YÜKSEK GERİLİM İZOLATÖRLERİNDE YÜZEY KAÇAK AKIMLARININ ÖLÇÜLMESİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YÜKSEK GERİLİM İZOLATÖRLERİNDE YÜZEY KAÇAK AKIMLARININ ÖLÇÜLMESİ"

Transkript

1 FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK TESİSLERİ LABORATUVARI YÜKSEK GERİLİM İZOLATÖRLERİNDE YÜZEY KAÇAK AKIMLARININ ÖLÇÜLMESİ 1. DENEYİN AMACI Bu deneyin amacı; yüksek gerilim izolatör test yöntemlerini öğrenmek, kirlenme atlaması hakkında bilgi sahibi olmak ve kuruda ve yaşta izolatör yüzeyindeki kaçak akımları incelemektir. 2. TEORİ İzolatörler, elektrik hava hatlarında ve tesislerinde iletkenleri taşımaya ve elektriksel izolasyonu sağlamaya yarayan porselen, cam veya epoksi reçineden yapılmış araçlardır. İzolatörler, deşarj ve atlamalar sonucu ortaya çıkan termik zorlanmalara, açık hava tesislerinde kar, buz ve rüzgarın neden olduğu mekanik kuvvetlere, kirlenme neticesi sis ve çiğin sebep olduğu elektriksel izolasyon zayıflamasına maruz kalırlar. Bu nedenle izolatörler üzerinde yapılacak testlerle bu özellikler bakımından yeterli nitelikte olduklarının kontrol edilmeleri gerekmektedir. İzolatör testleri çeşitli ülkeler ve milletlerarası kuruluşlarca kabul edilen standartlarda tarif edilmişlerdir. Bu testlerin ortak amacı, izolatörün servis şartlarında karşılaşacağı elektriksel, mekanik, termik vb. zorlanmaları en iyi şekilde laboratuvar ortamında temsiledebilmektir. İzolatörler üzerinde yapılan standart testler imalat ve kalite kontrol vazifesi yanında yeni tiplerin geliştirilmesine de yardımcı olmaktadır. İzolatörler üzerinde genellikle aşağıda açıklanan standart muayene ve testler yapılmaktadır Yüksek Gerilim İzolatör Testleri İmalat Testleri Mekanik Test Zincir izolatörleri en az 10 saniye süre ile 24 saatlik mekanik dayanıklılık test yükünün %60 ına eşit bir germe yükü altında tutulur. Tek parçalı izolatörlerin testinde ise bu yük 24 saatlik mekanik dayanıklılık test yüküne eşit olarak alınır ve 1 dakika süre ile uygulanır Yüksek Frekans Testi İzolatörler 10 saniye süre frekansı ( ) khz olan bir alternatif gerilime maruz bırakılır Şebeke Frekanslı Test Bu testte izolatörlere şebeke frekanslı ( Hz) gerilim uygulanır. Gerilim, zincir izolatörlerin metal parçaları arasına uygulanır. Fakat istenirse izolatörler baş aşağı olarak ve içinde yan iletken yuvasını örtecek kadar derinlikte su bulunan bir metal kaba yerleştirilir. Gerilim kap ile izolatörün tespit yuvasının hemen hemen tepesine kadar doldurulmuş olan su arasına uygulanır. Porselenin elektriksel dayanımını azaltmamak kaydıyla, su yerine metal elektrotlar da kullanılabilir.test gerilimi, izolatörlerden bir tanesinde her 4 veya 5 saniyede bir atlama meydana getirecek değerde olmalıdır. Bu gerilim en az 5 dakika süre ile ve devamlı olarak test edilecek izolatörlere uygulandığında delinme meydana gelmemelidir Tip Testleri Tip testlerinin amacı; izolatörün şekil, büyüklük ve teçhizatının özelliklerini tespit etmektir.her tip izolatör için bu tipe ait partide bulunan izolatörler arasından ayrılan sınırlı sayıda izolatörlere uygulanan testlerdir. Bu testlerin sonucuna göre partideki izolatörlerin tümü hakkında karar verilir. Tip testleri iki grup halinde uygulanır. Birinci gruba giren testlerle izolatörün şekil, büyüklük ve teçhizatının özellikleri; ikinci gruba ait testlerle de bunun dışında kalan özellikleri ve kullanılan malzemenin niteliği doğrulanır Birinci Grup Testler Bu gruba giren testler, darbe atlama gerilimi testi ile bir dakikalık şebeke frekanslı gerilime dayanma testinin kuru ve yaşta yapılmasından ibarettir.testlerden önce izolatörler temiz ve kuru olmalıdır. Test için izolatörün tespiti, ya kullanılacağı yerdeki normal çalışma şartlarına ya da standartlarda belirtilen testlerin yapılmasını sağlayacak özel şartlara uygun olmak üzere iki yöntemle yapılır. Birinci yöntemde, zincir izolatörlerden taşıyıcı izolatör zincirleri normal çalışma şartlarına uygun olarak metal parça ve kısımları takıldıktan sonra metal bir konsola düşey durumda asılır. Konsol, izolatör zincir boyunun an az 1.5 katı ve zincir ekseninden her iki tarafta bir metreden az olmayan uzunlukta bulunmalıdır. 1

2 Başka bir cisim, izolatör zincirine bir metreden az olmamak kaydıyla izolatör boyunun 1.5 katı kadar bir mesafeden daha yakında olmamalıdır. Zincirin kullanılacağı işletmedeki iletken çapına yakın çaptaki bir iletken, yatay düzlemde ve ekseni konsol ile 90 0 lik bir açı yapacak şekilde tesbit edilir. Bu iletken, en az izolatör zincir uzunluğunun 1.5 katı boyunda olmalı ve zincir ekseninden her iki tarafa en az birer metre uzanmalıdır. İletkenin uçlarından konsola atlama olmaması için gerekli tedbirler alınmış olmalıdır. Bu durumda test gerilimi iletken ile konsol arasına uygulanır. İkinci yöntemde, zincir izolatörü ve izolatör zincirleri mesnetlerine düşey olarak en az bir metre uzunluğunda topraklanmış tel halat veya uygun bir iletkenle asılır. İzolatör zincirine başka cisimlerin uzaklığı, bir metreden az olmamak üzere zincir boyunun 1.5 katından daha yakın olmamalıdır. İzolatör zincirinin iletken bağlanacak tarafına yatay düzlemde tesbit olunacak boru veya çubuk şeklindeki iletkenin üst yüzeyinden alt izolatörün en yakın kenarına kadar olan mesafe, alt izolatör çapının %50 'si ile %70 'i arasında olmalıdır. İletkenin çapı kuruda ark mesafesinin %1.5 'i civarında ve en az 25 mm olmalıdır. İletken uzunluğu, izolatör veya zincir boyunun 1.5 katından küçük olmamak üzere, izolatör ekseninden her iki tarafa en az birer metre uzanmalıdır. İletkenin uçlarından herhangi bir atlama olmaması için gerekli tedbirler alınmalıdır. Test gerilimi iletken ile toprak arasına uygulanır. a) Darbe atlama gerilimi testi : Darbe gerilimi testi, darbe generatörü ile yapılır. Test, tercihen normal rutubetli (beher m 3 havada 11 gram su) atmosferde yapılmalıdır. Bunun mümkün olmadığı hallerde rutubet düzeltme katsayısı hesaba katılmalıdır. İzolatör zinciri, zincir izolatörü veya mesnet izolatörü yukarıda bahsedilen şartlar altında kuru olarak testten geçirilir. Darbe generatörü 1.2/50 pozitif yarı dalga verecek şekilde ayarlanır ve gerilim %50 darbe atlama gerilimi değerine yükselinceye kadar artırılır. Bu değer en az 20 darbe uygulanarak doğrulanır. Gerilim ölçüldükten sonra polarite değiştirilerek yukarıdaki işlem tekrarlanır. İzolatörler bu teste, delinme veya kırılma gibi herhangi bir hasar göstermeden dayanabilmelidir. %50 atlama geriliminin standart atmosfer şartlarına irca olunan pozitif ve negatif polarite değerlerinin, beyan edilen değerlerinin altında olup olmadığına bakılır. b) Şebeke frekanslı test : Test geriliminin frekansı Hz arasında bulunmalı ve gerilim dalgasının şekli yaklaşık olarak sinüs eğrisi biçiminde olmalıdır. Gerilim değeri, küresel elektrodlar kullanılması yoluyla veya bu yolla bulunan değere göre %3 'den fazla fark göstermeyen başka bir yöntemle tesbit edilir. Gerilimin bu suretle tesbit olunan tepe değerini ye bölmekle bu test için gerekli gerilimin efektif değeri bulunur. Testler tercihen normal rutubet (beher m 3 havada 11 gram su) şartlarındaki atmosferde yapılmalıdır. Rutubet şartları değişik bulunduğu takdirde, normal değere irca edilmelidir. Endüstriyel frekansta kuruda atlama testi havanın nisbi rutubeti %55 'i aştığı zaman yapılmamalıdır. İzolatör kısa devre durumunda iken ve devrede önceden tesbit olunan test gerilimi meydana geldiği zaman, devreden geçecek alternatif akımın değeri 0.1 amperden az olmayacak şekilde transformatör ve test devresi ayarlanmış olmalıdır. c) Kuruda bir dakikalık test : İzolatöre kuruda bir dakika süre ile uygulanacak test gerilimi, kuruda bir dakikalık beyan edilen normal frekanslı test geriliminden atmosfer şartları gözönünde bulundurularak elde edilir. Bulunan test geriliminin yarı değeri ani olarak izolatöre uygulanır ve 10 saniyeden az olmayan bir süre içerisinde bu gerilim test gerilimi değerine yükseltilir. Bu değerdeki test gerilimi bir dakika süre ile izolatöre uygulanır. İzolatörde herhangi bir atlama meydana gelmemelidir. d) Yaşta bir dakikalık test : İzolatör zinciri, zincir izolatörü veya mesnet izolatörü düzeltilmiş test gerilimi altında, gerilim uygulanmasından önce 5 dakika süre ile ve teste başlandıktan sonra test süresince suni yağmur altında bırakılarak yaşta bir dakikalık şebeke frekanslı testten geçirilir.suni yağmur izolatörden en az 3,5 m uzaklığa yerleştirilen ve suyu izolatörün üzerine yağdıran püskürtücüler yardımı ile sağlanır. Suni yağmurun yağış şiddetini ölçmek için cm çapındaki yağış ölçme kabı veya yağmur şiddetini ölçme cihazı kullanılır. Ölçü kaplarının ağzı izolatör veya izolatör zincirinin ortasından geçen yatay düzlemde bulunacak tarzda yerleştirilir. Atmosferik şartlara göre düzeltilerek bulunan test geriliminin yarı değerine eşit bir gerilim izolatöre uygulanır ve sonra 10 saniyeden az olmayan bir sürede bu gerilim test gerilimi değerine yükseltilir. Test gerilimi bir dakika süre ile izolatöre uygulanır.izolatör yaşta atlama gerilimi, yaşta bir dakikalık test geriliminin %75 'inin 5-30 saniye içerisinde ve değişmeyen bir hızla atlama gerilimine yükseltilmesi suretiyle elde edilir. Yaşta atlama gerilimi, atmosfer şartlarına göre düzeltilmek suretiyle birbirini izleyen 10 gerilim değerinin okunması ve kaydedilmesi suretiyle tesbit olunur İkinci Grup Testler İmalat testlerinde olumlu sonuç alınan izolatörlerden ayrılacak numuneler sırayla; boyutların doğrulanması, sıcaklık değişimi, 24 saatlik mekanik dayanıklılık, kısa süreli elektromekanik kırılma yükü, mekanik kırılma yükü, delinme, gözeneklilik (porozite) ve galvanizlenme niteliği testlerine tabi tutulur. Zincir izolatörlerinden alınan numune grubu birbirine yakın eşitlikte üç kısma bölünür. Bunların hepsine 2

3 boyutların doğrulanması ve sıcaklık değişimi testleri uygulanır. Bundan sonra birinci kısma 24 saatlik mekanik dayanıklılık ve kısa süreli elektromekanik kırılma yükü testleri, ikinci kısma mekanik kırılma yükü ve gözeneklilik testleri, üçüncü kısma delinme ve galvanizlenme niteliği testleri uygulanır. Mesnet izolatörlerinden alınan numune grubu birbirine yakın eşitlikte iki kısma bölünür. Her iki kısma boyutların doğrulanması ve sıcaklık değişim testleri uygulandıktan sonra, birinci kısma mekanik kırılma yükü ve gözeneklilik testleri, ikinci kısma delinme ve galvanizli parçalar varsa galvanizleme niteliği testleri uygulanır. a) Boyutların doğrulanması : Gerekli ölçü aletleri ile izolatör numuneleri boyutlarının ait oldukları imalat resimlerindeki boyutlara uyup uymadıkları kontrol edilir. b) Sıcaklık değişimi testi : Zincir izolatörleri sabit metal kısımları ile birlikte, mesnet izolatörleri ise iletkensiz ve tesbit demirsiz olarak, musluk suyu sıcaklığından 70 0 C daha fazla bir sıcaklıktaki su banyosuna, başka bir ara kap kullanılmaksızın hızla tamamen daldırılır ve bu suyun içinde bekletilir. Daha sonra hızla çıkarılan izolatör bekletilmeden, içinde musluk suyu bulunan soğuk banyoya tamamen daldırılır ve belirli bir süre bekletilir. Bu ısıtma ve soğutma işlemi arka arkaya beş defa tekrarlanır. Bir banyodan diğer banyoya geçiş süresi 30 saniyeyi aşmamalıdır. Banyolardaki su miktarı izolatörün tamamının daldırılmasına ve su sıcaklığının 5 0 C 'den fazla değişmemesine yetecek kadar bol olmalıdır. İzolatörler, 5. defa soğuk banyodan çıkarıldıktan sonra muayene edilerek çatlamadıkları ve sırlarında herhangi bir bozulma olmadığı tesbit edilmelidir. İzolatörler, porseleni veya sırı çatlamadan, delinme olmadan ve mekanik kırılma meydana gelmeden bu testlere dayanmalıdır. c) 24 saatlik mekanik dayanıklılık testi : Bu test sadece zincir izolatörlerine uygulanır. İzolatörler 24 saat süre ile eksenlerine uygulanan "24 saatlik beyan edilen mekanik test yükü" ne eşit bir gerilme yüküne tabi tutulur. Bu testten sonra izolatörler, bir dakika süre ile imalat testlerinden, endüstriyel frekans testine delinmeden ve kırılmadan dayanabilmelidir. d) Kısa süreli elektromekanik kırılma yükü testi : Bu test sadece zincir izolatörlere uygulanır. İzolatörlerin metal kısımları arasına şebeke frekanslı gerilim ile mekanik gerilme yükü aynı anda uygulanır. Uygulanan test gerilimi, test şartları altında kuruda atlama geriliminin %90 'ına eşit olup bu değer bütün test süresince muhafaza edilir. Gerilme yükü, beyan edilen elektromekanik kırılma yükünün %20 'si oranında ve düzgün bir hızla, izolatörde hasar veya kırılma meydana gelinceye kadar artırılır. Beyan edilen yükten daha aşağı bir değerde delinme veya kırılma meydana gelmemelidir. e) Mekanik kırılma yükü testi : Zincir izolatörlerine beyan edilen mekanik kırılma yükünün yarısına eşit bir gerilme yükü uygulanır. Bu gerilme yükü metal kısımlar arasına uygulanarak dakikada beyan edilen mekanik kırılma yükünün %20 'si oranında, düzgün bir hızla kırılma hasıl oluncaya kadar artırılır.mesnet izolatörleri; test sırasında uygulanan yükle, farkına varılabilir bir şekil değişmesi meydana gelmeden dayanabilen sabit bir mesnede tesbit edilmelidir. Beyan edilen mekanik kırılma yükünün yarısına eşit bir yük, mesnedin eksenine dikey olarak, izolatörün yan iletken yuvasının yüzeyinde bu yuvayı saran bir tel halat ile uygulanır. Bu gerilme yükü, dakikada beyan edilen mekanik kırılma yükünün %20 'si oranında, düzgün bir hızla kırılma oluncaya kadar artırılır. f) Şebeke frekanslı delinme testi : İzolatörler temizlenip kurutulduktan sonra, atlamayı önleyecek uygun bir yalıtkan madde ile dolu kabın içerisine tamamen daldırılırlar. Kap metal ise, bu kabın boyutları, izolatörün herhangi bir parçası ile kabın yan yüzeyleri arasındaki en kısa mesafe, izolatörün en büyük siper çapının 1.5 katından az olmayacak büyüklükte seçilmelidir.test gerilimi, zincir izolatörlerinde metal bağlantı parçaları arasına, mesnet izolatörlerinde ise metal mesnet ile izolatörün iletken yuvasına bağlanan iletken arasına uygulanır. Gerilim hızla, beyan edilen kuruda 1 dakikalık şebeke frekanslı test gerilimine çıkarılır. Sonra saniyede 1000 V 'luk düzgün bir artışla izolatör delininceye kadar bu gerilim yükseltilir. g) Havada aşırı gerilim darbesi testi : İstenildiği takdirde şebeke frekanslı delinme testi yerine bu test yapılabilir. İzolatör devreye bağlanmadan önce, darbe generatörü, cephesi beyan edilen diklikte bulunan pozitif bir gerilim dalgası verecek şekilde ayarlanmalı ve bu dalganın tepe değeri beyan edilen darbe gerilimi değerine eşit olmalıdır. İzolatöre 20 darbe uygulanmalı ve bu test sırasında izolatör delinmemelidir. h) Gözeneklilik (porozite) testi : İzolatör kırıkları, etil alkolçözeltisinde hesaplanacak süre kadar bekletilir. Bu şekilde bekletilen izolatör kırıkları, yıkanıp kurutulduktan sonra tekrar kırılarak renkli fuksin çözeltisinin porselen içine veya sır ile porselen arasına sızıp sızmadığı, rengin yayılıp yayılmadığı kontrol edilir. i) Galvanizlenme niteliği testi : İzolatörlerin metal kısımları benzin veya diğer uygun yağ eriticilerine daldırılarak temizlenir, temiz ve yumuşak bir bezle kurulanır. Sonra %2 sülfürik asit çözeltisine daldırılarak 15 3

4 saniye bekletilir. Bu metal parçalar temiz su ile iyice yıkanıp, yumuşak bir bezle kurulanır.daha sonra her metal parça, filtre edilmiş ve yoğunluğu 20 0 C 'de 1,170 0,01 olan bakır sülfat çözeltisine 4 defa birer dakika süreyle tamamen daldırılır. Bu testte çözelti ve metal parçalar hareket ettirilmemelidir. Her daldırıştan sonra numune yıkanmalı ve akar su altında fırçalanmalıdır. Son daldırış hariç olmak üzere dikkatlice kurulanan bu parçalar çözeltiye tekrar batırılmalıdır. Dördüncü daldırıştan sonra deney parçaları yüzeyine yapışmış ve su altında fırça ile giderilmeyen kırmızı metal bakır kalıntıları bulunmamalıdır İzolatörlerde Fiziksel Kirlenme ve Kirlenme Atlaması Kirlilik teriminin izolatör yönünden özel bir anlamı vardır. Çünkü kirlilik, izolatör yüzeyinde iletkenliği artırarak izolatör performansını düşüren ve zaman zaman arızalara yol açan bir etkidir. Atlamaya yol açacak kadar fazla deniz orjinli kirle kaplı izolatörler çok yakından bakılsa bile temiz görülebilir. Bununla birlikte endüstriyel tozlar veya çimento ile ağır biçimde kirlenmiş izolatörler, elektriksel bakımdan yeni izolatör gibi davranabilir. Bunun nedeni atlamaya sebep olan yüzey iletkenliğinin miktar yönünden önemsiz olmasıdır. Atlama, tuz ya da endüstriyel asit gibi kirlerin suyla çözünmesiyle meydana gelir.izolatör yüzeyindeki artıklar performansı önemli ölçüde etkiler. Deniz ve göl tuzları, petrokimya endüstrisi artıkları ve asit üreten tesis artıkları gibi suda çözünen kirler daha önemlidir. Hem çözünen, hem de çözünmeyen kirler harekete geçmek için su gerektirirler. Bu nedenle sis, çiğ ve kırağı kirlenme atlaması yönünden önemli artıklardır. Karbon, bazı metal oksitler veya metal içeren tozlar su yok iken dahi iletken hale gelebilirler. Maddeleri izolatör yüzeyine taşıyan temel etkiler; yerçekimi kuvveti, yüklü parçacıkların elektrostatik çekimi, yüksek permitiviteli parçacıkların büyük elektrik alan yoğunluklu bölgelere göçü, çözelti veya süspansiyonların buharlaşıp aerodinamik olarak tutulmaları şeklinde sayılabilir. İzolatör yüzeyinin kirlenmesinde, aerodinamik tutulma en önemli etkidir. Havada asılı parçacıklar, izolatör yüzeyine aktığında izolatör şekline bağlı olarak özellikle akışın ikiye ayrıldığı noktalarda oluşan durgun bölgede ve daha ağır olan parçacıklar girintilerde tutulurlar. Rüzgar tünellerinde yapılan kirlenme deneyleri ile kirletilen bazı izolatörlerin kir dağılımı Şekil 1 de verilmiştir. Şekiller üzerindeki harfler kir yoğunluklarını göstermektedir (H:Ağır M:Orta L:Hafif Z:Sıfır ). Şekil 1 den görülebileceği gibi kir, rüzgarın doğrudan çarptığı yüzeylerde ve girintilerde daha çok olmaktadır. Farklı yapıdaki izolatörlerin kir tutma miktarları çok değişmektedir. Üst yüzeylerde az kir toplanmakla beraber, özellikle endüstriyel bölgelerdeki karbon ve bazı metal tozları bu yüzeylerde alt kısımlara göre daha fazla bir iletkenlik oluşturabilir. Şekil 1. Kir tutulmasının şekille değişimi Yüksek gerilim izolatörleri; kıyıya yakın bölgelerde tuzdan, endüstriyel alanlarda toz ve kimyasal artıklardan dolayı kirlenmeye maruz kalırlar. Böyle bir izolatör kuru iken çok küçük bir kapasitif kaçak akım geçer ve gerilim dağılımı basit olarak elektrostatik alanla tanımlanır. Kir tabakasının yağmur, sis, rutubet vb. etkenlerle ıslanması sonucu iletken hale gelen kirli yüzey boyunca akan kaçak akımlar yüzeyde enerji kaybına sebep olurlar. Enerji kayıp yoğunluğunun büyük olduğu, özellikle izolatörün dar kısımlarındaki kirli bölgeler daha fazla ısınarak kurur ve "kuru band" denilen kısımların oluşmasına yol açarlar. Bunun sonucunda yüzey boyunca gerilim dağılımı bozularak, homojen olmayan bir yapıya dönüşür. Kuru band bölgelerindeki gerilim düşümü havanın dayanımını aşınca ön deşarjlar oluşur. Ön deşarjlar çoğunlukla söner; bazı şartlarda ise, yüzeye yayılarak kısa devre ile sonuçlanan atlama olayını meydana getirirler. Atlama sonucu meydana gelen yüksek akımlı ark enerjinin kesilmesine, birçok izolatörün tahrip olmasına ve hatta enerji nakil hattının eriyerek kopmasına sebep olabilir. Bir yüksek gerilim izolatöründe kirlenme atlaması için üç ana şart veya beş kademe gereklidir. 4

5 1- İzolatör yüzeyinde iletken kir filminin teşekkülü a) İzolatör yüzeyinin kir tabakası ile kaplanması b) Kir tabakasının rutubet tesiri ile ıslanması 2- Kirli izolatör yüzeyinde ön deşarjların teşekkülü a) Kuru bandların oluşması b) Kuru bandlar boyunca ön deşarjların tutuşması 3- Ön deşarjların yüzey boyunca yayılması ve kısa devre Eğer bu beş kademeden herhangi biri tamamen kontrol altına alınabilirse, kirlenme atlaması problemi kesin olarak çözülecektir. Pratikteki gözlemlerden izolatör yüzeyinde kaçak akımın ma değerine ulaşması halinde atlamanın meydana geldiği görülmüştür. Ancak sızma akımının değeri ile atlamanın meydana gelip gelmeyeceği arasında kesin bir bağıntı kurmak mümkün değildir. İzolatör yüzeyi üzerinden atlama, yani yüksek iyonizeli bir arkın oluşumu, Şekil 2 de gösterilen birkaç aşama sonucunda gerçekleşir. Atlama aşamaları şunlardır: 1. Yüzey tabakasının ısınması, iletkenlik ve akımın artmasına sebep olur (Şekil2.a). 2. Devam eden ısı, yüzey tabakasında kısmi kurumalara yol açar (Şekil 2.b-c). 3. Daha fazla ısınma, kuru bandlar oluşturur (Şekil 2.d). 4. Kuru bandlar üzerinde düzensiz alan şiddeti dağılımı nedeniyle kısmi arklar başlar. Yerel ısı konsantrasyonu, kısmi arkların pozisyonlarını kuru bandlar boyunca yana doğru değiştirmelerine sebep olur (Şekil 2.d-e-f). Ark sönümü, parıltı başlangıcı ve kuru bölgeler üzerinde hareketli deşarjların başladığı yerler, en yüksek gerilim değişimlerine sahiptir. Bu safha kirli izolatörlerden yayılan yoğun radyo gürültülerinin sebebi olup, şekilde gösterilmemiştir. 5. a) Birçok kısmi arkın birleşmesiyle, izolatörü kaplayan bir tek büyük ark oluşur. Bu ark ısıl etki ile değişik yönlerde yayılır (Şekil 2.i). Bu arada ark sönümü ve dolayısıyla ikinci safhaya dönüş olabilir. b) Ark uçlarının ıslak iletken tabaka boyunca hızlı süpürme hareketi, arkın tamamlanmasına ve atlamaya götürebilir (Şekil 2.m). Sızma aralığının köprülenen son kısmı kuru bir yol izlemez. İlk dört safha kolayca anlaşılır. Çünkü dakikalar veya saatlerce sürebildiklerinden gözlenmeleri kolaydır. Son safha ise, her cm için birkaç yüz voltluk gerilimlerde sızma aralığı boyunca istenmeyen atlamalara sebep olur. Kaçak yolu (sızma aralığı) boyunca izolasyon dayanımını V/cm ye düşüren de bu son safhadaki ark uçlarının hızlı süpürme hareketidir. Son safha elektrotlar arasındaki ark nedeniyle izolasyon şiddetinin düşmesinin sebebidir. kaçak akım hatları a) g) b) h) c) i) d) k) e) l) f) m ) Şekil 2. Kirlenme atlamasının safhaları 5

6 2.3. İzolatör Yüzey Kaçak Akımları Porselen İzolatörler İçin Kaçak Akımların Önemi İzolatörlerdeki kaçak akımlar, daima tehlikeli bir durum oluşturmazlar. Bununla beraber, iletim hatlarının kurulumu ve tasarımında hesaba katılması gereken en önemli faktörlerden biridir. Bir izolatörün içinden akım akmaz, fakat izolatör yüzeyinde Şekil 3 de görüldüğü gibi nispeten düşük dirençli bir yol mevcuttur. Bu yol aslında izolatör yüzeyi ile hava arasındaki ara yüzdür. Bu yolun direnci izolatörün etrafındaki havanın direncinden daha düşüktür ve bunu yüzey kaçak akım yolu olarak isimlendirmek daha doğrudur. Bu yol üzerinde daima küçük miktarlarda kaçak akımlar akar ve bu akımlar hiçbir şekilde tamamen ortadan kaldırılamaz. Bununla beraber, modern izolatörlerin tasarımıyla kaçak akım seviyeleri çok küçük değerlere indirilmiştir. Şekil 3. Porselen izolatörler ve yüzey kaçak akım yolu Yüksek gerilim izolatörlerinin, Şekil 4 de gösterildiği gibi farklı çap ve boyutlarda diskler şeklinde yapılması daha kullanışlıdır. İletim hattında kullanılacak zincir tipi izolatörlerin sayısı, gerilim seviyelerine göre belirlenir. Böylece oluşturulan yüzey, kaçak yolu mesafesinin ve dolayısıyla kaçak yolu direncinin yükselmesi anlamına gelir. Kaçak yolu direnci, izolatörün enerjili ucundan topraklı ucuna kadar olan yüzey uzunluğuyla doğrudan orantılıdır. Kaçak yolu direncinin artmasıyla kaçak akım miktarı azalır. Eğer böyle oluklu yapılar kullanılmazsa, o zaman daha fazla disk ekleyerek izolatör dizisinin tüm uzunluğunu arttırma zorunluluğu ortaya çıkar. Bu maliyet açısından uygun bir yaklaşım değildir. Fakat bunun oluşturacağı daha büyük problem, izolatör dizisine bağlanan iletkenlerin salınımındaki artıştır. Bu durum, iletkenlerin daha şiddetli titreşim yapmalarına ve hatta kopmalarına sebep olabilir. İzolatörün üst kısmında oluk yapısı kullanıldığında, bu oluklarda şiddetli kir biriktiği, toz ve tuz kirlerinin kolayca oluklara dolduğu ve yağmurla asla yıkanmadığı görülmüştür. Bu nedenle günümüzde, üst kısmı oluklu porselen izolatör imal edilmez. Şekil 4. Zincir tipi izolatör elemanı Şekil 4 de gösterilen biçim, pek çok araştırma ve saha deneyimlerinden sonra ortaya çıkan sonuçtur. Kir birikiminin artmasından dolayı kaçak akım tüm porselen izolatörlerde zamanla artar. Bu artış, bakım zamanına ulaşıncaya veya atlama ile hasar oluşuncaya kadar devam eder. Bakım, izolatörü güvenli seviyede tutmak için her zaman gereklidir. Kaçak akım; yağmur, nem, sıcaklık gibi çevresel etkilerden dolayı değişkendir. Fakat bu değişimler, kir birikimi çok yükselmedikçe dikkate almayı gerektirmez. 6

7 Silikon Kompozit (Polimer) İzolatörler İçin Kaçak Akımların Önemi Silikon kompozit izolatörler için kaçak akım, hesaba katılması gereken önemli bir faktördür. Bununla beraber, bu izolatörler tasarlanırken yüzey kaçak direncinin çok büyük olduğu varsayılır. Bu yapı, ana destek elemanı olarak fiberle desteklenmiş, dışı polimerik kauçukla kaplanmış bir çubuğa sahiptir. Tüm yapı, tek parça bir izolatör yapmak için iki uçtan birleştirilerek bağlanır. Şekil 5 de gösterildiği gibi tüm izolatör tek parça olduğundan kompozit izolatör olarak adlandırılır. Şekil 5. Kompozit izolatörler Genellikle bir kompozit izolatör, bir esas malzemeden, bağlantı elemanından ve bir kauçuk yalıtkan gövdeden oluşur. Esas malzeme, çekme gücünü dağıtmak için fiberglas ile kuvvetlendirilmiş plastiktir (FRP). FRP de kullanılan güçlendirilmiş fiber, cam ve epoksi reçinedir. Kablolara ve direklere gerilmeyi ileten bağlantı elemanı, dövülmüş çelik, dövülebilir dökme demir veya alüminyum gibi malzemelerden yapılır. Kauçuk gövde elektriksel yalıtımı sağlar ve FRP yi doğa şartlarından korur. Şekil 6 da orta ve yüksek gerilimlerde kullanılan kompozit izolatörlerin yapısı gösterilmiştir. Şekil 6. Orta ve yüksek gerilim kompozit izolatörlerin yapısı Silikon kompozit izolatörler, seramik izolatörlerle karşılaştırıldığında önemli üstünlüklere sahiptir: Hafif ağırlık-daha düşük yapı ve nakliye maliyetleri Çok yüksek direnç Ağırlığa yüksek dayanım oranı Daha iyi kirlenme performansı Geliştirilmiş iletim hattı estetiği 7

8 kalır. Kompozit polimer izolatörlerin başlıca olumsuz yanları ise şunlardır: Kuru band arklarından ve hava ile temasından dolayı yüzeyinde kimyasal değişimler meydana gelir. Erozyona ve sonunda izolatörün kullanılamaz hale gelmesine yol açabilecek izlerin oluşmasına maruz Ortalama ömrünü hesaplamak zordur. Uzun süre güvenirli olup olmadığı bilinmez. Arızalı izolatörün tespiti zordur. Sonuç olarak kompozit izolatörlerin kullanımı faydalarına göre değişir. Fakat yaygınlaşmasının en önemli nedenlerinden biri, ağırlığının düşük olmasıdır. Kompozit izolatörün ağırlığı eşdeğer porselen ve cam tipinin sadece %10 u kadardır. Kompozit izolatörler daha hafif direk tasarlamaya veya mevcut hatları yükseltmeye imkan verir. Silikon kauçukların, yağmur sularını damla halinde tutabilme kapasitelerinin yüksek olması, kompozit izolatörleri cam ve porselene göre daha avantajlı hale getirir. Çünkü bu hidrofobik özellik, izolatör yüzeyinden hızlıca su akışını ve dolayısıyla iletkenlik artışını engellemek suretiyle, yalıtım sisteminin yalıtkanlık düzeyinin aniden düşmesini önler. Böylece daha düşük hat kayıpları ve iletim hatlarında kararlı atlama değerleri sağlanmış olur.polimer izolatörlerin hidrofobik özelliği özellikle ıslak ve kirli şartlar altında izolatörün performansına etki edebilir. Hidrofobik özelliğin kaybolmasına, iz ve erozyon oluşumuna ve en sonunda atlamaya yol açan yaşlanma, polimer izolatörlerin başlıca problemidir. Her ne kadar kaçak akım, yaşlanmanın sebebi olsa da yüzey bozulmasının bir göstergesi olarak kullanılabilir. Bu yüzden, kaçak akım dalga şekillerinin parametreleri genellikle polimer izolatörlerin performansının belirlenmesinde kullanılmıştır. Kaçak akım parametreleri ile kir seviyesi ve yüzey bozulmaları (hidrofobik özelliğin kaybolması, kuru band atlamaları ve erozyon gibi) arasındaki ilişkiyi kurmak için birkaç deneme yapılmıştır. Hidrofobik kaybın oluşmasından ve gövdenin zarar görmesinden önce kaçak akım düzeyinin belirlenmesi önemlidir İzolatör Yüzey Kaçak Akımlarının Özellikleri Tablo 1 ve Şekil 7 de, farklı deşarj şartları için dalga şekilleri ve frekans dağılımları verilmiştir. Tablo 1. Farklı deşarj şartları için kaçak akımların dalga şekli ve frekans dağılımları 8

9 Şekil 7.a, izolatör yüzeyinde deşarj oluşmadığı durumda, kaçak akımın değişimini göstermektedir. Dalga şekli sinüzoidal bir yapıya sahiptir. İzolatör yüzeyinde zayıf deşarjlar görünmeye başladığı zaman akan kaçak akımın dalga yapısı Şekil 7.b de gösterilmiştir. Görüldüğü gibi bu durumda dalga şekli bozulmuştur. Şekil 7.c, kuvvetli arklar oluştuğu zaman akan kaçak akımın dalga şeklidir. Burada kaçak akımın genliği birkaç yüz miliamperler seviyesindedir. Şekil 7.d, atlama oluştuğu andaki kaçak akım şeklidir. Kaçak akım atlamadan önce hızlıca yükselir. Atlama meydana geldiği zaman kısa devre akımı gözlemlenir. (a) (b) (c) (d) Şekil 7. Kaçak akım dalga şekilleri 3. DENEYİN YAPILIŞI 3.1. Deneyde Kullanılan Elemanlar Y.G. trafosu (2x50 kv) Y.G. direnci (850 kω) Omik gerilim bölücü Zincir tipi izolatör Nem ölçer Isıtıcı Veri toplama cihazı (NI 6210) 3.2. Deneyin Yapılışı Deney sistemine ait şema Şekil 8 de görülmektedir. Her biri 50 kv luk iki adet YG transformatörü kaskat bağlanarak 100 kv a kadar gerilim elde edilebilmesi sağlanmıştır. Transformatör çıkış gerilimi, seri bağlı 850 kω luk bir koruma direnci üzerinden izolatöre uygulanmaktadır. Yüzey kaçak akımına ait dalga şekilleri izolatör çıkışına bağlanan 500 Ω luk direnç üzerinden gerilim bilgisi olarak alınmaktadır. Sistemde oluşabilecek herhangi bir arıza nedeni ile ölçüm cihazlarının zarar görmesine engel olmak için, bir aşırı gerilim koruyucu kullanılmıştır. İzolatörde atlama oluştuğunda, transformatörün sekonderine bağlı olan koruma direnci zarar görür ve izolatör üzerinden büyük bir akım akarsa, 500 Ω luk dirençte düşen gerilim yüksek değerlere çıkar. Bu durumda, dirence paralel bağlı aşırı gerilim koruyucu kısa devre özelliği göstererek osiloskop ve veri toplama cihazını (NI 6210) korur. Sistemde kullanılan gerilim bölücü yardımıyla transformatör çıkışındaki gerilim ve ayrıca akım değerleri kontrol ünitesi üzerinden izlenebilmektedir. Deneyler için gerekli nem değerlerini oluşturmak için test odasına bir su ısıtıcısı konulmuştur. Ayrıca elektrikli bir ısıtıcı yardımıyla da oda sıcaklığı istenen seviyede tutulmuştur. Sis odasına yerleştirilen bir vantilatör yardımıyla, oda içerisindeki ısı ve nemin homojen dağılımı sağlanmıştır. 9

10 Koruma Direnci İzolatör Kaskat Bağlı YG Gerilim Trafosu (2*50 kv) Gerilim Bölücü Sis Odası 500 Ω Aşırı Gerilim Koruması Osiloskop Şebeke Isıtıcı Buhar Kaynağı Vantilatör Bilgisayar Kontrol Ünitesi Şekil 8. Deney düzeneği 1- Temiz izolatöre kuru şartlarda 5 kv luk alternatif gerilim uygulayınız. 2- Sis odasının nem değerini ölçünüz. 3- Veri toplama cihazı yardımıyla gerilim değerlerini kaydediniz kv ve 15 kv için de gerilim değerlerini kaydediniz. 5- Sis odasındaki su ısıtıcısını çalıştırarak nemin yükselmesini sağlayınız ve nemi ölçünüz. 6-5, 10 ve 15 kv için gerilim değerlerini kaydediniz. 4. RAPORDA İSTENENLER 1- Deneyde gözlemlediğiniz sonuçları grubunuzla tartışınız. 2- Veri toplama cihazı yardımı ile bilgisayara kaydettiğiniz verileri kullanarak, her durum için ayrı ayrı gerilim ve akımın zamana bağlı grafiklerini çiziniz. 3- Çizilen grafikleri yüzey kaçak akımları açısından yorumlayınız. 10

AŞIRI GERİLİMLERE KARŞI KORUMA

AŞIRI GERİLİMLERE KARŞI KORUMA n Aşırı akımlar : Kesici n Aşırı gerilimler: 1. Peterson bobini 2. Ark boynuzu ve parafudr 3. Koruma hattı 26.03.2012 Prof.Dr.Mukden UĞUR 1 n 1. Peterson bobini: Kaynak tarafı yıldız bağlı YG sistemlerinde

Detaylı

İzolatör başlıca beş kısımdan oluşur: Gövde: İletkenin ve mesnet demirinin tutturulduğu kısımdır. Tutturma yuvası: İzolatör demirinin izolatöre

İzolatör başlıca beş kısımdan oluşur: Gövde: İletkenin ve mesnet demirinin tutturulduğu kısımdır. Tutturma yuvası: İzolatör demirinin izolatöre 6. İZOLATÖRLER İzolatörler, hava hattı iletkenlerini direkler üzerinde taşımaya ve/veya faz iletkenlerini topraktan yalıtmaya yararlar. Bir izolatör aşağıdaki temel özellikleri taşımalıdır: Elektriksel

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

PROJE VE TESİS DAİRESİ BAŞKANLIĞI

PROJE VE TESİS DAİRESİ BAŞKANLIĞI TEDAŞ TÜRKİYE ELEKTRİK DAĞITIM A.Ş. GENEL MÜDÜRLÜĞÜ ELEKTRİK DAĞITIM ŞEBEKELERİ OG DAĞITIM HATLARI İZOLATÖR İMALAT TEKNİK ŞARTNAMESİ PROJE VE TESİS DAİRESİ BAŞKANLIĞI İZOLATÖR İMALAT TEKNİK ŞARTNAMESİ

Detaylı

AC YÜKSEK GERİLİMLERİN ÜRETİLMESİ

AC YÜKSEK GERİLİMLERİN ÜRETİLMESİ AC İN Genel olarak yüksek alternatif gerilimler,yüksek gerilim generatörleri ve yüksek gerilim transformatörleri yardımıyla üretilir. Genellikle büyük güçlü yüksek gerilim generatörleri en çok 10 ile 20

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde; Voltmetrenin çekeceği güç artar. Yüksek gerilimden kaynaklanan kaçak akımların

Detaylı

YÜKSEK GERİLİM ELEMANLARI. Prof. Dr. Özcan KALENDERLİ

YÜKSEK GERİLİM ELEMANLARI. Prof. Dr. Özcan KALENDERLİ YÜKSEK GERİLİM ELEMANLARI Prof. Dr. Özcan KALENDERLİ Yüksek Gerilim Elemanları A. Temel Elemanlar; 1. Generatörler 2. Transformatörler 3. Kesiciler 4. Ayırıcılar 5. İletim Hatları 6. Direkler 7. İzolatörler

Detaylı

4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek

4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek DENEY 4: ZENER DİYOT (Güncellenecek) 4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek 4.2. Kullanılacak Aletler ve Malzemeler

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

KORONA KAYIPLARI Korona Nedir?

KORONA KAYIPLARI Korona Nedir? KORONA KAYIPLARI Korona Nedir? Korona olayı bir elektriksel boşalma türüdür. Genelde iletkenler, elektrotlar yüzeyinde görüldüğünden dış kısmı boşalma olarak tanımlanır. İç ve dış kısmı boşalmalar, yerel

Detaylı

HOŞGELDİNİZ TIG KAYNAK TEKNİĞİNDE ALTERNATİF AKIM KULLANIMI. K ayna K. Teknolojisi. Teknolojisi

HOŞGELDİNİZ TIG KAYNAK TEKNİĞİNDE ALTERNATİF AKIM KULLANIMI. K ayna K. Teknolojisi. Teknolojisi TIG KAYNAK TEKNİĞİNDE ALTERNATİF AKIM KULLANIMI K ayna K K ayna K Teknolojisi Teknolojisi HOŞGELDİNİZ Prof. Dr. Hüseyin UZUN Kaynak Eğitimi Ana Bilim Dalı Başkanı 1 /38 AC- ALTERNATİF AKIM ÖZELLİKLERİ

Detaylı

: Saf kil, Alüminyum Silikat; Al 2 O 3.2SiO 2.2H 2 O. Feldspat : Potasyum Alüminyum Silikat; K.Al.Si 3 O 8 veya K 2 O.Al 2 O 3.

: Saf kil, Alüminyum Silikat; Al 2 O 3.2SiO 2.2H 2 O. Feldspat : Potasyum Alüminyum Silikat; K.Al.Si 3 O 8 veya K 2 O.Al 2 O 3. 4. İZOLATÖRLER İzolatörler, hava hattı iletkenlerini direkler üzerinde taşımaya ve/veya faz iletkenlerini topraktan yalıtmaya yararlar. Bir izolatör aşağıdaki temel özellikleri taşımalıdır: Elektriksel

Detaylı

KOROZYON. Teorik Bilgi

KOROZYON. Teorik Bilgi KOROZYON Korozyon, metalik malzemelerin içinde bulundukları ortamla reaksiyona girmeleri sonucu, dışardan enerji vermeye gerek olmadan, doğal olarak meydan gelen olaydır. Metallerin büyük bir kısmı su

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE

YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE EM 420 Yüksek Gerilim Tekniği YÜKSEK GERİLİM TEKNİĞİ BÖLÜM 7 DİELEKTRİK KAYIPLARI VE KAPASİTE ÖLÇME YRD.DOÇ. DR. CABBAR VEYSEL BAYSAL ELEKTRIK & ELEKTRO NIK Y Ü K. M Ü H. Not: Tüm slaytlar, listelenen

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI. (2014-2015 Bahar Dönemi) BÖHME AŞINMA DENEYİ

KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI. (2014-2015 Bahar Dönemi) BÖHME AŞINMA DENEYİ KARADENİZ TEKNİK ÜNİVERSİTESİ MADEN MÜHENDİSLİĞİ BÖLÜMÜ MADEN İŞLETME LABORATUVARI (2014-2015 Bahar Dönemi) BÖHME AŞINMA DENEYİ Amaç ve Genel Bilgiler: Kayaç ve beton yüzeylerinin aşındırıcı maddelerle

Detaylı

FLY ART. ELEKTRİKSEL YÜZEY TEMİZLEYİCİ HAZIRLAYICI ve ELEKTRİKSEL YÜZEY KAPLAMA KORUMA

FLY ART. ELEKTRİKSEL YÜZEY TEMİZLEYİCİ HAZIRLAYICI ve ELEKTRİKSEL YÜZEY KAPLAMA KORUMA FLY ART ELEKTRİKSEL YÜZEY TEMİZLEYİCİ HAZIRLAYICI ve ELEKTRİKSEL YÜZEY KAPLAMA KORUMA BÖLÜM 1 FLY ART TANIMI Elektrik işletim sistemlerinde açıkta kalan bileşenlerin spreyleme yöntemi ile tam izoleli olarak

Detaylı

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma

Dielektrik malzeme DİELEKTRİK ÖZELLİKLER. Elektriksel Kutuplaşma. Dielektrik malzemeler. Kutuplaşma Türleri 15.4.2015. Elektronik kutuplaşma Dielektrik malzeme DİELEKTRİK ÖZELLİKLER Dielektrik malzemeler; serbest elektron yoktur, yalıtkan malzemelerdir, uygulanan elektriksel alandan etkilenebilirler. 1 2 Dielektrik malzemeler Elektriksel alan

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

ELEKTRİKLE ÇALIŞMALARDA GÜVENLİK. Yıldırımdan korunma

ELEKTRİKLE ÇALIŞMALARDA GÜVENLİK. Yıldırımdan korunma ELEKTRİKLE ÇALIŞMALARDA GÜVENLİK Yıldırımdan korunma 1 Yıldırımdan korunma 2 Yasal Mevzuat BİNALARIN YANGINDAN KORUNMASI HAKKINDA YÖNETMELİK Yıldırımdan Korunma Tesisatı, Transformatör ve Jeneratör Yıldırımdan

Detaylı

İNŞAAT MALZEME BİLGİSİ

İNŞAAT MALZEME BİLGİSİ İNŞAAT MALZEME BİLGİSİ Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, yapı malzemelerinin önemi 2 Yapı malzemelerinin genel özellikleri,

Detaylı

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER

BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER BARA SİSTEMLERİ HAKKINDA GENEL BİLGİLER Günümüzde bara sistemlerinde iletken olarak iki metalden biri tercih edilmektedir. Bunlar bakır ya da alüminyumdur. Ağırlık haricindeki diğer tüm özellikler bakırın

Detaylı

YAPI MALZEMELERİ DERS NOTLARI

YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ DERS NOTLARI YAPI MALZEMELERİ Herhangi bir yapının projelendirmesi ve inşaatı aşamasında amaç aşağıda belirtilen üç koşulu bir arada gerçekleştirmektir: a) Yapı istenilen işlevi yapabilmelidir,

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Büyük Akım ve Gerilimlerin Ölçümü Ölçü Transformatörleri Ölçü Transformatörleri Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde;

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri

Detaylı

KCT Serisi. Akım Trafoları

KCT Serisi. Akım Trafoları KCT Serisi Akım Trafoları KLEMSAN alçak gerilim akım transformatörleri istenilen güç ve doğruluk değerlerinde 20 A den 5000 A e kadar olan primer akımlarını 1 A veya 5 A değerinde sekonder akıma dönüştürürler.

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

A) DENEY NO: HT B) DENEYİN ADI: Doğrusal Isı İletimi Deneyi

A) DENEY NO: HT B) DENEYİN ADI: Doğrusal Isı İletimi Deneyi 10 A) DENEY NO: HT-350-01 B) DENEYİN ADI: Doğrusal Isı İletimi Deneyi C) DENEYİN AMACI: Aynı boyutlarda ve aynı malzemeden yapılmış bir katı çubuk boyunca ısının doğrusal olarak nasıl iletildiğini göstermek,

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I DENEY 6: DİYOT KARAKTERİSTİKLERİ VE AC-DC DOĞRULTUCU UYGULAMALARI Ad Soyad

Detaylı

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI SENSÖRLER VE DÖNÜŞTÜRÜCÜLER SEVİYENİN ÖLÇÜLMESİ Seviye Algılayıcılar Şamandıra Seviye Anahtarları Şamandıralar sıvı seviyesi ile yukarı ve aşağı doğru hareket

Detaylı

TAKIM ÇELİKLERİ İÇİN UYGULANAN EROZYON İŞLEMLERİ

TAKIM ÇELİKLERİ İÇİN UYGULANAN EROZYON İŞLEMLERİ TAKIM ÇELİKLERİ İÇİN UYGULANAN EROZYON İŞLEMLERİ Kalıp işlemesinde erozyonla imalatın önemi kimse tarafından tartışılmamaktadır. Elektro erozyon arka arkaya oluşturulan elektrik darbelerinden meydana gelen

Detaylı

ÖLÇME VE ÖLÇÜ ALETLERİ

ÖLÇME VE ÖLÇÜ ALETLERİ ÖLÇME VE ÖLÇÜ ALETLERİ 1. KISA DEVRE Kısa devre; kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. Kısa devre olduğunda

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

2/13/2018 MALZEMELERİN GRUPLANDIRILMASI

2/13/2018 MALZEMELERİN GRUPLANDIRILMASI a) Kullanış yeri ve amacına göre gruplandırma: 1) Taşıyıcı malzemeler: İnşaat mühendisliğinde kullanılan taşıyıcı malzemeler, genellikle betonarme, çelik, ahşap ve zemindir. Beton, çelik ve ahşap malzemeler

Detaylı

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ A. DENEYİN AMACI : Ohm ve Kirchoff Kanunları nın geçerliliğinin deneysel olarak gözlemlenmesi ve gerilim ve akım ölçümlerinin yapılması B. KULLANILACAK

Detaylı

Metalik malzemelerdeki kaynakların tahribatlı muayeneleri-kaynaklı yapıların soğuk çatlama deneyleri-ark kaynağı işlemleri Bölüm 2: Kendinden ön gerilmeli deneyler ISO 17642-2:2005 CTS TESTİ Hazırlayan:

Detaylı

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru

2.5. İletkenlerde R, L, C Hesabı İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru 2.5. İletkenlerde R, L, C Hesabı 2.5.1. İletim Hatlarında Direnç (R) İletim hatlarında gerilim düşümüne ve güç kaybına sebebiyet veren direncin doğru hesaplanması gerekir. DA direnci, R=ρ.l/A eşitliğinden

Detaylı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı DENEY NO : 7 DENEY ADI : DOĞRULTUCULAR Amaç 1. Yarım dalga ve tam dalga doğrultucu oluşturmak 2. Dalgacıkları azaltmak için kondansatör filtrelerinin kullanımını incelemek. 3. Dalgacıkları azaltmak için

Detaylı

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. BÖLÜM 2 KONDANSATÖRLER Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Yapısı: Kondansatör şekil 1.6' da görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin

Detaylı

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Koruma Röleleri AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Trafolarda meydana gelen arızaların başlıca nedenleri şunlardır: >Transformatör sargılarında aşırı yüklenme

Detaylı

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ Elektrik Makinaları II Laboratuvarı DENEY 3 ASENKRON MOTOR A. Deneyin Amacı: Boşta çalışma ve kilitli rotor deneyleri yapılarak

Detaylı

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ 13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye

Detaylı

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I DENEY -1- ELEKTRONİK ELEMANLARIN TANITIMI ve AKIM, GERİLİM ÖLÇÜMÜ HAZIRLIK SORULARI:

Detaylı

GARANTİ KARAKTERİSTİKLERİ LİSTESİ 132/15 kv, 80/100 MVA GÜÇ TRAFOSU TANIM İSTENEN ÖNERİLEN

GARANTİ KARAKTERİSTİKLERİ LİSTESİ 132/15 kv, 80/100 MVA GÜÇ TRAFOSU TANIM İSTENEN ÖNERİLEN EK-2 1 İmalatçı firma 2 İmalatçının tip işareti 3 Uygulanan standartlar Bkz.Teknik şartname 4 Çift sargılı veya ototrafo Çift sargılı 5 Sargı sayısı 2 6 Faz sayısı 3 7 Vektör grubu YNd11 ANMA DEĞERLERİ

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

ULAŞTIRMA LABORATUVARI

ULAŞTIRMA LABORATUVARI ULAŞTIRMA LABORATUVARI Manisa Celal Bayar Üniversitesi İnşaat Mühendisliği Ulaştırma Laboratuvarında, lisans ve lisansüstü çalışmalar çerçevesinde aşağıda verilen deneyler yapılmaktadır. Laboratuvarda

Detaylı

TOPRAKLAMA Topraklama,

TOPRAKLAMA Topraklama, TOPRAKLAMA Elektrik tesislerinde aktif olmayan bölümler ile sıfır iletkenleri ve bunlara bağlı bölümlerin, bir elektrot yardımı ile, toprakla iletken bir şekilde birleştirilmesine Topraklama denilmektedir.

Detaylı

TOPRAK SUYU. Toprak Bilgisi Dersi. Prof. Dr. Günay Erpul

TOPRAK SUYU. Toprak Bilgisi Dersi. Prof. Dr. Günay Erpul TOPRAK SUYU Toprak Bilgisi Dersi Prof. Dr. Günay Erpul erpul@ankara.edu.tr Toprak Suyu Su molekülünün yapısı Toprak Suyu Su molekülünün yapısı Polarite (kutupsallık) ve Hidrojen bağı Polarite (kutupsallık)

Detaylı

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM) DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM) A. DENEYİN AMACI : Ohm ve Kirchoff Kanunları nın geçerliliğinin deneysel olarak gözlemlenmesi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Multimetre

Detaylı

İNŞAAT MALZEME BİLGİSİ

İNŞAAT MALZEME BİLGİSİ İNŞAAT MALZEME BİLGİSİ Prof. Dr. Metin OLGUN Ankara Üniversitesi Ziraat Fakültesi Tarımsal Yapılar ve Sulama Bölümü HAFTA KONU 1 Giriş, yapı malzemelerinin önemi 2 Yapı malzemelerinin genel özellikleri,

Detaylı

TEDAŞ-MLZ(GES)/2015-060 (TASLAK) TÜRKİYE ELEKTRİK DAĞITIM A.Ş. GENEL MÜDÜRLÜĞÜ FOTOVOLTAİK SİSTEMLER İÇİN DC ELEKTRİK KABLOLARI TEKNİK ŞARTNAMESİ

TEDAŞ-MLZ(GES)/2015-060 (TASLAK) TÜRKİYE ELEKTRİK DAĞITIM A.Ş. GENEL MÜDÜRLÜĞÜ FOTOVOLTAİK SİSTEMLER İÇİN DC ELEKTRİK KABLOLARI TEKNİK ŞARTNAMESİ TÜRKİYE ELEKTRİK DAĞITIM A.Ş. GENEL MÜDÜRLÜĞÜ FOTOVOLTAİK SİSTEMLER İÇİN DC ELEKTRİK KABLOLARI TEKNİK ŞARTNAMESİ.. - 2015 İÇİNDEKİLER 1. GENEL 1.1. Konu ve Kapsam 1.2. Standartlar 1.3. Çalışma Koşulları

Detaylı

Doğru Akım Devreleri

Doğru Akım Devreleri Doğru Akım Devreleri ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için elektromotor kuvvet (emk) adı verilen bir enerji kaynağına ihtiyaç duyulmaktadır. Şekilde devreye elektromotor

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin amacı, fizik mühendisliği öğrencilerine,

Detaylı

NOT: Pazartesi da M201 de quiz yapılacaktır.

NOT: Pazartesi da M201 de quiz yapılacaktır. NOT: Pazartesi 12.30 da M201 de quiz yapılacaktır. DENEY-3: RADYAL ISI İLETİMİ DENEYİ 1. DENEYİN AMACI Pirinç plaka üzerinde ısı iletiminin farklı sıcaklık ve uzaklıklardaki değişimini incelemektir. 2.

Detaylı

GAZALTI TIG KAYNAĞI A. GİRİŞ

GAZALTI TIG KAYNAĞI A. GİRİŞ A. GİRİŞ Soy gaz koruması altında ergimeyen tungsten elektrot ile yapılan ark kaynak yöntemi ( TIG veya GTAW olarak adlandırılır ) kaynak için gerekli ergime ısısının ana malzeme ile ergimeyen elektrot

Detaylı

ERCİYES ÜNİVERSİTESİ Çevre Mühendisliği Bölümü Fiziksel ve Kimyasal Temel İşlemler Laboratuvarı Dersi Güncelleme: Eylül 2016

ERCİYES ÜNİVERSİTESİ Çevre Mühendisliği Bölümü Fiziksel ve Kimyasal Temel İşlemler Laboratuvarı Dersi Güncelleme: Eylül 2016 İYON DEĞİŞİMİ DENEYİN AMACI: Sert bir suyun katyon değiştirici reçine kullanılarak yumuşatılması ve reçinenin iyon değiştirme kapasitesinin incelenmesi TEORİK BİLGİLER İyon değiştirme benzer elektrik yüklü

Detaylı

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR 1. DENEYİN

Detaylı

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN TOKLUK VE KIRILMA Doç.Dr.Salim ŞAHĠN TOKLUK Tokluk bir malzemenin kırılmadan önce sönümlediği enerjinin bir ölçüsüdür. Bir malzemenin kırılmadan bir darbeye dayanması yeteneği söz konusu olduğunda önem

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

9. Ölçme (Ölçü) Transformatörleri. Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir.

9. Ölçme (Ölçü) Transformatörleri. Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir. 9. Ölçme (Ölçü) Transformatörleri Bir magnetik devre üzerinde sarılı 2 sargıdan oluşan düzene transformatör denir. Transformatörler, akım ve gerilim değerlerini frekansta değişiklik yapmadan ihtiyaca göre

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

AT larının sekonderlerine Ampermetre veya Watmetre, Sayaç vb cihazların Akım Bobinleri bağlanır. AT Sekonderi kesinlikle açık devre edilmemelidir!

AT larının sekonderlerine Ampermetre veya Watmetre, Sayaç vb cihazların Akım Bobinleri bağlanır. AT Sekonderi kesinlikle açık devre edilmemelidir! SEKONDER KORUM 1_Ölçme Trafoları (kım Trafosu / Gerilim Trafosu) 2_Sekonder Röleler 3_nahtarlama Elemanları (Kesiciler / yırıcılar) 1_Ölçme Trafoları (kım Trafosu / Gerilim Trafosu) 1.1. kım Trafoları

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

Transformatör İmalatı, Bakımı, Onarımı Servis Hizmetleri Mühendislik Hizmetleri Primer, Sekonder Saha Testleri YG, OG Şalt Sahası Bakım Onarım

Transformatör İmalatı, Bakımı, Onarımı Servis Hizmetleri Mühendislik Hizmetleri Primer, Sekonder Saha Testleri YG, OG Şalt Sahası Bakım Onarım Transformatör İmalatı, Bakımı, Onarımı Servis Hizmetleri Mühendislik Hizmetleri Primer, Sekonder Saha Testleri YG, OG Şalt Sahası Bakım Onarım Hizmetleri TRANSFORMATÖR Elektrik enerjisinin gerilim ve akım

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

EK 1 ENTERKONNEKTE ŞEBEKEDE KULLANILACAK İNDİRİCİ GÜÇ TRANSFORMATÖRLERİNİN KARAKTERİSTİKLERİ

EK 1 ENTERKONNEKTE ŞEBEKEDE KULLANILACAK İNDİRİCİ GÜÇ TRANSFORMATÖRLERİNİN KARAKTERİSTİKLERİ EK ENTERKONNEKTE ŞEBEKEDE KULLANILACAK İNDİRİCİ GÜÇ TRANSFORMATÖRLERİNİN KARAKTERİSTİKLERİ 2 EK 2 İLETİM HATLARINDA ÇAPRAZLAMA 380 kv ELEKTRİK İLETİM HATLARINDA ÇAPRAZLAMA A C B B A C C B A 0 yaklaşık

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

EEM0304 SAYISAL ELEKTRONİK LABORATUVARI DENEY FÖYLERİ

EEM0304 SAYISAL ELEKTRONİK LABORATUVARI DENEY FÖYLERİ EEM0304 SAYISAL ELEKTRONİK LABORATUVARI DENEY FÖYLERİ BİTLİS EREN ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DENEYLER İÇİN GEREKLİ ÖN BİLGİLER Tablo 1: Direnç kod tablosu OSİLOSKOP KULLANIMINA

Detaylı

KAYNAMALI ISI TRANSFERİ DENEYİ. Arş. Gör. Emre MANDEV

KAYNAMALI ISI TRANSFERİ DENEYİ. Arş. Gör. Emre MANDEV KAYNAMALI ISI TRANSFERİ DENEYİ Arş. Gör. Emre MANDEV 1. Giriş Pek çok uygulama alanında sıcak bir ortamdan soğuk bir ortama ısı transferi gerçekleştiğinde kaynama ve yoğuşma olayları gözlemlenir. Örneğin,

Detaylı

BİRLİKTE ÇÖZELİM. Bilgiler I II III. Voltmetre ile ölçülür. Devredeki yük akışıdır. Ampermetre ile ölçülür. Devredeki güç kaynağıdır.

BİRLİKTE ÇÖZELİM. Bilgiler I II III. Voltmetre ile ölçülür. Devredeki yük akışıdır. Ampermetre ile ölçülür. Devredeki güç kaynağıdır. 7.ÜNİTE BİLFEN YAYNCLK BİRLİKTE ÇÖZELİM 1. Aşağıda verilen ifadelerdeki boşlukları uygun kavramlar ile doldurunuz. ÀÀBir iletken içindeki negatif yüklerin hareketinden kaynaklanan düzenli ve devamlı enerji

Detaylı

YAŞAMIMIZDAKİ ELEKTRİK

YAŞAMIMIZDAKİ ELEKTRİK YAŞAMIMIZDAKİ ELEKTRİK DURGUN ELEKTRİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında

Detaylı

ELEKTRİĞİN İLETİMİ. Adı:Muharrem Soyadı:Şireci No:683

ELEKTRİĞİN İLETİMİ. Adı:Muharrem Soyadı:Şireci No:683 ELEKTRİĞİN İLETİMİ Adı:Muharrem Soyadı:Şireci No:683 Elektrik Nedir? Günümüzde evlerin aydınlatılması, televizyon, radyo, telefon, çamaşır makinesi gibi araçların çalıştırılmasında elektrik kullanılmaktadır.

Detaylı

TOPRAKLAMA VE POTANSİYEL SÜRÜKLENMESİ

TOPRAKLAMA VE POTANSİYEL SÜRÜKLENMESİ TOPRAKLAMA VE POTASİYEL SÜRÜKLEMESİ Genel bilgi Generatör, transformatör, motor, kesici, ayırıcı aydınlatma artmatürü, çamaşır makinası v.b. elektrikli işletme araçlarının, normal işletme anında gerilim

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

GERİLİM REGÜLATÖRLERİ DENEYİ

GERİLİM REGÜLATÖRLERİ DENEYİ GERİLİM REGÜLATÖRLERİ DENEYİ Regüleli Güç Kaynakları Elektronik cihazlar harcadıkları güçlere göre farklı akımlara ihtiyaç duyarlar. Örneğin; bir radyo veya amplifikatörün hoparlöründen duyulan ses şiddetine

Detaylı

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ 7. ÜNİTE AKIM, GERİLİM VE DİRENÇ KONULAR 1. AKIM, GERİLİM VE DİRENÇ 2. AKIM BİRİMİ, ASKATLARI VE KATLARI 3. GERİLİM BİRİMİ ASKATLARI VE KATLARI 4. DİRENÇ BİRİMİ VE KATLARI 7.1. AKIM, GERİLİM VE DİRENÇ

Detaylı

ORMAN VE SU İŞLERİ BAKANLIĞI İZLEME VE SU BİLGİ SİSTEMİ DAİRESİ BAŞKANLIĞI

ORMAN VE SU İŞLERİ BAKANLIĞI İZLEME VE SU BİLGİ SİSTEMİ DAİRESİ BAŞKANLIĞI ORMAN VE SU İŞLERİ BAKANLIĞI İZLEME VE SU BİLGİ SİSTEMİ DAİRESİ BAŞKANLIĞI Şükran DENİZ Uzman Kasım 2015 1 SUNUM İÇERİĞİ AMAÇ NUMUNE KABI NUMUNE ALMA CİHAZ TİPLERİ NUMUNE ALMA YERİ NUMUNELERİN KORUNMASI

Detaylı

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ DENEY 1 ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ 1.1. Genel Bilgi MV 1424 Hat Modeli 40 kv lık nominal bir gerilim ve 350A lik nominal bir akım için tasarlanmış 40 km uzunluğundaki

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

EEME210 ELEKTRONİK LABORATUARI

EEME210 ELEKTRONİK LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEME210 ELEKTRONİK LABORATUARI DENEY 02: ZENER DİYOT ve AKIM GERİLİM KARAKTERİSTİĞİ 2014-2015 BAHAR Grup Kodu: Deney Tarihi:

Detaylı

DOĞRULTUCULAR VE REGÜLATÖRLER

DOĞRULTUCULAR VE REGÜLATÖRLER Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı DOĞRULTUCULAR VE REGÜLATÖRLER 1. Deneyin Amacı Yarım

Detaylı

ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ - 1 1.TOZALTI KAYNAĞI

ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ - 1 1.TOZALTI KAYNAĞI ÖĞRENME FAALİYETİ 1 ÖĞRENME FAALİYETİ - 1 AMAÇ Bu faaliyet sonucunda uygun ortam sağlandığında tekniğe uygun olarak tozaltı kaynağı ile çeliklerin yatayda küt-ek kaynağını yapabileceksiniz. ARAŞTIRMA Toz

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I DENEY 7: MOSFET Lİ KUVVETLENDİRİCİLER Ortak Kaynaklı MOSFET li kuvvetlendirici

Detaylı

a) Ağaç Direkler Köknar, ardıç, karaçam, ladin gibi ağaçlardan yapılan direk çeşididir. Hava şartlarından ve haşerelerden olumsuz etkilendikleri için

a) Ağaç Direkler Köknar, ardıç, karaçam, ladin gibi ağaçlardan yapılan direk çeşididir. Hava şartlarından ve haşerelerden olumsuz etkilendikleri için 6. DİREKLER Direklerin Yapıldıkları Malzemelere Göre Sınıflandırılması Direkler, yapıldıkları malzemelere göre 3 gruba ayrılır: a) Ağaç direkler b) Beton direkler c) Demir direkler 1 a) Ağaç Direkler Köknar,

Detaylı

DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ

DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ 1. Temel Teori (Şönt Uyarmalı Motor) DC şönt motorlar hızdaki iyi kararlılıkları dolayısıyla yaygın kullanılan motorlardır. Bu motor tipi seri

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için

Detaylı

ISI ĠLETĠM KATSAYISININ TESPĠTĠ DENEY FÖYÜ

ISI ĠLETĠM KATSAYISININ TESPĠTĠ DENEY FÖYÜ T.C ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ ISI ĠLETĠM KATSAYISININ TESPĠTĠ DENEY FÖYÜ HAZIRLAYAN: Prof. Dr. Aydın DURMUġ SAMSUN Deney 1: Doğrusal Isı Ġletimi Deneyi

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci ELEKTRİK AKIMI Elektrikle yüklü ve potansiyelleri farklı olan iki iletken küreyi, iletken bir telle birleştirilirse, potansiyel farkından dolayı iletkende yük akışı meydana gelir. Bir iletkenden uzun süreli

Detaylı

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6.

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6. ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ ELEKTRİK MAKİNALARI 6. HAFTA 1 İçindekiler Oto Trafo Üç Fazlı Transformatörler Ölçü Trafoları

Detaylı