilebilir: Bir iletkenin etrafındaki manyetik alan şiddeti, o iletkenden geçen akımla doğru orantılıdır. Bu kanun matematiksel olarak H d l i denklemi ile ifade edilir. Yani bir iletkenin etrafındaki manyetik alan şiddetinin sonsuz küçük bir kapalı dl yolu boyunca integrali, o iletken tarafından çevrelenen toplam akımı verir. Yukarıdaki denklemde eğer B=μH= μ 0 μ r H bağıntısı yerine yazılırsa (μ r =1 olduğunu düşünelim), B d l bağıntısı elde edilir ve böylece akım (I) ve manyetik alan (B) doğrudan ilişkilendirilmiş olur. Yukarıdaki formüllerde B, H ve integral alınan yol l vektörel büyüklüklerdir. 0 i 11

12 Eğer integral alınan yol ile manyetik alan aynı yönde ise, o halde skaler büyüklükler cinsinden bu denklem şu şekilde yazılabilir: Hdl i Aşağıdaki şekilde i akımını taşıyan bir iletken ve r yarıçaplı dairesel yollar görülmektedir. Amper kanunu bu basit yapıya uygulanırsa, iletkenin merkezinden r kadar uzaklıktaki bir noktada manyetik alan şiddetinin değeri Akım Taşıyan iletken Dairesel Yol H i 2 r olarak bulunur. Zira r yarıçaplı çembersel yolun integrali, çemberin çevresi olan 2πr değerine eşittir. Bu şeklin size, manyetik alanın yönü ile alakalı olarak, aşina olduğunuz bir kuralı hatırlatması gerekir (?) 12

13 Amper kanununa göre üzerinden akım geçen bir iletkenin etrafında manyetik alan oluşur. Bu manyetik alanın yönü Sağ El Kuralı ile bulunur. Bu kurala göre, sağ el baş parmağı, iletkenden geçen akımın yönünü gösterirse, bitişik 4 parmak, oluşan manyetik alanın yönünü gösterir. 13

14 Faraday İndüksiyon Kanunu na geçmeden önce basit ama önemli bir soru üzerinde duralım, zira bu soru hem Faraday İndüksiyon Kanunu na, hem de birçok elektrik makinasının çalışmasına temel teşkil edecektir. Amper kanunundan bahsederken, içinden akım geçen bir iletkenin etrafında manyetik alan oluşacağını öğrendik. Soru şu ki; doğru akım mı manyetik alan meydana getirir, alternatif akım mı? Her ikisi de manyetik alan meydana getirir. Ancak doğru akımın meydana getirdiği manyetik alan sabittir, zamana göre değişmez. Alternatif akımın meydana getirdiği manyetik alan ise zamana göre değişir! 14

15 Faraday İndüksiyon Kanunu: Faraday indüksiyon kanununun en basit ifadesi şu şekildedir: Zamana göre değişen bir manyetik alan, bu alan içindeki bir iletkende gerilim indükler. Eğer bu iletkenin uçlarına bir yük bağlanırsa da, bu yükten bir akım geçer. Bu haliyle Amper Kanunu ve Faraday İndüksiyon Kanunu arasında dual bir ilişki (aslında yumurta-tavuk ilişkisi) olduğunu görüyoruz. Yani Amper Kanunu bir iletkenden geçen akımın, iletken etrafında bir manyetik alan oluşturacağını gerçeğini vurgularken, Faraday İndüksiyon Kanunu, zamana göre değişen bir manyetik alanın, bir iletkende gerilim indükleyeceğini ve iletken uçlarına bir yük bağlanması (ya da iletken uçlarının kısa devre edilmesi) durumunda iletkenden bir akım akacağı gerçeğini vurguluyor. İletkende indüklenen bu gerilim, Elektromotor Kuvvet (EMK) adını alır ve şu şekilde hesaplanır: e d dt Buradaki - işareti, indüklenen gerilimin kendisini meydana getiren etkiye ters yönlü olduğunu, yani bu gerilimin iletkende dolaştıracağı akım nedeniyle oluşacak akının, kendisini meydana getiren akıyı zayıflatmaya çalışacağını temsil eder. (V) 15

16 e d dt Bu formül tek sipirli (tek sarım) bir iletkende indüklenen gerilimin formülüdür. N sipirli bir bobinde indüklenecek gerilim ise e d N dt Eğer indüklenen gerilimin genliği hesaplanacaksa, yani özel olarak bir yön vurgusu yapılmasına gerek yoksa, formül buradaki - işareti ihmal edilerek de yazılabilir. e d N dt 16

17 Sıradaki soru şu: Bir iletkende gerilim indüklenmesi, sadece zamana göre değişen bir manyetik alanın varlığında mı gerçekleşir? Faraday ın bu soruya cevabı koca bir HAYIR! Peki eğer manyetik alan sabit (uniform) ise iletkende gerilim nasıl indüklenir? Faraday ın bu soruya cevabı İLETKENİ HAREKET ETTİREREK! Eğer uniform B manyetik alan içerisindeki l uzunluğundaki bir iletken, şekildeki gibi v hızıyla hareket ettirilirse, θ manyetik alan vektörü ile hız vektörü arasındaki açıyı göstermek üzere, indüklenen gerilimin değeri yine aşina olduğunuz bir formülle hesaplanır: e Bvl sin v Bu denklem, Faraday İndüksiyon Kanunu na göre indüklenen gerilimin hesaplanmasına ilişkin formülasyonun ikinci versiyonudur. 17

18 İletkende indüklenen gerilimin polaritesi, Fleming Kuralı olarak da bilinen Sağ El Kuralı olarak adlandırılan bir kuralla bulunur. Sağ el baş parmağı iletkenin hareket yönünü (v), işaret parmağı manyetik alanın yönünü (B) gösteriyorsa, orta parmak indüklenen gerilimin (e) yönünü gösterir. v 18

19 Şu ana kadar, 1. Akım taşıyan bir iletkende, akımın iletken etrafında bir manyetik alan oluşturduğunu, 2. Zamana göre değişen manyetik alana maruz kalan iletkende bir gerilim indüklendiğini, 3. Sabit bir manyetik alana maruz kalan iletken hareket ettirildiğinde de iletkende bir gerilim indüklendiğini öğrendik. Bu konudaki son soru; Akım taşıyan bir iletken, manyetik alana maruz bırakılırsa ne olur? 19

20 Bu sorunun cevabını ise Lorentz vermiş. Lorentz Kuvvet Kanunu na göre, akım taşıyan bir iletken manyetik alana maruz bırakıldığında iletkende bir kuvvet indüklenir. İndüklenen kuvvetin (F) yönü, Sol El Kuralı ile bulunur. i akımı taşıyan B manyetik alanına maruz kalan l uzunluğundaki iletkende indüklenen bu kuvvetin değeri, yine aşina olduğunuz bir formülle hesaplanır: F Bil sin Akımın Yönü θ Kuvvetin Yönü 20

21 Açıklanan bu temel elektromanyetizma kanunları, elektrik makinalarının tamamının çalışmasına temel teşkil eder. Bu nedenle de büyük önem ihtiva ederler! 1. Akım taşıyan bir iletkende, akımın iletken etrafında bir manyetik alan oluşur. (Amper Kanunu) 2. Zamana göre değişen manyetik alana maruz kalan iletkende bir gerilim indüklenir. (Faraday İndüksiyon Kanunu) 3. Sabit bir manyetik alana maruz kalan iletken hareket ettirildiğinde de iletkende bir gerilim indüklenir. (Faraday İndüksiyon Kanunu) 4. Manyetik alan içinde akım taşıyan bir iletkende, bir kuvvet indüklenir. (Lorentz Kuvvet Kanunu) 21

22 Elektromanyetizma Transformatörler Elektromekanik Enerji Dönüşümü Elektrik Makinaları DC Makinalar AC Makinalar Senkron Makinalar 22

23 TRANSFORMATÖRLER Transformatörler yapısal olarak aynı nüveyi paylaşan iki sargıdan oluşan manyetik devrelerdir. Fonksiyonel olarak ise, bu iki sargının farklı sipir sayılarında sarılması suretiyle, girişindeki AC sinyalin akım ve gerilim değerlerini alçaltan veya yükselten elektromanyetik cihazlardır. İdeal bir transformatörde nüvenin manyetik geçirgenliği sonsuzdur ve hem nüvede hem de sargılarda kayıp sıfıra eşittir. 23

24 Transformatörlerin çalışma prensibi de yapısı kadar basittir. Primer sargısına zamana göre değişen bir gerilim uygulandığında, bu gerilimin primer sargısında dolaştırdığı akım, Amper kanununa göre bir manyetik alan meydana getirir. Nüvede dolaşan akı, sekonder sargısını keserek Faraday İndüksiyon Kanununa göre bu sargıda bir gerilim indükler. İndüklenen gerilimin değeri, sekonder sargısının sipir sayısı ile orantılıdır. Primer Sekonder 24

25 Örneğin aşağıda gösterilen şemada, sipir sayısı N 1 olan primer sargısına zamana göre değişen bir V 1 gerilimi uygulandığında, bu gerilim primer sargısında bir I 1 akımı dolaştırır. Amper kanununa göre bu akım bir manyetik alan meydana getirir ve nüvede ϕ akısını dolaştırır. Bu akı hem primer hem de sekonder sargısındaki iletkenleri keser ve sekonderde E 2 gerilimini indükler. Daha önce vurgulandığı gibi ideal bir transformatörde sargı kayıpları sıfıra eşittir ve bu nedenle V 1 =E 1 ve V 2 =E 2 dir. Sekondere bir yük bağlanırsa sekonderden I 2 akımı akar. Primer Sekonder 25

26 Primer ve sekonderde indüklenen gerilimin ani değerler cinsinden ifadesi: e d N dt Bu iki denklem birbirine oranlanırsa: d e N dt e e N N Primer Sekonder 26

27 Elde edilen bu denklem rms değerler cinsinden yazılırsa: Bu N N 1 2 e e N N oranına transformatörün Dönüştürme Oranı denir ve a ile gösterilir. a N N 1 2 Primer Sekonder E E N N 27

28 İdeal bir transformatörde sargılarda kayıp olmadığı için E 1 =V 1 ve E 2 =V 2 dir. Böylece Yani transformatörün sekonder sargısının sipir (tur) sayısı, primer sargısının tur sayısına göre daha fazla ise bu transformatör yükselten bir transformatördür, girişindeki gerilimin genliğini çıkışında yükseltir. Sekonder sargısı primere göre daha az sipirli ise, bu durumda bu transformatör düşüren bir transformatördür. Primer V V N N a Sekonder 28

29 Transformatörler enerji üreten cihazlar değildir. Yani transformatörün girişindeki elektrik enerjisinin değeri ne ise, çıkışında da aynı değerde elektrik enerjisi vardır (ideal transformatörde kayıplar ihmal edilir). Dolayısıyla yükselten bir transformatörde gerilim ne oranda yükseltiliyorsa, akım da aynı oranda alçaltılır. Benzer şekilde, alçaltan bir transformatörde gerilim ne oranda alçaltılıyorsa, akım da o oranda yükseltilir. Bunun sonucu olarak akımlar arasında oran, dönüştürme oranının tersidir. I I a I I 2 1 a Primer Sekonder 29

30 İdeal olmayan bir transformatörde ise sargının direnci ve indüktasından dolayı bir gerilim düşümü olacağı için V 1 gerilimi E 1 gerilimine ve V 2 gerilimi E 2 gerilimine eşit değildir. Ayrıca nüvenin manyetik geçirgenliği pratik olarak sonsuz olamayacağı için, belirli miktarda manyetizasyon kaybı vardır. Bunlara ek olarak manyetik devrede kaçak akı oluşur. İdeal olmayan transformatörlerin analizi, bu kısa tanıtımın kapsamı dışındadır. Primer Sekonder 30

31 Elektromanyetizma Transformatörler Elektromekanik Enerji Dönüşümü Elektrik Makinaları DC Makinalar AC Makinalar Senkron Makinalar 31

32 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ Bu bölümde, elektrik enerjisi ile mekanik enerjinin birbirine dönüşümünün temelleri açıklanacaktır. Bu amaçla ilk önce sabit (zamana göre değişmeyen) bir manyetik alan içindeki bobinin, daha sonra da zamana göre değişen bir manyetik alan içindeki bobinin durumu incelenecektir. 32

33 1. Sabit Manyetik Alan İçindeki Bobin Daha önce sabit bir manyetik alan içerisindeki bobin döndürüldüğünde, bobinde bir gerilim indükleneceğini söylemiştik. Aslında bobin sabit pozisyonda tutulup, (değeri sabit olan) manyetik alan bir şekilde döndürülürse de bobinde gerilim indüklenir. Yani manyetik alan ve bobin ikilisinden hangisinin durağan (hareketsiz), hangisinin ise dönen olduğu farketmez. Biri döndüğü sürece bobinde gerilim indüklenir. DC Makinalar ve Senkron Makinalar bu prensibe göre çalışırlar. DC makinalarda manyetik alan durağandır bobin döner. Senkron makinalarda bobinin pozisyonu sabittir, (değeri sabit olan) manyetik alan mekanik olarak döndürülür. 33

34 Dönen bir elektrik makinasının iki temel parçası vardır: Stator ve Rotor. Duran kısım stator, dönen kısım ise rotor olarak adlandırılır. DC makinalarda statora özel olarak endüktör, rotora ise özel olarak armatür denir. Duran Kısım Stator (Endüktör) Dönen Kısım Rotor (Armatür) 34

35 Daha önce vurgulandığı gibi, zamana göre değişmeyen (sabit) bir manyetik alan ya bir elektromıknatısla, ya da bir kalıcı mıknatısla üretilebilir. Eğer elektromıknatıs kullanılırsa, sargıdan geçen akımın genliği ayarlanarak üretilen manyetik alanın şiddeti de ayarlanabilir. Kalıcı mıknatıslar ise değeri ayarlanamayan, sabit bir manyetik alan sağlarlar. Ancak kalıcı mıknatıs kullanılması durumunda aynı güç değeri için makinanın hacmi oldukça küçülür ve verimi artar. Sabit manyetik alan içerisindeki bobinin davranışının anlatıldığı bu kısımda, sabit manyetik alanın kalıcı mıknatıs tarafından üretildiğini göz önünde bulunduracağız. Ancak anlatılacak olan tüm detaylar, elektromıknatıs kullanılması durumunda da geçerlidir. 35

36 1.a. Generatör Aksiyonu Bobin Fırçalar Komütatör Mekanik Sürücü Şaft (Mil) Manyetik Alan DC generatörlerin çalışma prensibini açıklamak için yandaki şekli kullanalım. Burada bir mıknatıs tarafından oluşturulan sabit değerli manyetik alanın içine yerleştirilmiş bobin, miline bağlı bir türbin vasıtasıyla mekanik olarak döndürülmektedir. Dolayısıyla bobinde bir gerilim indüklenecektir. İndüklenen bu gerilim fırçalar ve kollektör yardımıyla dış devreye (yüke) iletilmektedir. 36

37 Bobinin şekildeki konumunu göz önünde bulunduralım. Manyetik alan kuvvet çizgileri N kutbundan S kutbuna doğru olacağı için bu konumda bobini kesen akı miktarı maksimum olacaktır. Şimdi bobini ok yönünde 90 derece döndürelim. 37

38 Bu konumda bobin, manyetik alan kuvvet çizgilerine paraleldir ve dolayısıyla kuvvet çizgileri bobini kesmez. Bobini ok yönünde (saat ibresi yönünde) bir kez daha 90 derece döndürelim. Bu konumda bobin, manyetik alan kuvvet çizgilerine diktir ve bobin tarafından kesilen manyetik akı maksimumdur. Ancak bobinin konumu, başlangıçtaki konumunun tam tersidir ve dolayısıyla bu akının bobinde indükleyeceği gerilimin polaritesi, başlangıçtaki konumun tam tersidir. 38

39 Bobini bir kez daha saat ibresi yönünde 90 derece döndürelim. Bu konumda bobin, manyetik alan kuvvet çizgilerine paraleldir ve dolayısıyla kuvvet çizgileri bobini kesmez. Dikkat edilirse bobin tarafından kesilen akı miktarı bir kosinüs dalgası şeklinde değişmektedir. Yani başlangıçta kesilen akı miktarı maksimum iken, bobin hareket ettirildikçe kesilen akının miktarı azalmakta ve 90 derecelik hareket sonunda minimum değerini almakta, daha sonra yine 90 derece hareket ettirildiğinde ters yönde maksimum değerini almakta ve yandaki şekilde tekrar minimum olmaktadır. 39

40 Şekildeki grafik, bobin tarafından kesilen akının değişimini göstermektedir. Burada θ, bobin ile manyetik kuvvet çizgileri arasındaki açı, Φ p mıknatısın sağladığı akı, Φ ise bu akının bobin tarafından kesilen miktarıdır. Yani bobinin kestiği akının aldığı maksimum değer, mıknatıs tarafından sağlanan sabit değerli akı Φ p dir. Grafik bir kosinüs dalgası şeklindedir. 40

41 Dolayısıyla bobin tarafından kesilen akı, matematiksel olarak şu şekilde ifade edilebilir: p cos 41

42 Faraday İndüksiyon Kanununa göre bobinde indüklenen gerilim: e e d dt d cos p dt d sin p dt sin t p Burada ω=dθ/dt açısal frekans olarak adlandırılır ve birimi rad/s dir. 42

43 e sin t p Dolayısıyla indüklenen gerilimin zamana göre değişimi de şekildeki gibi olacaktır. Yani indüklenen gerilim bir sinüs dalgası şeklinde değişecektir. 43

44 Dikkat edilirse bu gerilim bir alternatif gerilimdir, yani polaritesi değişmektedir. DC generatörlerde indüklenen bu AC gerilimi, bir DC gerilim olarak dış devreye almak için kollektör kullanılır. 44

45 Fırçalar Komütatör Bobin Mekanik Sürücü Şaft (Mil) Manyetik Alan İki paraçaya bölünmüş ve herbir parçası birbirinden yalıtılmış bir bilezik gibi görünen kollektör (diğer adıyla komütator), her bir parçası bobinin bir ucuna temas edecek şekilde bağlanmıştır. Dolayısıyla bobinle beraber döner. Ancak fırça olarak adlandırılan kısımlar sabit konumludur. 45

46 Bobinde indüklenen gerilimin yönü değişmekle beraber, kollektör ve fırçalar, yükün üzerinden tek yönlü akım akmasını sağlarlar. B fırçasına her zaman bobinin negatif polariteli kısmı, A fırçasına ise her zaman bobinin pozitif polariteli kısmı gelecektir. Fırça Komütatör (Kollektör) 46

47 Dolayısıyla yükün üzerinden geçen akım, şekildeki gibi doğru akımdır. Fırça Komütatör (Kollektör) 47

48 1.b. Motor Aksiyonu Komütatör (Kollektör) DC makinalarda generatör aksiyonunu anlatmak için kullanılan konfigürasyonda, bobini harici bir etki ile mekanik olarak döndürmek yerine, bu bobine bir DC kaynak bağlanırsa, mıknatısın meydana getirdiği manyetik alan (B) ile bobine uygulanan gerilim sonucu bobinden geçen akımın (i) etkileşiminden, Lorentz Kuvvet Kanununa göre, bobinde bir kuvvet indüklenir. Fırça 48

49 Lorentz Kuvvet Kanunu na göre, akım taşıyan bir iletken manyetik alana maruz bırakıldığında iletkende bir kuvvet indüklenir. İndüklenen kuvvetin (F) yönü, Sol El Kuralı ile bulunur. i akımı taşıyan B manyetik alanına maruz kalan l uzunluğundaki iletkende indüklenen bu kuvvetin değeri, yine aşina olduğunuz bir formülle hesaplanır: F Bil sin Akımın Yönü θ Kuvvetin Yönü 49

50 Bobinin yarıçapı r ise, indüklenen bu kuvvet bobinde Fırça Komütatör (Kollektör) T F r (Nm) formülüyle hesaplanan bir Tork (Moment) meydana getirir. Bu momentin etkisiyle bobin döner. Böylece bobine uygulanan elektrik enerjisi, bobinin şaftında (milinde) mekanik enerjiye dönüştürülmüş olur. Motorlar, elektrik enerjisini mekanik enerjiye dönüştüren elektrik makinalarıdır. 50

51 Komütatör (Kollektör) Motor aksiyonunda anılmaya değer bir ayrıntı da şekilde vurgulanan gerilimdir. Bu gerilim, indüklenen torkun etkisiyle bobin dönmeye başladıktan sonra, manyetik alan içinde hareket eden bobinde Faraday İndüksiyon Kanununa göre indüklenen gerilimdir. Polaritesi kendisini meydana getiren etkiye ters yönlü olduğu için zıt elektromotor kuvvet (zıt emk) olarak adlandırılır. Fırça 51

52 Özetle, değeri sabit bir manyetik alan içindeki bobin, harici bir mekanik etkiyle döndürülürse bobinde gerilim indüklenir. Böylece mekanik enerji, elektrik enerjisine dönüştürülmüş olur. (DC Generatör) Eğer bu bobine bir DC gerilim uygulanırsa, bobinde bir tork indüklenir ve bobin dönmeye başlar. Böylece elektrik enerjisi mekanik enerjiye dönüştürülmüş olur. (DC Motor) Bu bilgiler ışığında, şu soruyu cevaplamaya çalışalım: Bir DC Makina, konfigürasyonu değiştirilmeden (herhangi bir fiziksel değişiklik yapılmadan), gerektiğinde motor ve gerektiğinde generatör olarak kullanılabilir mi? 52

53 2. Zamana Göre Değişen Manyetik Alan İçindeki Bobin Zamana göre değişen manyetik alan meydana getirmenin birçok alternatifi olsa da, burada dikkatimizi sinüsoidal olarak değişen manyetik alana yoğunlaştıracağız. Eğer bir bobine sinüsoidal gerilim uygulanırsa, bobinden geçen akım da sinüsoidal olarak zamana göre değişen bir akım olacak ve dolayısıyla bu akımın meydana getireceği manyetik alan da zamana göre değişen bir manyetik alan olacaktır. Faraday İndüksiyon Kanununa göre, zamana göre değişen bir manyetik alan içindeki bobinde bir gerilim indüklenir. Eğer bu bobinin iki ucu kısa devre edilirse bobinden bir akım geçer ve Lorentz Kuvvet Kanununa göre manyetik alan içinde akım taşıyan bir bobinde kuvvet oluşacağı için, bobin dönmeye başlar. Tüm bu operasyon, AC motorların çalışma prensibini açıklar. AC Generatörlerin (alternatör) çalışma prensibi DC Generatörlerin (dinamo) çalışma prensibi ile aynıdır. Sadece indüklenen gerilim, dış devreye doğrultulmadan alınır. 53

54 2.a. Generatör Aksiyonu AC Generatörlerin (alternatör) çalışma prensibi DC Generatörlerin (dinamo) çalışma prensibi ile aynıdır. Sadece indüklenen gerilim, dış devreye doğrultulmadan alınır. Bunun için doğrultma işlemi yapan kollektör yerine, iki adet bilezik kullanılır. 54

55 2.b. Motor Aksiyonu Endüstride en yaygın olarak kullanılan motorlar 3 fazlı AC motorlardır. Asenkron Motor olarak anılan bu motorlarda statora 3 fazlı sargılar yerleştirilir. Rotorda ise iki ucu kısa devre edilmiş iletkenler vardır. Asenkron Motor Rotor Stator 55

56 Asenkron motorun çalışma prensibi oldukça basittir. Stator sargılarına üç fazlı sinüsoidal gerilim uygulanırsa, sargılardan geçen akım da sinüsoidal olarak zamana göre değişen bir akım olacak ve dolayısıyla bu akımın meydana getireceği manyetik alan da zamana göre değişen bir manyetik alan olacaktır. Faraday İndüksiyon Kanununa göre, zamana göre değişen bir manyetik alan içindeki bobinde bir gerilim indüklenir. Eğer bu bobinin iki ucu şekildeki gibi kısa devre edilirse bobinden bir akım geçer ve Lorentz Kuvvet Kanununa göre manyetik alan içinde akım taşıyan bir bobinde kuvvet oluşacağı için, rotor dönmeye başlar. Böylece elektrik enerjisi mekanik enerjiye çevrilmiş olur. 56

57 Stator sargılarına uygulanan üç fazlı gerilim, şekildeki gibi aralarında 120 şer derece faz farkı bulunan üç sinüsoidal sinyaldir. Bu gerilimin sargılarda dolaştırdığı akım, bir döner manyetik alan meydan getirir. Yani manyetik alan vektörü zamana göre dönmektedir. Döner manyetik alanın dönme hızına senkron hız denir. Rotorun mekanik olarak dönme hızı, senkron hızdan daha düşük bir değere sahiptir. Yani döner manyetik alanın hızı ile rotorun mekanik olarak dönme hızı aynı (senkron) değildir. Bu nedenle AC motorlar Asenkron Motorlar olarak adlandırılırlar. 57

58 Tüm bu bilgiler ışığında, asenkron motorlar hakkında şu soru, bu tip motorlara ilişkin operasyon teorisini (çalışma prensibini) öğrenme düzeyinizi göstermesi açısından kullanışlı olacaktır: Neden rotorun mekanik dönme hızı ile döner manyetik alanın hızı olmalıdır? farklı 58

59 Senkron Makinalar Asenkron makinalarda döner ile hızı ile rotorun hızı senkron değildi. Senkron makinalarda ise rotorun dönme hızı ile döner alanın hızı birbirine eşittir, yani senkrondur. Bir senkron makinanın statoru tıpkı asenkron makinanın statoru gibidir. Rotorda ise yine kısa devre çubukları vardır ancak, buna ek olarak bir sargı daha bulunur. 59

60 Motor modunda çalışmayı göz önünde bulunduralım. Başlangıçta rotordaki ek sargıya herhangi bir gerilim uygulanmaz. Stator sargılarına gerilim uygulanır ve motor başlangıçta tıpkı asenkron motor gibi çalışmaya başlar. Motor, nominal hızının (anma hızının) yaklaşık %75 ine ulaştığı anda, rotordaki ek sargıya bir DC gerilim uygulanır ve bu ek sargıda dolaşan akım vasıtasıyla rotor hızı, stator döner manyetik alan hızı ile aynı değere (senkron hale) getirilir. 60

61 Rotor senkron hızda dönmeye başladıktan sonra, artık rotordaki kısa devre çubuklarının hiçbir fonksiyonu yoktur! (Neden?) Ancak bu kısa devre çubukları, motor miline ani bir yük binip rotorun hızı senkron hızın altına düştüğünde tekrar devreye girerler ve rotor hızının tekrar senkron hıza eşit olmasını sağlarlar. 61

62 Özetlemek gerekirse AC, DC ve Senkron Makinaların dönen kısımlarında (rotor) ve duran kısımlarında (stator) aşağıdaki sinyaller mevcuttur. Stator Rotor DC Makinalar DC DC AC Makinalar AC AC Senkron Makinalar AC DC 62

63 ELEKTRİKSEL BÜYÜKLÜKLERİN ÖLÇÜLMESİ Akım Ölçümü: Akım, devreye seri bağlı bir ampermetre ile ölçülür. Eğer kaynak şekildeki gibi DC ise ampermetre devreden geçen akımın değerini, AC ise akımın etkin değerini gösterir. Esasen eğer kaynak AC ise tüm ölçü aletleri etkin değeri gösterir GİRİŞ 63

64 Gerilim Ölçümü: Gerilim, devreye paralel bağlı bir voltmetre ile ölçülür. GİRİŞ 64

65 Direnç Ölçümü: Direnç ölçmek için, önce değeri ölçülecek olan direnç devreden uzaklaştırılır. Daha sonra direnç değeri, bir ohmmetre yardımıyla şekildeki gibi ölçülür. GİRİŞ 65

66 Dijital Multimetre: Bir dijital (ya da analog) multimetre; akım, gerilim, direnç ve bunlara ek olarak başka elektriksel büyüklükleri ölçmek için geliştirilmiş çok fonksiyonlu bir ölçü cihazıdır. Hatta multimetrelerin bazıları, bu elektriksel büyüklüklere ek olarak sıcaklık gibi fiziksel büyüklükleri de (bir transdüser vasıtasıyla elektriksel bir büyüklülüğe çevirerek) ölçer. Burada örnek olarak en temel ve en basit multimetre tanıtılacaktır. Basit bir multimetre ile temel olarak, DC gerilim ve akım AC gerilim ve akım Direnç ve bunlar dışında olarak bazı ek ölçümler yapılabilir. Takip eden slayttaki fotoğraf, bu şekilde en temel ve basit bir multimetreye aittir. GİRİŞ 66

67 Multimetrenin döner konumlu (hareketli) anahtarı, fotoğrafta AC gerilim ölçümü konumundadır. Bir sonraki konum DC gerilim ölçümü için, daha sonraki ise mv seviyesindeki bir gerilimin daha hassas ölçülmesi için anahtarın getirilmesi gereken konumu temsil eder. Takip eden konum direnç ölçümü içindir. Ondan sonraki konumlar ise sırasıyla kısa devre ölçümü, kapasite (C) ölçümü, μa, ma ve A seviyelerindeki akımların ölçümü için kullanılan konumlardır. Ölçü aletinin alt tarafında ise ölçüm problarının yerleştirileceği slotlar görülmektedir. Her ne büyüklük ölçülürse ölçülsün, siyah ölçüm probu COM yazılı slota yerleştirilir. Diğer ölçüm probu ise ölçülecek büyüklüğe ve onun genliğine göre uygun slota yerleştirilir GİRİŞ 67

68 Multimetre en temel ölçü aleti olup, bu ölçü aletinin dışında R, L ve C değerlerini hassas bir şekilde ölçmek için kullanılan RLCmetre ve güç ölçmek için kullanılan Wattmetre diğer temel ölçü aletleri olarak sayılabilir. Enerji analizörleri ise, özellikle AC devrelerde akım/gerilim değişiminin geçmişinin (log) tutulması ve bir dosyaya kaydedilmesi, faz açısın bulunması, yüksek değerli akım/güç ölçümlerinin yapılması gibi pek çok ek fayda sağlarlar GİRİŞ 68

69 Osiloskop (ya da daha az kullanılan adıyla salınım ölçer), elektriksel büyüklüklerin değerlerinin grafik olarak bir yansıtılmasını ve hem grafik hem de data formatında kaydedilmesini sağlar. Hem enerji analizörü ile, hem de osiloskop ile akım ve gerilim ölçebilmek için akım ve gerilim problarına ihtiyaç duyulur. Küçük akım ve gerilim değerleri için genellikle cihazla birlikte gelen problar kullanılabilir iken, daha yüksek akım ve gerilim değerleri için ayrı problara ihtiyaç duyulabilir. GİRİŞ 69

70 Güvenlik: İnsan vücudundan akan akım, elektriksel şokun (çarpılmanın) temel sebebidir. Eğer akım taşıyan herhangi bir noktaya temas ederseniz, akım, devresini üzerinizden tamamlayarak toprağa akacaktır. Çeşitli akım değerlerinin insan vücudu üzerindeki fiziksel etkileri aşağıdaki tabloda listelenmiştir. Akım (ma) Fiziksel Etki 1.1 Hissetme eşiği 1.8 Çarpılma başlangıcı (Ağrı ve kasların kontrolünün kaybı henüz yok) 9 Ağrılı Şok (Çarpılma) (Kasların kontrolünün kaybı henüz yok) 23 Şiddetli çarpılma, kas kasılması, solunum güçlükleri 75 Kasların çok hızlı ve istemsiz olarak kasılması eşiği (ventriküler fibrilasyon) saniyeden fazla süre temas ölümle sonuçlanabilir 5000 Doku yanığı, kalp krizi, felç. GİRİŞ 70

71 Elektrik akımının bu tür zararlı ve ölümcül etkilerinden kaçınmak için alınması gereken temel güvenlik tedbirlerinin bir kısmı aşağıda listelenmiştir. Enerji olması muhtemel yerlere temas etmekten kaçınınız ve herhangi bir devre/sistem/cihaz üzerinde çalışmak için mutlaka ilk önce enerjisini kesiniz. Çok yorgunken ve dalgınlığa/uyuşukluğa neden olabilecek ilaçlar kullanırken çalışmayınız. Devreler üzerinde çalışırken yüzük, saat ve metal mücevheratınızı çıkarınız. Lehim yaparken, kablo keserken ve bu gibi sıçrama riski olan işler yaparken laboratuar gözlükleri kullanmaya özen gösteriniz. Devrenin enerjisini kestikten sonra, kondansatörler üzerlerinde bir miktar enerji depo edecekleri için, kondansatörlerin deşarj süresi kadar bir süre devreye temas etmekten sakınınız. Sol elinizi kullanmanız, herhangi bir çarpılma anında akımın kalbinizin üzerinden akmasına ve kalp atış hızınızın çok artmasına neden olur. Riskli noktalara sağ elinizle temas etmeyi tercih ediniz. Unutmayın ki laboratuarlar, bir şey yiyip içmek ve şakalaşmak için hiç ideal ortamlar değillerdir. Laboratuar ortamında elinizi ıslatmanız, imamların iş yükünü artırır. GİRİŞ 71

Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri

Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri Elektronik Mühendisliği Devreler ve Sistemler Haberleşme Sistemleri Elektromanyetik Alanlar ve Mikrodalga

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK MAKİNALARI LABORATUVARI I DENEY FÖYLERİ

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK MAKİNALARI LABORATUVARI I DENEY FÖYLERİ T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK MAKİNALARI LABORATUVARI I DENEY FÖYLERİ Hazırlayan Arş. Gör. Ahmet NUR DENEY-1 TRANSFORMATÖRLERDE POLARİTE

Detaylı

DOĞRU AKIM MAKİNELERİ

DOĞRU AKIM MAKİNELERİ 1 DOĞRU AKIM MAKİNELERİ DOĞRU AKIM MAKİNELERİ - Giriş Doğru Akım Makineleri Doğru akım makineleri elektromekanik güç dönüşümü yapan makinelerdir. Makine üzerinde herhangi bir değişiklik yapmadan her iki

Detaylı

DENEY-4 ASENKRON MOTORUN KISA DEVRE (KİLİTLİ ROTOR) DENEYİ

DENEY-4 ASENKRON MOTORUN KISA DEVRE (KİLİTLİ ROTOR) DENEYİ DENEY-4 ASENKRON MOTORUN KISA DEVRE (KİLİTLİ ROTOR) DENEYİ TEORİK BİLGİ ASENKRON MOTORLARDA KAYIPLAR Asenkron motordaki güç kayıplarını elektrik ve mekanik olarak iki kısımda incelemek mümkündür. Elektrik

Detaylı

ASENKRON MOTOR ASENKRON (İNDÜKSİYON) MOTOR. Genel

ASENKRON MOTOR ASENKRON (İNDÜKSİYON) MOTOR. Genel Genel ASENKRON (İNDÜKSİYON) MOTOR Asenkron makinalar motor ve jeneratör olarak kullanılabilmekle birlikte, jeneratör olarak kullanım rüzgar santralleri haricinde yaygın değildir. Genellikle sanayide kullanılan

Detaylı

ASENKRON (İNDÜKSİYON)

ASENKRON (İNDÜKSİYON) ASENKRON (İNDÜKSİYON) Genel MOTOR Tek fazlı indüksiyon motoru Asenkron makinalar motor ve jeneratör olarak kullanılabilmekle birlikte, jeneratör olarak kullanım rüzgar santralleri haricinde yaygın değildir.

Detaylı

ELEKTRİK MAKİNALARINDA MANYETİK ALANLAR

ELEKTRİK MAKİNALARINDA MANYETİK ALANLAR DENEY-1 ELEKTRİK MAKİNALARINDA MANYETİK ALANLAR ELEKTRİK MAKİNALARI Elektrik Makinaları elektrik enerjisini mekanik enerjiye veya mekanik enerjiyi elektrik enerjisine dönüştüren cihazlardır. Transformatörler,

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 4.HAFTA 1 İçindekiler Transformatörlerde Eşdeğer Devreler Transformatör

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

MANYETIZMA. Manyetik Alan ve Manyetik Alan Kaynakları

MANYETIZMA. Manyetik Alan ve Manyetik Alan Kaynakları MANYETIZMA Manyetik Alan ve Manyetik Alan Kaynakları MAGNETİZMA Mıknatıs ve Özellikleri Magnetit adı verilen Fe 3 O 4 (demir oksit) bileşiği doğal bir mıknatıstır ve ilk olarak Manisa yakınlarında bulunduğu

Detaylı

Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON. Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Bölüm 9 ELEKTROMANYETİK İNDÜKSİYON Hedef Öğretiler Faraday Kanunu Lenz kanunu Hareke bağlı EMK İndüksiyon Elektrik Alan Maxwell denklemleri ve uygulamaları Giriş Pratikte Mıknatısın hareketi akım oluşmasına

Detaylı

ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI

ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI ELM 324 ELEKTROMEKANİK ENERJİ DÖNÜŞÜMÜ DERSİ LABORATUVARI Deney 1 : Histeresiz Eğrisinin Elde Edilmesi Amaç : Bu deneyin temel amacı; transformatörün alçak gerilim sargılarını kullanarak B-H (Mıknatıslanma)

Detaylı

1 ALTERNATİF AKIMIN TANIMI

1 ALTERNATİF AKIMIN TANIMI 1 ALTERNATİF AKIMIN TANIMI Alternatif Akımın Tanımı Doğru gerilim kaynağının gerilim yönü ve büyüklüğü sabit olmakta; buna bağlı olarak devredeki elektrik akımı da aynı yönlü ve sabit değerde olmaktadır.

Detaylı

Manyetik Alan Şiddeti ve Ampere Devre Yasası

Manyetik Alan Şiddeti ve Ampere Devre Yasası Manyetik Alan Şiddeti ve Ampere Devre Yasası Elektrik alanlar için elektrik akı yoğunluğunu, elektrik alan şiddeti cinsinden tanımlamıştık. Buna benzer şekilde manyetik alan şiddetiyle manyetik akı yoğunluğu

Detaylı

7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ

7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ 7.DENEY RAPORU AKIM GEÇEN TELE ETKİYEN MANYETİK KUVVETLERİN ÖLÇÜMÜ Arş. Gör. Ahmet POLATOĞLU Fizik II-Elektrik Laboratuvarı 9 Mart 2018 DENEY RAPORU DENEYİN ADI: Akım Geçen Tele Etkiyen Manyetik Kuvvetlerin

Detaylı

DANIŞMAN Mustafa TURAN. HAZIRLAYAN İbrahim Bahadır BAŞYİĞİT T.C. SAKARYA ÜNİVERSİTESİ HERHANGİ BİR ELEKTRİKLİ CİHAZIN ÇALIŞMA PRENSİBİ

DANIŞMAN Mustafa TURAN. HAZIRLAYAN İbrahim Bahadır BAŞYİĞİT T.C. SAKARYA ÜNİVERSİTESİ HERHANGİ BİR ELEKTRİKLİ CİHAZIN ÇALIŞMA PRENSİBİ T.C. SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ HERHANGİ BİR ELEKTRİKLİ CİHAZIN ÇALIŞMA PRENSİBİ DANIŞMAN Mustafa TURAN HAZIRLAYAN İbrahim Bahadır BAŞYİĞİT 0101.00001

Detaylı

Elektromekanik Enerji Dönüşümü Manyetik Alan ve Temel Yasalar

Elektromekanik Enerji Dönüşümü Manyetik Alan ve Temel Yasalar Elektromekanik Enerji Dönüşümü Manyetik Alan ve Temel Yasalar Elektrikli veya Hibrid Taşıtlar Robot teknolojilerinde ve otomasyon uygulamalarında adım motorları, servo motorlar ve diğer bazı özel motorlar

Detaylı

ELEKTRİKSEL EYLEYİCİLER

ELEKTRİKSEL EYLEYİCİLER ELEKTRİKSEL EYLEYİCİLER Eyleyiciler (Aktuatörler) Bir cismi hareket ettiren veya kontrol eden mekanik cihazlara denir. Elektrik motorları ve elektrikli sürücüler Hidrolik sürücüler Pinomatik sürücüler

Detaylı

SENKRON MAKİNA DENEYLERİ

SENKRON MAKİNA DENEYLERİ DENEY-8 SENKRON MAKİNA DENEYLERİ Senkron Makinaların Genel Tanımı Senkron makina; stator sargılarında alternatif akım, rotor sargılarında ise doğru akım bulunan ve rotor hızı senkron devirle dönen veya

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ Elektrik Makinaları II Laboratuvarı DENEY 3 ASENKRON MOTOR A. Deneyin Amacı: Boşta çalışma ve kilitli rotor deneyleri yapılarak

Detaylı

Bu konuda cevap verilecek sorular?

Bu konuda cevap verilecek sorular? MANYETİK ALAN Bu konuda cevap verilecek sorular? 1. Manyetik alan nedir? 2. Maddeler manyetik özelliklerine göre nasıl sınıflandırılır? 3. Manyetik alanın varlığı nasıl anlaşılır? 4. Mıknatısın manyetik

Detaylı

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI DENEY-2 Kapaksız raporlar değerlendirilmeyecektir. ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI 1. Teorik Bilgi Asenkron Motorların Çalışma Prensibi Asenkron motorların çalışması şu üç prensibe dayanır:

Detaylı

Temel Yasalar ve Uygulamaları

Temel Yasalar ve Uygulamaları Temel Yasalar ve Uygulamaları 1) Yeryüzünde hangi doğrultuda tutup, hangi yönde hareket ettireceğiniz bir iletkende maksimum gerilim indüklenir / yada hangilerinde indüklenmez. Yanıt 1: Maksimum emk nin

Detaylı

Asenkron Makineler (2/3)

Asenkron Makineler (2/3) Asenkron Makineler (2/3) 1) Asenkron motorun çalışma prensibi Yanıt 1: (8. Hafta web sayfası ilk animasyonu dikkatle inceleyiniz) Statora 120 derecelik aralıklarla konuşlandırılmış 3 faz sargılarına, 3

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

3. Bölüm: Asenkron Motorlar. Doç. Dr. Ersan KABALCI

3. Bölüm: Asenkron Motorlar. Doç. Dr. Ersan KABALCI 3. Bölüm: Asenkron Motorlar Doç. Dr. Ersan KABALCI 1 3.1. Asenkron Makinelere Giriş Düşük ve orta güç aralığında günümüzde en yaygın kullanılan motor tipidir. Yapısal olarak çeşitli çalışma koşullarında

Detaylı

FARADAY YASASI Dr. Ali ÖVGÜN

FARADAY YASASI Dr. Ali ÖVGÜN FİZK 104-202 Ders 9 FARADAY YASASI Dr. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynaklar: -Fizik 2. Cilt (SERWAY) -Fiziğin Temelleri 2.Kitap (HALLIDAY & RESNIK) -Üniversite Fiziği (Cilt 2) (SEARS ve ZEMANSKY) http://fizk104.aovgun.com

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

ELK-301 ELEKTRİK MAKİNALARI-1

ELK-301 ELEKTRİK MAKİNALARI-1 ELK-301 ELEKTRİK MAKİNALARI-1 KAYNAKLAR 1. Prof. Dr. Güngör BAL, Doğru Akım Makinaları ve Sürücüleri, Seçkin Yayınevi, Ankara 2008 2. Stephen J. Chapman, Elektrik Makinalarının Temelleri, Çağlayan Kitabevi,

Detaylı

DC Motor ve Parçaları

DC Motor ve Parçaları DC Motor ve Parçaları DC Motor ve Parçaları Doğru akım motorları, doğru akım elektrik enerjisini dairesel mekanik enerjiye dönüştüren elektrik makineleridir. Yapıları DC generatörlere çok benzer. 1.7.1.

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

3. ELEKTRİK MOTORLARI

3. ELEKTRİK MOTORLARI 3. ELEKTRİK MOTORLARI Elektrik enerjisini mekanik enerjiye dönüştüren makinalardır. Her elektrik motoru biri sabit (Stator, Endüktör) ve diğeri kendi çevresinde dönen (Rotor, Endüvi) iki ana parçadan oluşur.

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 1.

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 1. ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 1. HAFTA 1 İçindekiler Elektrik Makinalarına Giriş Elektrik Makinalarının

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 10. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 10. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 10. Hafta Aysuhan OZANSOY Bölüm 8: Manyetik Alan 1. Mıknatıslar ve manyetik alan 2. Elektrik Yüküne Etkiyen Manyetik Kuvvet 3. Manyetik Alanda

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6.

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6. ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6. HAFTA 1 İçindekiler Oto Trafo Üç Fazlı Transformatörler Ölçü Trafoları

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için

Detaylı

Doğru Akım Devreleri

Doğru Akım Devreleri Doğru Akım Devreleri ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için elektromotor kuvvet (emk) adı verilen bir enerji kaynağına ihtiyaç duyulmaktadır. Şekilde devreye elektromotor

Detaylı

ELEKTROMANYETIK DALGALAR

ELEKTROMANYETIK DALGALAR ELEKTROMANYETIK DALGALAR EEM 10/1/2018 AG 1 kaynaklar: 1) Muhendislikelektromenyetiginin temelleri, David K. Cheng, Palme Yayincilik 2) Electromagnetic Field Theory Fundamentals, Guru&Hiziroglu 3) A Student

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı 9.Bölümün Özeti Ankara Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü Bahar Yarıyılı 9.Bölümün Özeti Ankara Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Kimya Bölümü 2014-2015 Bahar Yarıyılı 9.Bölümün Özeti Ankara Aysuhan OZANSOY Bölüm 9: Manyetik Alan Kaynakları 1. Biot-Savart Kanunu 1.1 Manyetik Alan

Detaylı

2-MANYETIK ALANLAR İÇİN GAUSS YASASI

2-MANYETIK ALANLAR İÇİN GAUSS YASASI 2-MANYETIK ALANLAR İÇİN GAUSS YASASI Elektrik yükleri yani pozitif ve negatif yükler birbirlerinden ayrı ve izole halde düşünülebilirler. Bu durum, Kuzey ve güney manyetik kutuplar için de söz konusu olabilir

Detaylı

1. Bölüm: Makina İlkelerine Giriş. Doç. Dr. Ersan KABALCI

1. Bölüm: Makina İlkelerine Giriş. Doç. Dr. Ersan KABALCI 1. Bölüm: Makina İlkelerine Giriş Doç. Dr. Ersan KABALCI 1 Makine İlkeleri Elektrik Makinaları elektrik enerjisini mekanik enerjiye veya mekanik enerjiyi elektrik enerjisine dönüştüren cihazlardır. 2 Makine

Detaylı

ELEKTROMANYETIK DALGALAR

ELEKTROMANYETIK DALGALAR ELEKTROMANYETIK DALGALAR EEM 10/6/2017 AG 1 kaynaklar: 1) Muhendislikelektromenyetiginin temelleri, David K. Cheng, Palme Yayincilik 2) Electromagnetic Field Theory Fundamentals, Guru&Hiziroglu 3) A Student

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 01

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 01 DERS 01 Özer ŞENYURT Mart 10 1 DA ELEKTRĐK MAKĐNALARI Doğru akım makineleri mekanik enerjiyi doğru akım elektrik enerjisine çeviren (dinamo) ve doğru akım elektrik enerjisini mekanik enerjiye çeviren (motor)

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Amper Kanunu Manyetik Vektör Potansiyeli Maxwell in diverjans eşitliği Endüktans 1 Amper Kanununun İntegral Formu 2 Amper Kanununun İntegral Formu z- ekseni boyunca uzanan çok uzun

Detaylı

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04 İNÖNÜ ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖL. 26 ELEKTRİK MAKİNALARI LABORATUARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 26-04. AMAÇ: Üç-faz sincap kafesli asenkron

Detaylı

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir. DC AKIM ÖLÇMELERİ Doğru Akım Doğru akım, zamana bağlı olarak yönü değişmeyen akıma denir. Kısa gösterimi DA (Doğru Akım) ya da İngilizce haliyle DC (Direct Current) şeklindedir. Doğru akımın yönü değişmese

Detaylı

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci ELEKTRİK AKIMI Elektrikle yüklü ve potansiyelleri farklı olan iki iletken küreyi, iletken bir telle birleştirilirse, potansiyel farkından dolayı iletkende yük akışı meydana gelir. Bir iletkenden uzun süreli

Detaylı

ASENKRON MAKİNELER. Asenkron Motorlara Giriş

ASENKRON MAKİNELER. Asenkron Motorlara Giriş ASENKRON MAKİNELER Asenkron Motorlara Giriş İndüksiyon motor yada asenkron motor (ASM), rotor için gerekli gücü komitatör yada bileziklerden ziyade elektromanyetik indüksiyon yoluyla aktaran AC motor tipidir.

Detaylı

AKTÜATÖRLER Elektromekanik Aktüatörler

AKTÜATÖRLER Elektromekanik Aktüatörler AKTÜATÖRLER Bir sitemi kontrol için, elektriksel, termal yada hidrolik, pnömatik gibi mekanik büyüklükleri harekete dönüştüren elemanlardır. Elektromekanik aktüatörler, Hidromekanik aktüatörler ve pnömatik

Detaylı

DOĞRU AKIM MAKİNELERİNDE KAYIPLAR

DOĞRU AKIM MAKİNELERİNDE KAYIPLAR 1 DOĞRU AKIM MAKİNELERİNDE KAYIPLAR Doğru Akım Makinelerinde Kayıplar Doğru akım makinelerinde kayıplar üç grupta toplanır. Mekanik kayıplar, Manyetik kayıplar, Bakır kayıplar. Bu üç grup kayıptan başka

Detaylı

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ A. DENEYİN AMACI : Bobin indüktansının deneysel olarak hesaplanması ve basit bobinli devrelerin analizi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı,. Değişik değerlerde dirençler ve bobin kutusu.

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis)

Manyetik Alan. Manyetik Akı. Manyetik Akı Yoğunluğu. Ferromanyetik Malzemeler. B-H eğrileri (Hysteresis) Manyetik Alan Manyetik Akı Manyetik Akı Yoğunluğu Ferromanyetik Malzemeler B-H eğrileri (Hysteresis) Kaynak: SERWAY Bölüm 29 http://mmfdergi.ogu.edu.tr/mmfdrg/2006-1/3.pdf Manyetik Alan Manyetik Alan

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER ELEKTRİK ELEKTROİK MÜHEDİSLİĞİ FİZİK LABORATUVAR DEEY TRASFORMATÖRLER . Amaç: Bu deneyde:. Transformatörler yüksüz durumdayken giriş ve çıkış gerilimleri gözlenecek,. Transformatörler yüklü durumdayken

Detaylı

DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI

DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI DENEY-3 BİR FAZLI TRANSFORMATÖRÜN BOŞ ÇALIŞMASI VE DÖNÜŞTÜRME ORANININ BULUNMASI TRANSFORMATÖRLER Bir elektromanyetik endüksiyon yolu ile akımı veya gerilimi frekansı değiştirmeden yükselten veya düşüren,

Detaylı

ELK-301 ELEKTRİK MAKİNALARI-1

ELK-301 ELEKTRİK MAKİNALARI-1 ELK-301 ELEKTRİK MAKİNALARI-1 KAYNAKLAR 1. Prof. Dr. Güngör BAL, Elektrik Makinaları I, Seçkin Yayınevi, Ankara 2016 2. Stephen J. Chapman, Elektrik Makinalarının Temelleri, Çağlayan Kitabevi, 2007, Çeviren:

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ ALTERNATİF AKIM Lineer ve Açısal Hız Lineer ve Açısal Hız Lineer hız v, lineer(doğrusal) yer değişiminin(s) bu sürede geçen zamana oranı olarak tanımlanır. Lineer hızın birimi

Detaylı

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER DOĞRU AKIM MAKİNALARI Doğru akım makinaları genel olarak aşağıdaki sınıflara ayrılır. 1-) Doğru akım generatörleri (dinamo) 2-) Doğru akım motorları 3-)

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 02

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 02 DERS 02 Özer ŞENYURT Mart 10 1 DA DĐNAMOSUNUN ÇALIŞMA PRENSĐBĐ Dinamolar elektromanyetik endüksiyon prensibine göre çalışırlar. Buna göre manyetik alan içinde bir iletken manyetik kuvvet çizgilerini keserse

Detaylı

Bölüm 24 Gauss Yasası

Bölüm 24 Gauss Yasası Bölüm 24 Gauss Yasası Elektrik Akısı Gauss Yasası Gauss Yasasının Yüklü Yalıtkanlara Uygulanması Elektrostatik Dengedeki İletkenler Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik

Detaylı

Faraday Yasası. 31. Bölüm

Faraday Yasası. 31. Bölüm Faraday Yasası 31. Bölüm 1. Faraday İndüksiyon Yasası Faraday ve Henri: Değişen manyetik alanlar da emk (dolayısıyla akım) oluşturur. Şekilde görüldüğü gibi akım ile değişen manyetik alan arasında bir

Detaylı

Elektrik Motorları ve Sürücüleri

Elektrik Motorları ve Sürücüleri Elektrik Motorları ve Sürücüleri Genel Kavramlar Motor sarımı görüntüleri Sağ el kuralı bobine uygulanırsa: 4 parmak akım yönünü Başparmak N kutbunu gösterir N ve S kutbunun oluşumu Manyetik alan yönü

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER

ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER ELEKTRİK MAKİNALARI I DR. ÖĞR. ÜYESİ ENGİN HÜNER DOĞRU AKIM MAKİNALARI Doğru akım makinaları genel olarak aşağıdaki sınıflara ayrılır. 1-) Doğru akım generatörleri (dinamo) 2-) Doğru akım motorları 3-)

Detaylı

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ

ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ 1 ÜÇ FAZLI ASENKRON MOTOR ÇALIŞMA PRENSİBİ Üç Fazlı Asenkron Motorlarda Döner Manyetik Alanın Meydana Gelişi Stator sargılarına üç fazlı alternatif gerilim uygulandığında uygulanan gerilimin frekansı ile

Detaylı

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 4 Doğru Akım Devreleri Prof. Dr. Bahadır BOYACIOĞLU Doğru Akım Devreleri Elektrik Akımı Direnç ve Ohm Yasası Elektromotor Kuvvet (EMK) Kirchoff un Akım Kuralı Kirchoff un İlmek Kuralı Seri ve Paralel

Detaylı

Enerji Dönüşüm Temelleri. Bölüm 1 Makina İlkelerine Giriş

Enerji Dönüşüm Temelleri. Bölüm 1 Makina İlkelerine Giriş Enerji Dönüşüm Temelleri Bölüm 1 Makina İlkelerine Giriş Elektrik Makinaları elektrik enerjisini mekanik enerjiye veya mekanik enerjiyi elektrik enerjisine dönüştüren cihazlardır. Transformatorlar, alternatif

Detaylı

Manyetik devredeki relüktanslar için de elektrik devresindeki dirençlere uygulanan kurallar geçerlidir. Seri manyetik devrenin eşdeğer relüktansı:

Manyetik devredeki relüktanslar için de elektrik devresindeki dirençlere uygulanan kurallar geçerlidir. Seri manyetik devrenin eşdeğer relüktansı: DENEY-2 TRANSFORMATÖRLERDE POLARİTE TAYİNİ MANYETİK DEVRELER Bir elektromanyetik devrede manyetik akı, nüveye sarılı sargıdan geçen akım tarafından üretilir. Bu olay elektrik devresinde gerilimin devreden

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

7 FARADAY IN İNDÜKSİYON KANUNU

7 FARADAY IN İNDÜKSİYON KANUNU 7 FARADAY IN İNDÜKİYON KANUNU Elektrik alanları durgun yüklerden manyetik alan ise hareketli yüklerden oluşur. Iletkenin üzerine bir elektrik alan uygulandığında akıma sebep olan bir manyetik alan üretir.

Detaylı

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1

ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 ELEKTRİK MAKİNELERİ (MEP 112) Yazar: Yrd. Doç. Dr. Mustafa Turan S1 SAKARYA ÜNİVERSİTESİ Adapazarı Meslek Yüksekokulu Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Fizik II Elektrik ve Manyetizma Faraday Yasası

Fizik II Elektrik ve Manyetizma Faraday Yasası Ders Hakkında Fizik-II Elektrik ve Manyetizma Dersinin Amacı Bu dersin amacı, fen ve mühendislik öğrencilerine elektrik ve manyetizmanın temel kanunlarını lisans düzeyinde öğretmektir. Dersin İçeriği Hafta

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER

ELEKTRİK MOTORLARI VE SÜRÜCÜLER BÖLÜM 4 A.A. MOTOR SÜRÜCÜLERİ 4.1.ALTERNATİF AKIM MOTORLARININ DENETİMİ Alternatif akım motorlarının, özellikle sincap kafesli ve bilezikli asenkron motorların endüstriyel uygulamalarda kullanımı son yıllarda

Detaylı

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ 13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi Deneyin Amacı: Bu deneyin amacı; Avometre ile doğru akım ve gerilimin ölçülmesidir. Devrenin kollarından geçen akımları ve devre elemanlarının üzerine düşen

Detaylı

ENDÜVİ REAKSİYONU VE KOMİTASYON

ENDÜVİ REAKSİYONU VE KOMİTASYON 1 ENDÜVİ REAKSİYONU VE KOMİTASYON Doğru Akım Makinelerinde Endüvi Reaksiyonu ve Endüvi Reaksiyonu Endüvi sargılarında herhangi bir akım yok iken kutupların oluşturduğu manyetik akı, endüvi üzerinde düzgün

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

Elektrik Devre Temelleri 3

Elektrik Devre Temelleri 3 Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölüm Başkanı Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Direnç,

Detaylı

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi Deneyin Amacı: Avometre ile doğru akım ve gerilimin ölçülmesi. Devrenin kollarından geçen akımları ve devre elemanlarının üzerine düşen gerilimleri analitik

Detaylı

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ 7. ÜNİTE AKIM, GERİLİM VE DİRENÇ KONULAR 1. AKIM, GERİLİM VE DİRENÇ 2. AKIM BİRİMİ, ASKATLARI VE KATLARI 3. GERİLİM BİRİMİ ASKATLARI VE KATLARI 4. DİRENÇ BİRİMİ VE KATLARI 7.1. AKIM, GERİLİM VE DİRENÇ

Detaylı

9. Ölçme (Ölçü) Transformatörleri. Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir.

9. Ölçme (Ölçü) Transformatörleri. Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir. 9. Ölçme (Ölçü) Transformatörleri Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir. Transformatörler, akım ve gerilim değerlerini frekansta değişiklik yapmadan ihtiyaca göre

Detaylı

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. TEMEL BİLGİLER İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. Yalıtkan : Elektrik yüklerinin kolayca taşınamadığı ortamlardır.

Detaylı

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05

ELEKTRĐK MOTORLARI SÜRÜCÜLERĐ EELP212 DERS 05 EELP212 DERS 05 Özer ŞENYURT Mayıs 10 1 BĐR FAZLI MOTORLAR Bir fazlı motorların çeşitleri Yardımcı sargılı motorlar Ek kutuplu motorlar Relüktans motorlar Repülsiyon motorlar Üniversal motorlar Özer ŞENYURT

Detaylı

MANYETİK ALAN KAYNAKLARI Biot Savart Yasası

MANYETİK ALAN KAYNAKLARI Biot Savart Yasası Fiz 1012 Ders 6 MANYETİK ALAN KAYNAKLARI Biot Savart Yasası Hareket Eden Parçacığın Manyetik Alanı Akım Taşıyan İletkenin Manyetik Alanı Ampère Yasası Manyetik Akı Gauss Yasası Yerdeğiştirme Akımı (Ampère

Detaylı

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI DENEY-5 TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI TEORİK BİLGİ Yüklü çalışmada transformatörün sekonder sargısı bir tüketiciye paralel bağlanmış olduğundan sekonder akımının (I2)

Detaylı

HAFTA SAAT KAZANIM ÖĞRENME YÖNTEMLERİ ARAÇ-GEREÇLER KONU DEĞERLENDİRME

HAFTA SAAT KAZANIM ÖĞRENME YÖNTEMLERİ ARAÇ-GEREÇLER KONU DEĞERLENDİRME 75. YIL MESLEKİ VE TEKNİK ANADOLU LİSESİ ELEKTRİK ELEKTRONİK TEKNOLOJİSİ ALANI ELEKTRİK-ELEKTRONİK ESASLARI DERSİ 10. SINIF ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI EYLÜL EYLÜL EKİM 1.(17-23) 2.(24-30) 3.(01-07)

Detaylı

DENEYİN AMACI Akım uygulanan dairesel iletken bir telin manyetik alanı ölçülerek Biot-Savart kanunu

DENEYİN AMACI Akım uygulanan dairesel iletken bir telin manyetik alanı ölçülerek Biot-Savart kanunu DENEY 9 DENEYİN ADI BIOT-SAVART YASASI DENEYİN AMACI Akım uygulanan dairesel iletken bir telin manyetik alanı ölçülerek Biot-Savart kanunu deneysel olarak incelemek ve bobinde meydana gelen manyetik alan

Detaylı

TRANSFORMATÖRLER (TRAFOLAR)

TRANSFORMATÖRLER (TRAFOLAR) 1 TRANSFORMATÖRLER (TRAFOLAR) Transformatörler (Trafolar) Genel Tanımlar Transformatör, alternatif gerilimin alçaltılıp yükseltilmesi amacıyla kullanılan ve elektromanyetik güç dönüşümü yapan elektrik

Detaylı