Çizgi İzleyen Robot Tasarımı
|
|
|
- Ayşe Durmaz
- 10 yıl önce
- İzleme sayısı:
Transkript
1 Teknoloji Fakültesi Çizgi İzleyen Robot Tasarımı Hazırlayan: Araş. Gör. Okan UYAR
2 İçindekiler 1. Uygulamanın İçeriği Uygulamanın Hedefi Ön Bilgi Çalışma Prensibi Motor Sürücü Sensör Regülatör Mikrodenetleyici Mekanik, Motor ve Tekerler Devre Şemaları ve Baskı Devreleri Ana Devre Sensör Kiti Motor Sürücü Programlama... 13
3 1. Uygulamanın İçeriği Uygulama kapsamında birçok eleman kullanarak oluşturulan pistte çizgiyi takip edebilecek bir Çizgi İzleyen Robot yapılacaktır. Uygulama kapsamında baskı devre tasarımı ve gerçekleştirilmesi, devre elemanı lehimleme, mikrodenetleyici programlama, mekanik tasarım ve işleme, test ve deneme aşamaları gerçekleştirilecektir. 2. Uygulamanın Hedefi Uygulama sonunda öğrencilerin aşağıdaki konularda farkındalığı sağlanacaktır: Elektronik devrenin çizimi, benzetimi ve baskı devre tasarımı DC motor sürücü, kontrast algılama ve temel mikro denetleyici devreleri Çizgi izleyen robotun mekanik tasarımı Çizgi izleyen robot program algoritması 3. Ön Bilgi Çizgi izleyen robot adından da anlaşılabileceği gibi bir zemin üzerinde oluşturulmuş çizgi şeklindeki yolu otonom(öz denetimli) olarak izleyen robotlardır. Bu amaçla kullanılabilecek sensörlerin kontrastı yani koyu ve açık renk ayrımı yapabilmesi nedeniyle siyah zemin üstünde beyaz çizgi yada beyaz zemin üzerinde siyah çizgi bulunan yollar bu robotlar için tercih edilir Çalışma Prensibi Robotun çalışma prensibi, çizgiyi ortadaki algılayıcıda tutarak ilerlemesine dayanmaktadır. Robot kısa aralıklarla algılayıcının durumunu kontrol ederek çizgiye göre konumunu belirler. Bunun için tasarım fikrine bağlı olarak belli sayıda ve belli aralıklarla ve yerleşim şekli ile çizgi algılama sensörleri kullanılır ve motorlar buradan gelen bilgilere göre kontrol edilir. Robot ilerlerken, çizgi robotun sağ tarafına gelirse, 3 nolu algılayıcı çizgiyi görecektir. Böylece robot çizginin sol tarafında olduğunu anlayacak ve programı içinde belirtilen sağa dönüşkomutunu uygulayacaktır. Dönme işlemi, ortadaki algılayıcının çizgiyi tekrar görmesine kadar devam eder. Bu algılayıcı çizgiyi gördüğünde, robot tekrar düz hareket etmeye başlar. Eğer, çizgi robotun sol tarafına gelirse, aynı işlemler bu taraf için tekrarlanır ve böylelikle çizgi izleme işlemi yerine getirilir. 4
4 3.2. Motor Sürücü Robotlarımızda genellikle 6-12V luk elektrik motoru(dc motor) kullanıyoruz. Hız gerektiren projelerde(çizgi izleyen robot) genelde yüksek devirli düşük torklu motor kullanılır, tork gerektiren projelerde(sumo robot, mini sumo robot gibi) ise düşük devirli yüksek torklu motor kullanılır. Bu motorlarda çekilen akım motorun boyutlarına ve özelliklerine göre değişir. Örnek verecek olursak bir motor boşta dönerken 30mA akım çeker, yükte ise bu 700mA çekebilir veya daha fazla. Örneğin sumo robotlarda kullanılan çoğu motor zorlanma anında 10 A kadar akım çekebilir. Motorları sürmek için çok akım gerekir, ancak biz motorları kontrol etmek için PIC kullandığımız için, PIC çıkışlarına maksimum 25mA ve 5V verebildiği için direkt PIC çıkışıyla motor süremeyiz. İşte bu yüzden PIC den gelen düşük gerilim ve akımı kuvvetlendirmek için motor sürücü devreleri kullanıyoruz. Kullanım amacına göre tek yönde ve sabit hızda sürme devreleri olduğu gibi çift yönde ve değişken hızda motor sürmemizi sağlayan devre topolojileri de vardır. PIC ile motor sürmek için, PICten gelen sinyali güçlendirip motorlara iletmemiz gerekir. Bunu yapmak için de transistör ve türevleri(fet-jfet-mosfet) ve motor sürücü entegreleri kullanıyoruz. Eğer tek bir transistör kullanırsak, motoru sadece tek yönde çalıştırabiliyoruz. Motoru 2 yöne de döndürmek istersek, 4 adet transistörleyukarıdaki resimde gösterilen H köprüsü kurup motorları sürebiliriz. Motor sürücü entegrelerinin içinde genellikle 2 adet H köprüsü vardır ve böylece tek bir motor sürücü entegresiyle 2 adet motoru birbirinden bağımsız ve iki yönlü sürebiliriz. Aşağıda, robot projelerinde sıkça kullanılan entegrelerin resimleri ve önemli özellikleri verilmiştir.
5 L298N Çalışma Gerilimi: 7,5-46V Kanal Başına Akım: 2A Frekans: 40 KHz Aşırı sıcaklıkta kapama L293D Çalışma Gerilimi: 4,5-36V Kanal Başına Akım: 600mA Frekans: ~10 KHz Dahili Kenetleme Diyotu Dahili ESD Koruma Aşırı sıcaklıkta kapama L6207N Çalışma Gerilimi: 8-52V Kanal Başına Akım: 2,8A Frekans: 100 KHz RDSon=0,3 Ohm Dahili Serbest Geçiş Diyotu Aşırı sıcaklıkta kapama TB6612FNG Çalışma Gerilimi: 15V Kanal Başına Akım: 1,2A Frekans: 100 KHz RDSon=0,5Ohm Aşırı sıcaklıkta kapama Çalışma kapsamında L298N sürücüsünü kullanacağız.
6 Bu entegre de toplam 15 adet bacak bulunmaktadır. Bunlardan IN1, IN2, OUT1, OUT2, ENA, SENSA A köprüsü için, IN3, IN4, OUT3, OUT4, ENB, SENSB B köprüsü içindir. IN1,IN2(5,7): Bu bacaklar A köprüsü için olan girişlerdir. +5 volt ile çalışır. Eğer IN1 e 5V, IN2 ye 0V verince motor ileri dönerse, tam tersini verdiğimizde geri dönecektir. Her iki bacağa da aynı değeri verirsek (0V-0V veya 5V-5V) motor dönmez. IN3,IN4(10,12): Bu bacaklar B köprüsü için olan girişlerdir. A köprüsüyle aynı şekilde çalışır. OUT1,OUT2(2,3):A köprüsü için çıkış bacaklarıdır. Bu çıkışları motorun iki ucuna bağlanacaktır. Motorların herhangi bir zorlanma durumunda oluşacak olan ters akımın entegreye zarar vermemesi için çıkışlar ile motor arasına ikişer adet diyot bağlanmalıdır. Bu diyotların birisinin yönü topraktan çıkışa doğru, diğeri de çıkıştan VS ye doğru olmalıdır. OUT3,OUT4(13,14): B köprüsü için çıkış bacaklarıdır. A köprüsüyle aynı şekilde çalışır. ENA,ENB(6,11): A ve B köprülerini etkinleştirmek için bu bacaklara +5 volt bağlamak gerekmektedir. Eğer bu uçlara mikrodenetleyiciden PWM sinyali verilirse motorun hızı kontrol edilebilir. SENSA,SENSB(1,15): A ve B köprülerinin çalışması için bu bacaklar toprağa çekilmelidir. Bu bacaklarla toprak arasına bağlayacağımız 0,47 Ohm/2 W değerinde direnç ile çıkış akımını kontrol edebiliriz, fakat direnç bağlamadan da çalışır. VS(4): Çıkışlardan kaç volt almak istiyorsak bu bacağı o voltaja bağlıyoruz. En fazla 46 volt verebiliriz, biz genelde 12 volt kullanıyoruz. Ayrıca DC üzerindeki küçük salınımları yok etmek için bu bacakla toprak arasına 100nF lık kondansatör bağlanmalıdır. VSS(9): Bu bacak, L298 in çalışması için +5 volta bağlanmalıdır. Yine küçük salınımları yok etmek için VSS ile toprak arasına 100nF lık kondansatör bağlanmalıdır. GND(8): Bu bacak, L298 in çalışması için toprağa bağlanmalıdır Sensör Çizgiyi algılamak için kızılötesi led ve optik olarak iletime geçen bir transistör barındıran sensörler kullanılmaktadır. Kızılötesi ledden yansıyan ışınlar siyah zeminden az beyaz zeminden çok yansıdığı için sensör içindeki elektronik anahtar(transistör) yansıyan bu ışına göre iletime veya kesime giderek bize çizgi hakkında bilgi vermektedir. Buradan gelen bilgi mikrodenetleyici ile değerlendirilerek motorların kontrolü sağlanmakta ve robot yönlendirilmektedir. Bahsedilen amaçla kullanılan bazı sensörler şunlardır: QRD1114, CNY70, SFH9241, QTR-8A Çizgi izleyen robotta kullanılan sensörler genellikle 3mm lik bir yükseklikten çizgiyi algılayabilmektedir. Robot mekaniği tasarlanırken bu konuya da dikkat edilmelidir. Buna ek olarak, kullanılacak sensör sayısı, sensörler arasındaki mesafe ve sensörlerin yerleşim şekli de robotun
7 tasarımında önemli konulardır. Çizgi kalınlığı 2cm olduğu için sensörler arasında genelde 2cm aralık bırakılır. Çok yakın şekilde yerleştirilmiş sensörlerin gönderdiği sinyaller birbirini etkileyecektir. Sensör bağlantısı aşağıdaki gibi yapılmalıdır. R1 direnci ohm arasında bir değerde olabilir. R2 direnci ise 10K seçilmelidir. R1 direncine göre sensör içindeki kızılötesi ledin ışık şiddeti ayarlanabilir. Bu ayarlama, sensörün yerden yüksekliğine göre yapılmalıdır. Maksimum parlaklık için 50 ma değerini geçmeyecek bir direnç bağlanmalıdır. R2 direnci ise yansıma olmadığı zaman sensör çıkışının 5V da kalmasını, yansıma olduğunda ise 0V çıkış vermesini sağlamaktadır. Işık şiddetine göre Vout ucundan alınan gerilim sayısal bilgi oluşturacak kadar düzgün çıkmadığı için sensörün çıkışına 74HC14 isimli içinde 6 adet karşılaştırıcı bulunan bir entegre kullanılmaktadır. Ayrıntıları devre şemalarında görülebilir Regülatör Robotumuzda motor sürmek için 7,4V veya 11,1V gibi bataryalara ihtiyaç duyulmaktadır. Aynı besleme kaynağı ile elektronik kontrol devresini de sürmemiz gerektiğinden ve bu devrelerin 5V ile çalışmasından dolayı bir gerilim düzenleyiciye ihtiyaç duyulmaktadır. Yukarıda bahsedilen amaçla kullanılabilecek bazı regülatörler şöyledir: 7805, LM2576-5, LM1117-5, LT123A, LT Bunlardan en sık kullanılanları 7805 ve LM2576 dır. Bilgi sayfalarında daha yüksek değerler yazılsa da 7805 girişine uygulanan 0-15 V u 5V seviyesine düşürürken çıkışına 500mA akım çeken bir yük bağlanabilir. Bu sınırların dışında entegre aşırı ısınmakta ve kararlı çalışmamaktadır. LM2576 entegresi ise 0-30 V giriş gerilimine ve 3A lik çıkış yüküne uygun yapıdadır ancak 7805 e göre daha fazla ek devre elemanı gerektirmektedir. Motordan dolayı ani olarak fazla akım çekme durumlarında PIC mikrodenetleyicisi resetlenebilmektedir. LM2576 entegresinin yapısından dolayı bu problem daha az yaşandığı için bu entegre kullanılacaktır. Devre şeması aşağıda verilmiştir.
8 3.5. Mikrodenetleyici Bir mikrodenetleyici (MCU ve µc olarak da adlandırılır), bir mikroişlemcinin, merkezi işlem birimi(cpu), hafıza ve giriş - çıkışlar, kristal osilatör, zamanlayıcılar (timers), seri ve analog giriş çıkışlar, programlanabilir hafıza (NOR Flash, OTP ROM) gibi bileşenlerle tek bir tümleşik devre üzerinde üretilmiş halidir. Kısıtlı miktarda olmakla birlikte, yeterince hafıza birimlerine ve giriş çıkış uçlarına sahip olmaları sayesinde tek başlarına çalışabildikleri gibi, donanımı oluşturan diğer elektronik devrelerle irtibat kurabilir, uygulamanın gerektirdiği fonksiyonları gerçekleştirebilirler. Üzerlerinde analog-dijital çevirici gibi tümleşik devreler barındırmaları sayesinde algılayıcılardan her türlü verinin toplanması ve işlenmesinde kullanılabilmektedirler. Ufak ve düşük maliyetli olmaları gömülü uygulamalarda tercih edilmelerini sağlamaktadır. Piyasada Microchip, Atmel, Motorola, Intel, Zilog, Infineon, ST gibi firmaların ürettiği mikrodenetleyiciler vardır. Bu firmaların arasındaki Mikrochip in üretmiş olduğu PIC mikrodenetleyicileri, en çok kullanılan mikrodenetleyicilerdendir. Çok sayıda örnek uygulama ve doküman bulunması, birçok derleyici seçeneğinin olması bunun temel sebepleridir. PIC mikrodenetleyicinin çalışması için gereken temel şema Reset devresi ve Osilatör devresinden oluşmaktadır. Osilatör devresinde Kristal ve seçilen frekansa göre 22pF 68 pf arasında bir değerde kondansatör seçilir. Rs direnci kullanımı zorunlu değildir.
9 3.6. Mekanik, Motor ve Tekerler Robotun gövdesi için birçok farklı tasarım yapılabilir. Hazır gövdeler de kullanabilirsiniz (örneğin oyuncak araba gövdeleri), ya da pleksiglas, sert plastik malzemeler kullanarak da robotunuzun gövdesini hazırlayabilirsiniz. Bu tip malzemeler kullanarak istediğiniz tasarımları daha kolay gerçekleştirebilirsiniz. Gövde malzeme seçerken fazla ağır olmamasına ve işlenmesinin kolay olmasına dikkat edilmelidir. Çizgi izleyen robot projelerinde en çok tercih edilen sürüş sistemi diferansiyel sürüş sistemidir. Bu sistemde robotun sağında ve solunda birbirinden bağımsız motorlar ve bunlara bağlı tekerlekler bulunur. Genellikle maliyet açısından sağ ve solda birer motor ve birer tekerlek kullanılır. Bu şekildeki kullanımlarda robotun daha rahat hareketi ve dönüşleri için robotta kullanılan gövdenin durumuna göre önde ve/veya arkada sarhoş tekerlek ya da bilye tekerlek (roll-on tekerlek) kullanılır. Diferansiyel sürüş sisteminde robotun dönüşü birbirinden bağımsız çalışan iki motorun arasındaki hız farkıyla sağlanır. Aşağıdaki şemada diferansiyel sürüş sisteminin çalışması gösterilmiştir. Mekanik tasarlanırken tekerler aynı oranda ve yeterince yere basmalı. Robotun ağırlığı ve tekerleklerin sürtünme oranı da hassas bir noktadır çünkü bu seçimler robotun patinaj atarak enerjizaman-kontrol kaybına ya da aşırı sürtünmeden hız kaybetmesine neden olabilir. Robotun üzerine koyulan batarya ve diğer elemanların ağırlık merkezinin düzenli olması dengeli bir hareket sağlayacaktır. Robotun yere bastığı noktaların ve motorlar arasındaki mesafe de manevra kabiliyeti açısından önemlidir. Yarışma pisti çok sık sinüzoidal dönüşler içeriyorsa robot boyunun çok uzun olmaması gerekir. Eğer daha çok düz yollar var ise robot da uzun yapılabilir. Arka tekerler arasındaki mesafe az olursa manevra kabiliyeti azalır, fazla olursa da çizgi sensörleri harekete yetişemeyeceğinden robot çizgi etrafında yalpalayarak gider. En:1 / Boy: 1,15 oranı ideal olmaktadır.
10 Kullanacağımız motorların 1000 ila 1500 devir arasında olması robotumuzun saniyede 2 metreden daha fazla yol kat etmesi için yeterlidir. Bu hızla gidebilmek tekerlek seçimi şöyle yapılmalıdır: Tekerin çevresi 2 п r dir. Motorların hızı devir/dakika (RPM) olarak birimlendirilir. Bu yüzden devir/saniyeye çevirmek lazım devir/dakika ise 1000/60=16,6 devir/saniye yapar. Tekerimizin çapı 3cm ise 2 x п r D= X 2x3,14x1,5x16,6=156,372 cm Eğer robotta hiçbir kayıp olmazsa saniyede 1 metre 56 cm gidebilir. Tekerin çapı ile bu değeri değiştirebiliriz. Ancak unutulmamalıdır ki eğer motorunuzun torku (santimetre başına düşen kaldırma kuvveti cm/kg) düşükse, tekerin çapı arttıkça torkunuz da düşecektir. Robotunuzu daha rahat kontrol edebilmek için mümkün oldukça tekerin çapını küçük tutun. Çünkü motorun hızını değiştirirken tekerin çapı 3 cm ise her 9.42 cm de bir hızınızın değişimi robot üzerinde fark edilecektir. 6 cm ise 18,84 cm de bir hızınızın değişimi robot üzerinde fark edilecektir. Tekerin genişliği ise çok ince olursa patinaj atacaktır ve kontrolü zorlaştıracaktır. Gereğinden fazla olursa da sürtünme artacağından hız ve enerji kaybı olacağından piyasada bulunan tekerlerden en uygun olanı denemeler sonrasında seçilmelidir.
11 4. Devre Şemaları ve Baskı Devreleri 4.1. Ana Devre
12
13 4.2. Sensör Kiti
14 4.3. Motor Sürücü
15 5. Programlama #include <18f252.h> #fuses HS,NOWDT,NOPROTECT,NOBROWNOUT,NOLVP,PUT,NOWRT,NODEBUG,NOCPD #use delay (clock= ) #define s1 pin_b4 // ensag #define s2 pin_b3 // sag #define s3 pin_b0 // orta #define s4 pin_b1 // sol #define s5 pin_b2 // ensol #define in1 pin_c0 #define in2 pin_c3 #define in3 pin_c4 #define in4 pin_c5 int hiz1=150; int hiz2=150; int portlar; int1 durum; void saga() set_pwm1_duty(hiz1); set_pwm2_duty(hiz2); output_low(in1); output_low(in2); output_high(in3); output_low(in4); void sola() set_pwm1_duty(hiz1); // PWM1 çıkışı görev saykılı belirleniyor set_pwm2_duty(hiz2); output_high(in1); output_low(in2); output_low(in3); output_low(in4); void sertsag() set_pwm1_duty(150); set_pwm2_duty(150); output_high(in1); output_low(in2); output_low(in3); output_high(in4); void sertsol() set_pwm1_duty(150); set_pwm2_duty(150); output_low(in1); output_high(in2); output_high(in3); output_low(in4); void geri() set_pwm1_duty(100); set_pwm2_duty(100); output_low(in1); output_high(in2); output_low(in3); output_high(in4); void ileri() set_pwm1_duty(hiz1); set_pwm2_duty(hiz2); output_high(in1); output_low(in2); output_high(in3); output_low(in4); void dur() set_pwm1_duty(0); set_pwm2_duty(0); output_low(in1); output_low(in2); output_low(in3); output_low(in4); void test() ileri(); delay_ms(800); saga(); delay_ms(800); sola(); delay_ms(800);
16 void main ( ) setup_spi(spi_ss_disabled); // SPI birimi devre dışı setup_timer_1(t1_disabled); // T1 zamanlayıcısı devre dışı setup_adc_ports(no_analogs); // ANALOG giriş yok setup_adc(adc_off); // ADC birimi devre dışı set_tris_a(0xff); set_tris_b(0xff); set_tris_c(0x00); setup_ccp1(ccp_pwm); // CCP1 birimi PWM çıkışı için ayarlandı setup_ccp2(ccp_pwm); // CCP2 birimi PWM çıkışı için ayarlandı setup_timer_2(t2_div_by_4,170,1); // Timer2 ayarları yapılıyor set_pwm1_duty(hiz1); // PWM1 çıkışı görev saykılı belirleniyor set_pwm2_duty(hiz2); // PWM2 çıkışı görev saykılı belirleniyor delay_ms(1000); ////s1 s2 s3 s4 s5////// /// = 01 (tersi=30) /// = 02 (tersi=29) /// = 04 (tersi=27) /// = 08 (tersi=23) /// = 16 (tersi=15) /// = 25 (tersi=06) /// = 07 (tersi=24) //////////////////////// while(1) //test(); portlar=input_b(); while ((portlar==1) (portlar==30))hiz1=160;hiz2=160;ileri();portlar=0;//ileri while ((portlar==2) (portlar==29))hiz1=140;hiz2=170;ileri();portlar=0;//az saga while ((portlar==8) (portlar==23))hiz1=170;hiz2=140;ileri();portlar=0;//az sola while ((portlar==25) (portlar==6))sertsag();portlar=0; while ((portlar==7) (portlar==24))sertsol();portlar=0; while ((portlar==16) (portlar==15))hiz1=165;hiz2=165;sola();portlar=0; //tam sola while ((portlar==4) (portlar==27))hiz1=165;hiz2=165;saga();portlar=0; //tam saga
Çizgi İzleyen Robot Yapımı
Çizgi İzleyen Robot Yapımı Elektronik Elektronik tasarım için yapılması gerek en önemli şey kullanılacak malzemelerin doğru seçilmesidir. Robotun elektronik aksamı 4 maddeden oluşur. Bunlar; 1. Sensörler
OTONOM ÇĐM BĐÇME MAKĐNESĐ GELĐŞTĐRĐLMESĐ DEVELOPING OF AUTONOMOUS LAWN MOVER. Danışman: Prof.Dr. Koray TUNÇALP, Marmara Üniversitesi Đstanbul
OTONOM ÇĐM BĐÇME MAKĐNESĐ GELĐŞTĐRĐLMESĐ DEVELOPING OF AUTONOMOUS LAWN MOVER Danışman: Prof.Dr. Koray TUNÇALP, Marmara Üniversitesi Đstanbul Cihan ÇATALTEPE, Marmara Üniversitesi-Mekatronik Öğrt.4.Sınıf
Çizgi İzleyen Robot Yapımı ve Teknik Bilgiler
Çizgi İzleyen Robot Yapımı ve Teknik Bilgiler ÇİZGİ İZLEYEN ROBOT NEDİR? Çizgi izleyen robot belirli bir yolu otonom olarak takip edebilen robottur. Bu yol siyah zemin üzerinde beyaz renkte ya da beyaz
BESLEME KARTI RF ALICI KARTI
BESLEME KARTI Araç üzerinde bulunan ve tüm kartları besleyen ünitedir.doğrudan Lipo batarya ile beslendikten sonra motor kartına 11.1 V diğer kartlara 5 V dağıtır. Özellikleri; Ters gerilim korumalı Isınmaya
Alıcı Devresi; Sinyali şu şekilde modüle ediyoruz;
Bu e kitapta infrared iletişim protokolleri ile ilgili basit bir uygulamayı anlatmaya çalışacağım. Bunu yine bir mikrodenetleyici ile yapmamız gerekecek. Siz isterseniz 16f628a yı ya da ccp modülü olan
PIC 16F877A ile DA MOTOR KONTROLLÜ ROBOT UYGULAMASI DC MOTOR CONTROLLED ROBOT APPLICATION WITH USING PIC 16F877A
PIC 16F877A ile DA MOTOR KONTROLLÜ ROBOT UYGULAMASI DC MOTOR CONTROLLED ROBOT APPLICATION WITH USING PIC 16F877A Recep AYRANCI, ÇANKIRI KARATEKĐN ÜNĐVERSĐTESĐ, ÇANKIRI Bayram BEDER, ÇANKIRI KARATEKĐN ÜNĐVERSĐTESĐ,
İçİndekİler. 1. Bölüm - Mİkro Denetleyİcİ Nedİr? 2. Bölüm - MİkroDenetleyİcİlerİ Anlamak
XIII İçİndekİler 1. Bölüm - Mİkro Denetleyİcİ Nedİr? Mikrodenetleyici Tanımı Mikrodenetleyicilerin Tarihçesi Mikroişlemci- Mikrodenetleyici 1. İki Kavram Arasındaki Farklar 2. Tasarım Felsefesi ve Mimari
ÇİZGİ İZLEYEN ROBOTU YAPIMI
ÇİZGİ İZLEYEN ROBOTU YAPIMI Gökhan YALINIZ / Eylül 2013 Çizgi İzleyen-Haprox Giriş Çizgi izleyen robotu, robot yapmaya karar vermiş insanların en çok tercih ettiği robottur.programla dilinde tabir ettiğimiz
Hazırlayan: Tugay ARSLAN
Hazırlayan: Tugay ARSLAN ELEKTRİKSEL TERİMLER Nikola Tesla Thomas Edison KONULAR VOLTAJ AKIM DİRENÇ GÜÇ KISA DEVRE AÇIK DEVRE AC DC VOLTAJ Gerilim ya da voltaj (elektrik potansiyeli farkı) elektronları
Yaptığımız aracın yere çizilen bir çizgiyi tanıması ve bu çizgiyi takip etmesi.
ÇİZGİ İZLEYEN ARAÇ PROJESİ: Amaç: Yaptığımız aracın yere çizilen bir çizgiyi tanıması ve bu çizgiyi takip etmesi. Kullanılan Parça ve Malzemeler: Araçta şasi olarak genelde elektronik devreleri kutulamak
4-Deney seti modüler yapıya sahiptir ve kabin içerisine tek bir board halinde monte edilmiştir.
MDS 8051 8051 AİLESİ DENEY SETİ 8051 Ailesi Deney Seti ile piyasada yaygın olarak bulunan 8051 ailesi mikro denetleyicileri çok kolay ve hızlı bir şekilde PC nizin USB veya Seri portundan gönderdiğiniz
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işığı Takip Eden Kafa 2 Nolu Proje
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Işığı Takip Eden Kafa 2 Nolu Proje Proje Raporu Hakan Altuntaş 11066137 16.01.2013 İstanbul
PIC PROGRAMLAMA STEP MOTOR SÜRÜCÜ VE KONTROL AMAÇ NEDİR? Unipolar Step Motorlar. Uç TESPİTİ NASIL YAPILIR?
PIC PROGRAMLAMA [email protected] www.mekatroniklab.com.tr STEP MOTOR SÜRÜCÜ VE KONTROL AMAÇ Bu ayki sayımızda, özellikle CNC ve robotik uygulamalarda oldukça yaygın olarak kullanılan step motorlar
IR Modülü. Kart Özellikleri Çalısma Frekansı: 38KHz Mesafe: 6 Metre Çalısma Voltajı: 3.3-5V Kart Boyutları: 20 mm x 20 mm
ÜRÜN KATALOGU IR Modülü Kart Özellikleri Çalısma Frekansı: 38KHz Mesafe: 6 Metre Çalısma Voltajı: 3.3-5V Kart Boyutları: 20 mm x 20 mm Modül üzerinde PIC12F675 mikrodenetleyicisi bulunmaktadır. Vcc pinine
DC motorların sürülmesi ve sürücü devreleri
DC motorların sürülmesi ve sürücü devreleri Armatür (endüvi) gerilimini değiştirerek devri ayarlamak mümkündür. Endüvi akımını değiştirerek torku (döndürme momentini) ayarlamak mümkündür. Endüviye uygulanan
TUŞ TAKIMI (KEYPAD) UYGULAMALARI
12. Bölüm TUŞ TAKIMI (KEYPAD) UYGULAMALARI Tuş Takımı (Keypad) Hakkında Bilgi Tuş Takımı Uygulaması-1 74C922 Tuş Takımı Enkoder Entegresi Tuş Takımı Uygulaması-2 (74C922 İle) Bu bölümde tuş takımı diğer
BÖLÜM 2 8051 Mikrodenetleyicisine Giriş
C ile 8051 Mikrodenetleyici Uygulamaları BÖLÜM 2 8051 Mikrodenetleyicisine Giriş Amaçlar 8051 mikrodenetleyicisinin tarihi gelişimini açıklamak 8051 mikrodenetleyicisinin mimari yapısını kavramak 8051
5.BÖLÜM ÇİZGİ İZLEYEN ROBOT
5.BÖLÜM ÇİZGİ İZLEYEN ROBOT Çizgi izleyen robot bu kitapta yer alan yapımı en kolay robottur. Robotlar hakkında temel bilgileri edinebilmek için çizgi izleyen robot uygulamasını yapmak yeterli olacaktır.
PIC MİKROKONTROLÖR TABANLI ADIM MOTORU KONTROLU
PIC MİKROKONTROLÖR TABANLI ADIM MOTORU KONTROLU Prof. Dr. Doğan İbrahim Yakın Doğu Üniversitesi, Bilgisayar Mühendisliği Bölümü, KKTC E-mail: [email protected] Tel: (392) 2236464 ÖZET Adım motorlarını (stepping
mikroc Dili ile Mikrodenetleyici Programlama Ders Notları / Dr. Serkan DİŞLİTAŞ
12. Motor Kontrolü Motorlar, elektrik enerjisini hareket enerjisine çeviren elektromekanik sistemlerdir. Motorlar temel olarak 2 kısımdan oluşur: Stator: Hareketsiz dış gövde kısmı Rotor: Stator içerisinde
ZM-2H2080 İki Faz Step. Motor Sürücüsü. Özet
ZM-2H2080 İki Faz Step Motor Sürücüsü Özet ZM-2H2080 iki faz, 4,6 ve 8 telli step motorlar için üretilmiştir. Yüksek frekanslı giriş sinyallerini kabul edebilecek şekilde donatılmıştır. Akım kararlılığı,
ZM-2H504 İki Faz Step. Motor Sürücüsü. Özet
ZM-2H504 İki Faz Step Motor Sürücüsü Özet ZM-2H504 iki faz, 4,6 ve 8 telli step motorlar için üretilmiştir. Yüksek frekanslı giriş sinyallerini kabul edebilecek şekilde donatılmıştır. Akım kararlılığı,
TURN-OFF DEVRESİ BASKI DEVRE ÇIKARMA
DEVRE ŞEMASI TURN-OFF DEVRESİ BASKI DEVRE ÇIKARMA Madde 1: Tüm elemanlar temin edilmelidir. Madde 2: Transistör, entegre gibi elemanların bacak isimleri katalogdan öğrenilmelidir. Madde 3: YERLEŞİM PLANI
GERİLİM REGÜLATÖRLERİ DENEYİ
GERİLİM REGÜLATÖRLERİ DENEYİ Regüleli Güç Kaynakları Elektronik cihazlar harcadıkları güçlere göre farklı akımlara ihtiyaç duyarlar. Örneğin; bir radyo veya amplifikatörün hoparlöründen duyulan ses şiddetine
YILDIZ TEKNIK ÜNİVERSİTESİ ELEKTRİK - ELEKTRONİK FAKULTESİ ELEKLTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ
YILDIZ TEKNIK ÜNİVERSİTESİ ELEKTRİK - ELEKTRONİK FAKULTESİ ELEKLTRONİK VE HABERLEŞME MÜHENDİSLİĞİ BÖLÜMÜ GEZGİN ROBOT UYGULAMASI ORHAN BEDİR ORHAN MERT Proje Danışmanı : Y.Doç.Dr. Tuncay UZUN İstanbul,
Analog Sayısal Dönüşüm
Analog Sayısal Dönüşüm Gerilim sinyali formundaki analog bir veriyi, iki tabanındaki sayısal bir veriye dönüştürmek için, az önce anlatılan merdiven devresiyle, bir sayıcı (counter) ve bir karşılaştırıcı
Arduino Uno ile Hc-Sr04 ve Lcd Ekran Kullanarak Mesafe Ölçmek
Arduino Uno ile Hc-Sr04 ve Lcd Ekran Kullanarak Mesafe Ölçmek 1 Adet Arduino Uno 1 Adet Hc-Sr04 Ultrasonik mesafe sensörü 1 Adet 16 2 Lcd Ekran 1 Adet Breadbord 1 Adet Potansiyometre 2 Ader led Yeteri
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Proje Adı Proje No
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Proje Adı Proje No Işık İzleyen Araba Projesi Proje No 2 Proje Raporu Adı, Soyadı, Öğrenci
Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı
Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı Sabit değerli pozitif gerilim regülatörleri basit bir şekilde iki adet direnç ilavesiyle ayarlanabilir gerilim kaynaklarına dönüştürülebilir.
DENEY 1. 7408 in lojik iç şeması: Sekil 2
DENEY 1 AMAÇ: VE Kapılarının (AND Gates) çalısma prensibinin kavranması. Çıkıs olarak led kullanılacaktır. Kullanılacak devre elemanları: Anahtarlar (switches), 100 ohm ve 1k lık dirençler, 7408 entegre
Sensörler. Yrd.Doç.Dr. İlker ÜNAL
Sensörler Yrd.Doç.Dr. İlker ÜNAL Optokuplör Optokuplör kelime anlamı olarak optik kuplaj anlamına gelir. Kuplaj bir sistem içindeki iki katın birbirinden ayrılması ama aralarındaki sinyal iletişiminin
Arduino nedir? Arduino donanım ve yazılımın kolayca kullanılmasına dayalı bir açık kaynak elektronik platformdur.
Arduino nedir? Arduino donanım ve yazılımın kolayca kullanılmasına dayalı bir açık kaynak elektronik platformdur. Açık kaynak nedir? Açık kaynak, bir bilgisayar yazılımının makina diline dönüştürülüp kullanımından
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Proje Adı Proje No
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Proje Adı Proje No IŞIĞI TAKİP EDEN KAFA-PROJE 2 Proje Raporu Adı, Soyadı, Öğrenci Numarası
ZM-2H606 İki Faz Step. Motor Sürücüsü. Özet
ZM-2H606 İki Faz Step Motor Sürücüsü Özet ZM-2H606 iki faz, 4,6 ve 8 telli step motorlar için üretilmiştir. Yüksek frekanslı giriş sinyallerini kabul edebilecek şekilde donatılmıştır. Akım kararlılığı,
T.C. KARADENİZ TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ÇİZGİ İZLEYEN ROBOT BİTİRME ÇALIŞMASI
T.C. KARADENİZ TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ÇİZGİ İZLEYEN ROBOT BİTİRME ÇALIŞMASI BİLAL OKAN İÇMEZ 179938 ŞAFAK GENÇER 209131 BAHAR-2011 TRABZON T.C.
Şekil 5-1 Frekans modülasyonunun gösterimi
FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim
DENEY-2. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ
DENEY-2 SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ 31 DENEY 2-1: YEDİ SEGMENT GÖSTERGE ÜZERİNDE VERİ GÖRÜNTÜLEME AMAÇ: Mikrodenetleyicinin portuna
ASENKRON MOTORLARA YOL VERME METODLARI
DENEY-6 ASENKRON MOTORLARA YOL VERME METODLARI TEORİK BİLGİ KALKINMA AKIMININ ETKİLERİ Asenkron motorların çalışmaya başladıkları ilk anda şebekeden çektiği akıma kalkınma akımı, yol alma akımı veya kalkış
DOKUMANLAR
DOKUMANLAR https://www.pickat.org Bu belgeyi yukarıdaki karekodu telefonunuza taratarak veya aşağıdaki linkten indirebilirsiniz. Link sürekli güncellenmektedir. https://drive.google.com/file/d/1wyi3ejzvge9vbu0ujklajnsjukbfldv/view?usp=sharing
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı
ROBOTECH-10 ARDUINO UYGULAMA KARTI. SENSÖR ve ROBOT TEKNOLOJİLERİ GELİŞTİRME KARTI
ROBOTECH-10 ARDUINO UYGULAMA KARTI SENSÖR ve ROBOT TEKNOLOJİLERİ GELİŞTİRME KARTI 1. Genel Tanım Robotech-10 kartı, Teknik okullarda, üniversitelerde ve robot kulüpleri olan liseler ile bu işi hobi olarak
Geçmiş yıllardaki vize sorularından örnekler
Geçmiş yıllardaki vize sorularından örnekler Notlar kapalıdır, hesap makinesi kullanılabilir, öncelikle kağıtlardaki boş alanları kullanınız ve ek kağıt gerekmedikçe istemeyiniz. 6 veya 7.ci sorudan en
Elif İLİKSİZ. Keziban TURAN. Radio Frekanslarla Hareket Eden Araç
Elif İLİKSİZ Keziban TURAN Radio Frekanslarla Hareket Eden Araç Mayıs 2016 İÇİNDEKİLER ALICI ALICI MEKANİZMASI VERİCİ MEKANİZMASI MALZEMELER MEKANİK KISIM ELEKTRONİK KISIM YAZILIM Robotumuzun adı: Radio
Doğru Akım Devreleri
Doğru Akım Devreleri ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için elektromotor kuvvet (emk) adı verilen bir enerji kaynağına ihtiyaç duyulmaktadır. Şekilde devreye elektromotor
KARABÜK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ PROJE : SUMO ROBOTU PROJE RAPORU
KARABÜK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ PROJE : SUMO ROBOTU PROJE RAPORU AYTUĞ DOĞANER 2014010226069 AHMET UYAR 2015010226045 PROJE DANIŞMANI: PROF.DR.AHMET DEMİR 1 İÇİNDEKİLER
Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.
DC AKIM ÖLÇMELERİ Doğru Akım Doğru akım, zamana bağlı olarak yönü değişmeyen akıma denir. Kısa gösterimi DA (Doğru Akım) ya da İngilizce haliyle DC (Direct Current) şeklindedir. Doğru akımın yönü değişmese
ROKART VER 3.1 AYRINTILI MONTAJ KILAVUZU MALZEME LİSTESİ. DEVRENİN MONTAJINDA KULLANILAN ARAÇLAR Lehim teli 25 40 watt havya Yankeski Maket bıçağı
ROKART VER 3.1 AYRINTILI MONTAJ KILAVUZU MALZEME LİSTESİ 16F628A L293D 7805 16 pin dip soket 18 pin dip soket Tek sıra erkek soket (Header) Kırmızı led Minik sarı ledler x 2 Minik yeşil ledler x 2 2 li
GENEL KULLANIM İÇİN SABİT AKIM LED SÜRÜCÜLERİ. Uygulama Notları ACG-D350/500/700/1000 UYGULAMA NOTLARI. 1. LED adedi
GENEL KULLANIM İÇİN SABİT AKIM LED SÜRÜCÜLERİ Uygulama Notları ACG D-Serisi sürücü devreleri düşük voltajla LEDleri sabit bir akımda çalıştırmak için ideal bir çözüm sunar. LEDlerin düşük voltajla çalıştığı,
Tek kararlı(monostable) multivibratör devresi
Tek kararlı(monostable) multivibratör devresi Malzeme listesi: Güç kaynağı: 12V dc Transistör: 2xBC237 LED: 2x5 mm standart led Direnç: 2x330 Ω, 10 K, 100 K Kondansatör: 100μF, 1000μF Şekildeki tek kararlı
DENEY 9-A : PIC 16F877 ve LM-35 ile SICAKLIK ÖLÇÜM UYGULAMASI
AMAÇ: DENEY 9-A : PIC 16F877 ve LM-35 ile SICAKLIK ÖLÇÜM UYGULAMASI 1- Mikrodenetleyici kullanarak sıcaklık ölçümünü öğrenmek EasyPIC7 setinde LM-35 kullanılarak analog giriş yaptırılması Sıcaklığın LCD
Deney 4: 555 Entegresi Uygulamaları
Deneyin Amacı: Deney 4: 555 Entegresi Uygulamaları 555 entegresi kullanım alanlarının öğrenilmesi. Uygulama yapılarak pratik kazanılması. A.ÖNBİLGİ LM 555 entegresi; osilasyon, zaman gecikmesi ve darbe
Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU
Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU ELEKTROMOTOR KUVVETİ Kapalı bir devrede sabit bir akımın oluşturulabilmesi için
PROJE RAPORU. Proje adı: Pedalmatik 1 Giriş 2 Yöntem 3 Bulgular 6 Sonuç ve tartışma 7 Öneriler 7 Kaynakça 7
PROJE RAPORU Proje Adı: Pedalmatik Projemizle manuel vitesli araçlarda gaz, fren ve debriyaj pedallarını kullanması mümkün olmayan engelli bireylerin bu pedalları yönetme kolu (joystick) ile sol el işaret
6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1
6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 Günümüzde kullanılan elektronik kontrol üniteleri analog ve dijital elektronik düzenlerinin birleşimi ile gerçekleşir. Gerilim, akım, direnç, frekans,
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı
ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA
ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA ARTOS7F1 Arıza Tespit Cihazı ve PC Osiloskop her tür elektronik kartın arızasını bulmada çok etkili bir sistemdir. Asıl tasarım amacı
Elektrik Devre Temelleri 3
Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini
Semboller : :Açma kapama alteri :Ate leme butonu :Yardımcı röle :Merkez kontak :Normalde açık kontak :Normalde kapalı kontak :UV.
ALEV MONİTÖRÜ 03A1 Uygulama Alev monitörleri, uygun alev elektrodu veya UV. fotosel ile birlikte, alevin belirli bir standardın altında olduğunu, yanmanın iyi olduğunu veya alevin söndüğünü haber verir.
YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri
YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri Sanayi fabrika otomasyonunda proximity (yaklasım) sensorler kullanılır. Porximity sensorler profesyonel yapıda cevre sartlarından
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. IŞIĞA DÖNEN KAFA Proje No:2
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ IŞIĞA DÖNEN KAFA Proje No:2 Proje Raporu ÖMER FARUK ŞAHAN 12068030 16.01.2013 İstanbul İÇİNDEKİLER
Gerilim beslemeli invertörler, akım beslemeli invertörler / 13. Hafta. Sekil-7.7 de endüktif yükte çalışan PWM invertör görülmektedir.
1 fazlı Gerilim Kaynaklı PWM invertörler (Endüktif yükte); Sekil-7.7 de endüktif yükte çalışan PWM invertör görülmektedir. Şekil-7.7 den görüldüğü gibi yükün endüktif olması durumunda, yük üzerindeki enerjinin
ENGELDEN KAÇARAK SESE YÖNELEN PALETLĐ ROBOT PROJESĐ ROBOTVOICETRACKTOWARDSFLEEFROM OBSTACLE. Ömer AYAN ÇANKIRI KARATEKĐN ÜNĐVERSĐTESĐ, ÇANKIRI
ENGELDEN KAÇARAK SESE YÖNELEN PALETLĐ ROBOT PROJESĐ ROBOTVOICETRACKTOWARDSFLEEFROM OBSTACLE Ömer AYAN ÇANKIRI KARATEKĐN ÜNĐVERSĐTESĐ, ÇANKIRI Burak YENER ÇANKIRI KARATEKĐN ÜNĐVERSĐTESĐ,ÇANKIRI Ramazan
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Işın Avcısı Proje 2.
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ Işın Avcısı Proje 2 Proje Raporu Kaan Tellioğlu - 12067006 16.01.2013 İstanbul 1 İÇİNDEKİLER
DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU
DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU 1.1. DENEYİN AMAÇLARI Ölçü aletleri, Breadboardlar ve DC akım gerilim kaynaklarını kullanmak Sayısal multimetre
İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü
İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü 00223 - Mantık Devreleri Tasarımı Laboratuar Föyleri Numara: Ad Soyad: Arş. Grv. Bilal ŞENOL Devre Kurma Alanı Arş. Grv. Bilal ŞENOL
1970 yılında ise şimdilerde kullandığımız her iki tarafada yöne hareket edebilen mouse un patentini almıştır.
NEDİR : Bilgisayar ekranındaki öğeleri(icon ları) seçme ve hareket ettirmemizi sağlayan bir giriş aygıtıdır. Mouseların üzerinde bir veya daha fazla tuş veya tekerlek bulunabilir. TARİHÇESİ : İlk fareyi
ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini
ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon
ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU
ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU İSMAİL KAHRAMAN-ŞEYMA ÖZTÜRK 200713151027 200513152008 Robot Kol Mekanizması: Şekildeki robot-insan benzetmesinden yola çıkarak, bel kısmı tekerlekli ve sağa-sola-ileri-geri
ALEV MONİTÖRÜ. ( 4 20 ma ) 03MA. 03MA Alev monitörünün uygulama alanları : 03MA Alev monitörünün yapısı : Özellikler :
ALEV MONİTÖRÜ ( 4 20 ma ) 03MA 03MA Alev monitörünün uygulama alanları : Brülörlerde alev denetimi Ultraviyole fotoseller ile alev izlemek için. Yüksek gerilim hatlarında korona tespit etmek için. Yarı
Şekil1. Geri besleme eleman türleri
HIZ / KONUM GERİBESLEME ELEMANLARI Geribesleme elemanları bir servo sistemin, hızını, motor milinin bulunduğu konumu ve yükün bulunduğu konumu ölçmek ve belirlemek için kullanılır. Uygulamalarda kullanılan
Elektrik Motorları ve Sürücüleri
Elektrik Motorları ve Sürücüleri Genel Kavramlar Motor sarımı görüntüleri Sağ el kuralı bobine uygulanırsa: 4 parmak akım yönünü Başparmak N kutbunu gösterir N ve S kutbunun oluşumu Manyetik alan yönü
Erzurum Teknik Üniversitesi RobETÜ Kulübü Robot Eğitimleri. ARDUİNO EĞİTİMLERİ I Arş. Gör. Nurullah Gülmüş
Erzurum Teknik Üniversitesi RobETÜ Kulübü Robot Eğitimleri ARDUİNO EĞİTİMLERİ I Arş. Gör. Nurullah Gülmüş 29.11.2016 İÇERİK Arduino Nedir? Arduino IDE Yazılımı Arduino Donanım Yapısı Elektronik Bilgisi
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 2 Deney Adı: Ohm-Kirchoff Kanunları ve Bobin-Direnç-Kondansatör Malzeme Listesi:
Gerçek Zaman Kontrollü Sumo Robot Tasarımı ve Uygulaması
UOS 2008 / Teknik Eğitim Fakülteleri VII. Öğrenci Sempozyumu 1 Gerçek Zaman Kontrollü Robot Tasarımı ve Uygulaması Gökhan TURAN 1 Tülay ÖZDEMİR 2 İsmail ÖZKAYA 3 [email protected] [email protected]
ELEKTRİKLİ KOMPRESÖR KILAVUZU
ELEKTRİKLİ KOMPRESÖR KILAVUZU Desteklenen Cihazlar: EWXH-036-8 Bölüm 1 Giriş 1.1 Genel Bakış Kılavuz ELEKTRİKLİ KOMPRESÖRÜ tanıtır. Kompresörü kullanmadan once kılavuzu dikkatlice okuyunuz. Eğer sorunuz
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ Amaç: Bu laboratuvarda, yüksek giriş direnci, düşük çıkış direnci ve yüksek kazanç özellikleriyle
13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ
13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye
DELTA PLC EĞİTİM SETİ KİTAPÇIĞI
DELTA PLC EĞİTİM SETİ KİTAPÇIĞI Beti Delta PLC Eğitim Seti üzerinde kullanılan donanımlar Delta marka DVP20SX211T Model PLC DVP16SP11T Genişleme yuvası DOP-B07S411 7 Operatör Paneli PLC CPU sunu üzerindeki
HD710 ISI KONTROLLÜ RÖLE MONTAJ KILAVUZU MALZEME LİSTESİ
HD710 ISI KONTROLLÜ RÖLE MONTAJ KILAVUZU MALZEME LİSTESİ AÇIK DEVRE ŞEMASI BASKI DEVRESİ MONTAJ İŞLEM BASAMAKLARI 1. Poşetten çıkan malzemelerinizi, malzeme listesine göre kontrol ediniz. Elinizdeki her
Adres Yolu (Address Bus) Bellek Birimi. Veri Yolu (Databus) Kontrol Yolu (Control bus) Şekil xxx. Mikrodenetleyici genel blok şeması
MİKRODENETLEYİCİLER MCU Micro Controller Unit Mikrodenetleyici Birimi İşlemci ile birlikte I/O ve bellek birimlerinin tek bir entegre olarak paketlendiği elektronik birime mikrodenetleyici (microcontroller)
idea Kontrol Kartı (idea Board jv2.1) Kullanım Kılavuzu
idea Kontrol Kartı (idea Board j) Kullanım Kılavuzu 1 Genel Bakış idea (Board) Kontrol Kartı robotbilim ve mekatronik uygulamalar geliştirmek için sizlere yeni bir dünyanın kapılarını aralıyor! Bu kontrol
ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ
Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölüm Başkanı Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Direnç,
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Diyotlu Doğrultucu Uygulamaları
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİKELEKTRONİK LABORATUARI (LAB I) DENEY 6 Deney Adı: Diyotlu Doğrultucu Uygulamaları Öğretim Üyesi: Yard. Doç. Dr. Erhan
DOĞRULTUCULAR VE REGÜLATÖRLER
Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı DOĞRULTUCULAR VE REGÜLATÖRLER 1. Deneyin Amacı Yarım
Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş
Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Analog - Dijital Dönüştürücülerin ADC0804 entegre devresi ile incelenmesi Giriş Sensör ve transdüser çıkışlarında genellikle
DENEY-7. SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ
DENEY-7 SABANCI ATL ÖĞRETMENLERİNDEN YAVUZ AYDIN ve UMUT MAYETİN'E VERDİKLERİ DESTEK İÇİN TEŞEKKÜR EDİYORUZ MİKRODENETLEYİCİLERDE ANALOG DİJİTAL DÖNÜŞTÜRÜCÜ Doğada bulunan tüm sistemler analog düzendedir.
PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,
PWM DOĞRULTUCULAR PWM Doğrultucular AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde, - elektronik balastlarda, - akü şarj sistemlerinde, - motor sürücülerinde,
LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ
LOJİK DEVRELER-I III. HAFTA DENEY FÖYÜ 3 Bitlik Bir Sayının mod(5)'ini Bulan Ve Sonucu Segment Display'de Gösteren Devrenin Tasarlanması Deneyin Amacı: 3 bitlik bir sayının mod(5)'e göre sonucunu bulan
DENEY-4 WHEATSTONE KÖPRÜSÜ VE DÜĞÜM GERİLİMLERİ YÖNTEMİ
DENEY- WHEATSTONE KÖPÜSÜ VE DÜĞÜM GEİLİMLEİ YÖNTEMİ Deneyin Amacı: Wheatson köprüsünün anlaşılması, düğüm gerilimi ile dal gerilimi arasındaki ilişkinin incelenmesi. Kullanılan Alet-Malzemeler: a) DC güç
KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ
KARAMANOĞLU MEHMETBEY ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ Elektrik Makinaları II Laboratuvarı DENEY 3 ASENKRON MOTOR A. Deneyin Amacı: Boşta çalışma ve kilitli rotor deneyleri yapılarak
DC Motor ve Parçaları
DC Motor ve Parçaları DC Motor ve Parçaları Doğru akım motorları, doğru akım elektrik enerjisini dairesel mekanik enerjiye dönüştüren elektrik makineleridir. Yapıları DC generatörlere çok benzer. 1.7.1.
Şekil 1. Darbe örnekleri
PWM SOKET BİLGİ KİTAPÇIĞI PWM(Darbe Genişlik Modülasyonu) Nedir? Darbe genişlik modülasyonundan önce araçlardaki fren sistemlerinden bahsetmekte fayda var. ABS frenler bilindiği üzere tekerleklerin kızaklanmasını
SÜLEYMAN DEMİREL ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ MEKATRONİK EĞİTİMİ BÖLÜMÜ BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR
BİLGİSAYAR DESTEKLİ İMALAT SERVO VE STEP MOTORLAR Step (Adım) Motorlar Elektrik enerjisini açısal dönme hareketine çeviren motorlardır. Elektrik motorlarının uygulama alanlarında sürekli hareketin (fırçalı
DENEY 21 IC Zamanlayıcı Devre
DENEY 21 IC Zamanlayıcı Devre DENEYİN AMACI 1. IC zamanlayıcı NE555 in çalışmasını öğrenmek. 2. 555 multivibratörlerinin çalışma ve yapılarını öğrenmek. 3. IC zamanlayıcı anahtar devresi yapmak. GİRİŞ
MİLLİ SAVUNMA ÜNİVERSİTESİ KARA HARP OKULU DEKANLIĞI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS TANITIM BİLGİLERİ
MİLLİ SAVUNMA ÜNİVERSİTESİ KARA HARP OKULU DEKANLIĞI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Mikroişlemciler ve Assembly Dili Ders Saati (T+U+L) Kredi AKTS 4
ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ
TC SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL
Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız.
ÖLÇME VE KONTROL ALETLERİ Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız. Voltmetre devrenin iki noktası arasındaki potansiyel
Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?
S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt
HT 300 SET LCD li Kablosuz Oda Termostatı Kontrolleri
HT 300 SET LCD li Kablosuz Oda Termostatı Kontrolleri HT 300 SET kablosuz oda termostatıdır. Kullanıcı oda termostatını ihtiyacı doğrultusunda ayarlayıp daha konforlu ve ekonomik bir ısınma sağlar. Dokunmatik
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN
