MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ



Benzer belgeler
Faz kavramı. Kristal yapılı malzemelerin iç yapılarında homojen ve belirli özellikler gösteren bölgelere faz (phase) adı verilir.

DEMİR KARBON FAZ DİYAGRAMI

FAZ ve DENGE DİYAGRAMLARI

Faz ( denge) diyagramları

şeklinde, katı ( ) fazın ağırlık oranı ise; şeklinde hesaplanır.

FAZ DİYAGRAMLARI ve DÖNÜŞÜMLERİ HOŞGELDİNİZ

Faz kavramı. Kristal yapılı malzemelerin iç yapılarında homojen ve belirli özellikler gösteren bölgelere faz (phase) adı verilir.

Demir-Karbon Denge Diyagramı

MALZEME BİLGİSİ DERS 7 DR. FATİH AY.

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Demir-Karbon Denge Diyagramı

Faz Dönüşümleri ve Faz (Denge) Diyagramları

MALZEME BİLİMİ VE MÜHENDİSLİĞİ. Bölüm 9 Katı Çözeltiler ve Faz Diyagramları

MMM291 MALZEME BİLİMİ

CALLİSTER FAZ DİYAGRAMLARI ve Demir-Karbon Diyagramı

Malzemeler yapılarının içerisinde, belli oranlarda farklı atomları çözebilirler. Bu durum katı çözeltiler olarak adlandırılır.

BMM 205 Malzeme Biliminin Temelleri

Faz kavramı. Kristal yapılı malzemelerin iç yapılarında homojen ve belirli özellikler gösteren bölgelere faz (phase) adı verilir.

Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ 1

TEKNOLOJİSİ--ITEKNOLOJİSİ. Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ

İmal Usulleri. Döküm Tekniği

FAZ DİYAGRAMLARI ve DÖNÜŞÜMLERİ HOŞGELDİNİZ

Gaz. Gaz. Yoğuşma. Gizli Buharlaşma Isısı. Potansiyel Enerji. Sıvı. Sıvı. Kristalleşme. Gizli Ergime Isısı. Katı. Katı. Sıcaklık. Atomlar Arası Mesafe

CALLİSTER FAZ DÖNÜŞÜMLERİ

Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği

İKİLİ ÖTEKTİK FAZ DİYAGRAMLARI

FAZ DİYAGRAMLARI. Öğrenim Amaçları

KTÜ, Metalurji ve Malzeme Mühendisliği Bölümü

Chapter 9: Faz Diyagramları

ÇÖKELME SERTLEŞTİRMESİ

Faz kavramı. Kristal yapılı malzemelerin iç yapılarında homojen ve belirli özellikler gösteren bölgelere faz (phase) adı verilir.

MALZEME BİLGİSİ DERS 9 DR. FATİH AY.

Fe-C ve Fe-Fe 3 C FAZ DİYAGRAMLARI

3. MALZEME PROFİLLERİ (MATERİALS PROFİLES) 3.1. METAL VE ALAŞIMLAR. Karbon çelikleri (carbon steels)

BMM 205 Malzeme Biliminin Temelleri

Fe-C Faz Diyagramı. Dökümhane Eğitim Projesi Dokumhane.net 2016

Döküm Prensipleri. Yard.Doç.Dr. Derya Dışpınar. İstanbul Üniversitesi

Fiziksel özellikler nelerdir? Mekanik Elektriksel Termal Manyetik Optik

ÇELİKLERİN VE DÖKME DEMİRLERİN MİKROYAPILARI

Isıl işlem, katı haldeki metal ve alaşımlarına belirli özellikler kazandırmak amacıyla bir veya daha çok sayıda, yerine göre birbiri peşine uygulanan

Demirin Kristal Yapıları

BMM 205 Malzeme Biliminin Temelleri

Faz dönüşümünün gelişmesi, çekirdeklenme ve büyüme olarak adlandırılan iki farklı safhada meydana gelir.

PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ

FAZLAR ve DEMİR-SEMENTİT DİYAGRAMI TTT DİYAGRAMLARI ÇELİK ISIL İŞLEMLERİ KASIM 2011

FAZ DİYAGRAMLARI ve DÖNÜŞÜMLERİ HOŞGELDİNİZ

MALZEME BİLGİSİ. Katı Eriyikler

2. Sertleştirme 3. Islah etme 4. Yüzey sertleştirme Karbürleme Nitrürleme Alevle yüzey sertleştirme İndüksiyonla sertleştirme

Pratik olarak % 0.2 den az C içeren çeliklere su verilemez.

MALZEME BİLGİSİ. Katılaşma, Kristal Kusurları

ÇELİKLERİN ISIL İŞLEMLERİ. (Devamı)

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

METALLERDE KATILAŞMA HOŞGELDİNİZ

Bölüm 4: Kusurlar. Kusurlar

MUKAVEMET ARTIRICI İŞLEMLER

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

SInIrsIz KatI Erİyebİlİrlİk Faz DİyagramlarI (İkİlİ İzomorfİk Sİstemler)

BAZI ÖRNEKLER Soru 1 - Soru 2 -

MALZEME BİLİMİ (DERS NOTLARI)

DENEYİN ADI: Çeliklerin Isıl İşlemi. AMACI: Çeliklerde ısıl işlem yoluyla mikroyapı ve mekanik özelliklerin değişiminin öğretilmesi.

METALLERDE KATILAŞMA

BÖLÜM 3 DİFÜZYON (YAYINIM)

KTÜ, Metalurji ve Malzeme Mühendisliği Bölümü

Dökme Demirlerin Korozyonu Prof.Dr.Ayşegül AKDOĞAN EKER

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER

FAZ DİYAGRAMLARI. DERS NOTLARI Genel Kavramlar ve Tek Bileşenli Faz Diyagramları. İçerik

Boya eklenmesi Kısmen karışma Homojenleşme

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: PHASE DIAGRAMS. Dersin Kodu: MME 2006

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Mekanizma ve etkileyen faktörler Difüzyon

MALZEME BİLİMİ VE MÜHENDİSLİĞİ. Bölüm 10 Dağılım/Dispersiyon Sertleşmesi ve Ötektik Faz Diyagramları

METALİK MALZEMELERİN GENEL KARAKTERİSTİKLERİ BAHAR 2010

Ergime ve katılaşma 2/41

ÇÖKELME SERTLEŞTİRMESİ HOŞGELDİNİZ

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Faz Diyagramları

Çeliklerin Fiziksel Metalurjisi

Prof. Dr. HÜSEYİN UZUN KAYNAK KABİLİYETİ

MALZEME BİLGİSİ DERS 11 DR. FATİH AY.

Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ 1

Bölüm 9. Demir Karbon Alaşım Sistemi

Bölüm 4: Kusurlar. Kusurlar. Kusurlar. Kusurlar

ALUMİNYUM ALA IMLARI

FZM 220. Malzeme Bilimine Giriş

Demir Karbon Denge Diyagramı

MALZEME BİLİMİ (DERS NOTLARI)

ÇELİĞİN ISIL İŞLEMLERİ

Metallerde Özel Kırılganlıklar HASAR ANALİZİ

Isıl işlemler. Malzeme Bilgisi - RÜ. Isıl İşlemler

FAZ DİYAGRAMLARI ve DÖNÜŞÜMLERİ HOŞGELDİNİZ

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

BÖLÜM 4 KAYNAK METALURJİSİ

ONDOKUZ MAYIS ÜNİVERSİTESİ KİMYA MÜH. BÖLÜMÜ KML I LAB. ÜÇLÜ NOKTA SAPTANMASI DENEY FÖYÜ

ÇELİKLERİN SINIFLANDIRILMASI VE STANDART GÖSTERİMİ

Alaşımınbüyümesi: 2. durum. Katıda yine difüzyonyok: D k = 0

MMT444 Malzemelerde Simülasyon Termodinamik ve Kinetik

formülü zamanı da içerdiği zaman alttaki gibi değişecektir.

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN

MAL 201 FAZLAR ve DEMİR-SEMENTİT DİYAGRAMI TTT DİYAGRAMLARI ÇELİK ISIL İŞLEMLERİ KASIM 2016

MMT113 Endüstriyel Malzemeler 5 Metaller, Bakır ve Magnezyum. Yrd. Doç. Dr. Ersoy Erişir Güz Yarıyılı

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

Transkript:

MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MALZEME BİLİMİ -Fazlar - Yrd. Doç. Dr. Abdullah DEMİR

FAZ KAVRAMI Kristal yapılı malzemelerin iç yapılarında homojen ve belirli özellikler gösteren bölgelere faz (phase) adı verilir. Fazlar; bu atom düzenlerinden ve toplam iç yapıda bu fazların oluşturdukları tanelerden meydana gelir.

Sıvı çözeltide olduğu gibi, katı durumda da bir elementin atomları diğer bir elementin kafes yapısı içerisinde uygun bir yer bulup yerleşmesi ile katı çözelti meydana gelir. KATI ÇÖZELTİ Uygun yerler arayer veya yeralan (ikame) olabilir. Hume-rothery kuralı gerçekleşmişse tam ve sınırsız bir çözünme (karışma) sağlanabilir. Hatırlatma Atom yarıçaplarındaki farkın %15 ten az olması gerekir. İki elementinde aynı kristal yapıya sahip olması gerekir. Aynı elektronegatifliğe (elektron çekme kabiliyeti) sahip olmaları gerekir. Aynı valansa sahip olmaları gerekir. Yoğunluklarının birbirine yakın olması gerekir. Hume-Rothery kuralları: - Boyut faktörü - Kristal yapısı - Valans - Elektronegativite

Bir elemente diğer bir element karıştırılacak olursa, daima toplam iç enerji mimimum olacak şekilde yeni atom düzenleri meydana gelir.

SİSTEMDE ENERJİ Fazlar: İç enerjinin min. olmasını sağlayacak şekilde oluşurlar. Bir sistemde enerji durumu: Sıcaklık, kimyasal bileşim, basınç gibi değişkenler ile belirlenir. Eğer basınç sabit ise (atmosferik basınç) sistemin enerjisi, kimyasal bileşim ve sıcaklık tarafından belirlenir.

FAZ DİYAGRAMLARI Kimyasal bileşim ve sıcaklığa bağlı olarak belirli şartlarda hangi fazların stabil olduğu faz diagramları ile belirlenir. Fazların Özellikleri: Bir fazın her yerinde yapı ve atomik diziliş aynıdır. Bir faz kabaca her yerinde aynı kimyasal bileşim ve özelliklere sahiptir. Bitişik veya civar fazlar arasında kesin bir arayüzey vardır.

(a) Suyun 3 hali; gaz, sıvı ve katı. Her biri bir fazdır. (b) Su ve alkol; tam çözünme. (c) Tuz ve su; sınırlı çözünme. (d) Su ve yağ; hiç çözünmeme.

Çözünürlük ve Katı Çözeltiler Çözünürlük: Bir malzemenin bir miktarının ikinci bir malzemede ikincil faz oluşumuna sebep olmaksızın tamamen erimesidir. Sınırsız çözünürlük: Bir malzemenin diğer malzemede hiçbir zaman ikincil faz oluşturmaksızın çözünmesidir. Sınırlı çözünürlük: Çözücü malzemede sadece maksimum miktarda çökeltinin çözünmesidir. Kopolimer: İki veya daha fazla değişik tür monomerin özelliklerin karışması fikrinden hareketle birleşmesi ile oluşan polimerdir.

(a) (b) Sıvı Cu ve Ni, tam çözünür. Katı Cu ve Ni kristal yapıda rastgele yerlere yerleşmek suretiyle tam katı çözelti oluşturur. Katı Çözelti (c) Cu ve Zn alaşımları sınırlı çözünmeden dolayı %30 dan fazla Zn çözemez, ikinci faz bölgeleri oluşturur. 2. Faz

Katı eriyik mukavemetlendirmesi: Katıeriyik oluşturarak metalik malzemenin mukavemetinin artırılmasıdır. Dispersiyon mukavemetlendirmesi/sertleştirme: Metalik malzemelerin ultra-ince dispersiyonları ikincil faz olarak oluşturulması ile mukavemetlendirilmesidir.

Bakırın akma mukavemeti üzerine değişik alaşımların etkileri. Nikel ve çinko atomları bakır atomları ile yaklaşık aynı büyüklükte ama berilyum ve kalay oldukça farklı boyutlardadır. Atomik boyutlardaki farklar ve alaşımlama miktarındaki değişim katı-eriyik mukavemetlendirmesini artıracaktır.

Katı Eriyik Mukavemetlenmesi Cu-Ni sisteminde orijinal Cu kafesine bilinçli olarak Ni arayer atomları sokulduğu için, Cu-Ni alaşımı saf Cu dan daha yüksek dayanıma sahiptir. Cu-Zn sisteminde,%40 dan daha az çinko bakıra ilave edildiğinde, Zn yeralan atomu olarak davranır, Cu-Zn alaşımını mukavemetlendirir.

MİKROYAPIDA FAZLAR

İkili faz diyagramları: İki bileşenli sistemlerin faz diyagramları. Üçlü faz diyagramları: Üç bileşenli sistemin faz diyagramları. Izomorfoz faz diyagramları: Bileşenlerin limitsiz çözünürlük gösterdiği faz diyagramlarıdır. Likidüs sıcaklığı: Katılaşmada ilk katının oluşmaya başladığı sıcaklıktır. Solidüs sıcaklığı: Alt sıcaklıklarda, tüm sıvının tamamıyla katılaştığı sıcaklıktır.

GİBBS FAZ KURALI Gibbs faz kuralı Serbestlik derecesinin sayısını tanımlar veya fazın sıcaklık ve kompozisyonunu belirlemek için değişken sayılarını sabitleyen (2+C=F+P basınç ve sıcaklık değişebilir, 1+C=F+P basınç veya sıcaklık sabit) F-S diyagramı: Değişik sıcaklık ve basınç koşullarında fazların termodinamik kararlılığını tanımlar (tekli faz diyagramları gibi). Fazın Kompozisyonu Alaşımdaki her faz, fazdaki her elementin yüzdesi olarak ifade edilen bir kompozisyona sahiptir. Sabit bir bas basınç için geçerli olan Gibbs faz kuralı: F + P = C + 1 F: Serbestlik Derecesi C: Sistemdeki bileşenlerin sayısı P: Faz sayısı

GİBBS FAZ KURALI Bir sistemde bileşen ve faz sayısının belirli olması durumunda serbest değişken olup olmadığını belirlemede kullanılan bir kuraldır. Basıncın değişken bir parametre olması durumu F = C P + 2 Basıncın sabit olması durumu (en çok kullanılan bağıntı) Serbest değişken sayısı F = C P + 1 Bileşen sayısı Faz sayısı

Likidüs çizgisi Sıvı T B T1 Sıvı T S + T, Sıcaklık T A S + (katı) Solidüs çizgisi T2 T3 (katı) Xs X1 X Kimyasal bileşim: Kompozisyon X 1 kompozisyonuna sahip alaşım: T1 de: S T2 de: S+ T3 de: fazlarına sahiptir.

b noktasında: P=2 (2 Faz: sıvı ve ) C=2 (Bileşenler: A ve B) F = 2 2 + 1 = 1 Tek değişken: Sıcaklık a noktasında: P=2 (2 Faz: sıvı ve ) C=2 (Bileşenler: A ve B) F = 2 2 + 1 = 1 Tek değişken: Sıcaklık c noktasında: P=1 (1 Faz: sıvı) C=2 (Bileşenler: A ve B) F = 2-1 + 1 = 2 Değişkenler: Sıcaklık ve bileşim.

GİBBS KURALI VE FAZ DİYAGRAMLARI Gibbs kuralı kullanılarak elde edilen soğuma diyagramları, faz diyagramlarını oluşturmada önemli bir araçtır.

İki faz bölgesinde serbestlik derecesi 1 olduğu için sıcaklık belirlendiğinde iki fazın kompozisyonu daima sabitleştirilir. Bağ çizgileri tek fazlı bölgede kullanılmaz. Bağ çizgisinin uçları dengedeki 2 fazın kompozisyonlarını gösterir.

İkili faz diyagramı: İki fazlı bölgede alaşım varsa istenen sıcaklıktaki alaşım kompozisyonunu bir bağ çizgisi ile belirleyebiliriz. Bu Gibbs faz kuralının sonucudur.

ERİME NOKTASINDA GİBBS KURALI Diagramda saf element için erime noktasındaki (T A ) durum: P = 2 (sıvı ve olarak 2 faz) C = 1 (Tek bileşen A) F=1-2+1=0 TA T Sıvının soğuması Katılaşma aralığı Basınç sabit, kimyasal bileşimde değişmediği için tek değişken olan sıcaklıktır. Ancak buda erime/katılaşma boyunca sıcaklık sabittir-serbest değişken bulunmaz. nın soğuması t

TERAZİ/LEVYE KURALI Faz diyagramları: Hangi sıcaklık ve bileşimde hangi fazlar var? Bu fazların bileşimi nedir? Faz diagramında, fazların oranlarını ve bileşimlerini bulmak için terazi/levye kuralı (lever rule) kullanılır. Alaşımlarda var olan fazların nispi oranları hesaplanabilir. Tek faz bölgesindeki fazın oranı %100 dür. Buna karşın 2 faz bölgesinde her fazın oranını hesaplamak gerekmektedir.

S x bileşiminin T sıcaklığında bileşim oranları: T x-a b-x S+ S b x % 100 b a a b x a % 100 b a x S% % 100%

ÇÖZÜNME DURUMUNA GÖRE Tam çözünme: Bir elementin diğeri içerisinde sınırsız çözünebilmesi. Hiç çözünmeme: Bir elementin diğeri içinde hiç çözünememesi. Sınırlı çözünme: Bir elementin diğeri içerisinde kısıtlı çözünebilmesi. a) b) c)

ÖRNEK Cu-%40 Ni alaşımı için aşağıdaki sıcaklıklarda serbestlik derecelerini bulunuz (a) 1300 o C, (b) 1250 o C ve (c) 1200 o C. %40 Ni den geçen çizgi alaşımın kompozisyonunu gösterir: 1300 o C de sadece sıvı mevcuttur. Sıvı %40 Ni içerir. 1270 o C de iki faz mevcuttur. Sıvı %37 Ni ve katı %50 Ni içerir. 1250 o C de yine iki faz mevcuttur. Sıvı %32 Ni ve katı %45 Ni. 1200 o C de sadece katı vardır. Katı %40 Ni içerir.

ÖRNEK Cu-%40 Ni alaşımı için aşağıdaki sıcaklıklarda serbestlik derecelerini bulunuz (a) 1300 o C, (b) 1250 o C ve (c) 1200 o C. Cu - Ni faz diyagramlarında Basınç sabit olduğu için eşitlik: (1 + C = F + P) olur. (a) 1300 o C, P=1 (Sadece sıvı faz), C=2 (Cu ve Ni) Böylece; 1 + C = F + P 1 + 2 = F + 1 F = 2

ÖRNEK (b) 1250 o C, İki faz mevcut; P = 2, (Sıvı ve katı) Cu ve Ni den dolayı; C = 2: 1 + C = F + P 1 + 2 = F + 2 F = 1 (c) 1200 o C, P = 1, sadece katı faz; C = 2, (Cu ve Ni). 1 + C = F + P 1 + 2 = F + 1 F = 2

ÖRNEK 40% Ni kompozisyonunda dikey çizgi çizilir; -1300 o C: Sadece sıvı faz mevcut. -1270 o C: 2 Faz mevcut: Sıvı ve katı. Sıvı (S) faz 37% Ni, Katı () faz 50% Ni konsantrasyonuna sahip. -1250 o C: İki faz mevcut. Sıvıda (L) 32% Ni, katıda() 45% Ni mevcut -1200 o C: Sadece katı () mevcut; 40% Ni konsantrasyonuna sahiptir.

100 gr ağırlığına sahip Cu-40% Ni alaşımı, 1250 o C de (a) hangi fazlara sahiptir? (b) bu fazlarda ağırlığı nedir?

Cu-%40 Ni alaşımında1250 C de alfa ve L fazının miktarlarını hesaplayınız? Cu-Ni sisteminde 1250 C deki bağ çizgisi. Sadece 2 faz mevcuttur: Sıvı faz (L) v katı faz (). x ; nın oranı olacak olursa; x L = 1 - x. Sıvının oranı x = (40-32)/(45-32) = 8/13 = 0.62 = % 62 x L = 1-x = 1-0.62 = 0.38= % 38 fazının ağırlığı; 100 gr x 0.62 = 62 gr Sıvının ağırlığı; 100 gr x 0.38 = 38 gr.

TAM ÇÖZÜNME Sıcaklık S, Sıvı T B Sıvı Tamamen sıvı faz Sıvı % 90 Sıvı + %10 T A S+, Katı %60 Sıvı + %40 %10 Sıvı + %90 %B X Tamamen katı faz. : %x oranında B elementi içerir.

HİÇ ÇÖZÜNMEME 1.Alaşım 2.Alaşım 3.Alaşım Ötektik Sıcaklık T A 1 2 A+S 3 4 5 S 1 2 3 A+B S+B %B 1 2 3 4 5 X 1 X 2 X 3 Ötektik Bileşim T B 1 2 3 4 5 1 Sıvı Sıvı Sıvı Sıvı A Sıvı A Proötektik A 2 3 Ötektik Yapı Ötektik A Ötektik B 1 2 3 4 5 Sıvı B A Kristalleri (Açık renk) B Kristalleri (Koyu renk) Ötektik A Ötektik B Proötektik B Ötektik A Ötektik B

ÖTEKTİK YAPI Ötektik reaksiyon; sıvı fazın ani olarak iki ayrı katı faza dönüşmesi reaksiyonudur. Ötektik reaksiyon: Sıvı Soğuma (Katı) + (Katı) Ötektik nokta Ötektik Sıcaklık Ötektik noktadan uzaklaştıkça, ötektik reaksiyon, dönüşüm öncesi var olan sıvı faz kadar gerçekleşir.

Katılaşma sırasında çekirdeklenme birçok noktadan başlar. A kristal taneleri (Açık renk) Bu çekirdekler tabaka şeklinde büyürler. Birbirlerine temas etmeleri ile ince ve tabakalı yapı meydana gelir. Çekirdeklenme ne kadar çok noktadan meydana gelmişse yapı o kadar ince tabakalı (veya küçük taneli) olacaktır. B kristal taneleri (Koyu renk) F ö = C P + 1 = 2 3 + 1 = 0

ÖTEKTİK YAPI Ötektik reaksiyon ile oluşan katı faz. Lamelli (tabakalar şeklinde paketlenmiş) Nodüler (matris faz içerisinde küresel diğer fazın bulunması) Lamelli yapıda iki katı faz birbiri üzerine paketlenmiş tabakalar şeklindedir. Her bir tabaka bir tanedir. 1 Lamelli Yapı 2 Nodular Yapı

SINIRLI ÇÖZÜNME Alaşım sistemlerinin çoğunda görülür. B elementi A nın içerisinde sınırlı olarak çözünebilir. Oda sıcaklığında X 1 kadar, sıcaklık arttıkça (ötektik sıcaklıkta) X 2 kadar çözünebilir. Sıcaklıkla ısıl aktivasyon artar ve boşluk miktarı artar.

Aynı şekilde A elementi B içerisinde sınırlı miktarda çözünebilir. Oda sıcaklığında X 3 kadar, sıcaklık arttıkça (ötektik sıcaklıkta) X 4 kadar çözünebilir. (Sıcaklıkla ısıl aktivasyon artar ve boşluk miktarı artar).

fazı: Katı Çözelti fazı: 2. Faz ve Katı çözelti Çözeltiye giremeyen yabancı atomlar kendilerinin çoğunlukta olduğu yeni atom düzeni (faz) oluştururlar. A nın çoğunlukta olduğu katı çözelti fazını oluşturur, B nin çoğunlukta olduğu katı çözelti fazını oluşturur. Fiziksel ve kimyasal özellikleri farklı olan iki katı faz ve aynı yapıda bir arada bulunabilir.

Ötektik Bileşim Ötektik altı bileşim (hypo) X ö Ötektik üstü bileşim (hyper)

T A S Ötektik Bileşim T B Ötektik Sıcaklık +S X ö S+ + X 1 X 2 X 4 X 3 %B

FAZ DİYAGRAMLARI: Sınırlı Çözünme T A T ö I II III IV 1 S 2 1 2 1 3 +S S+ 1 2 3 3 2 T B 1 2 3 I II III IV 1 2 3 1 2 3 1 2 3 4 4 5 X 1 X 2 4 X 3 3 X ö + %B 4 ( dan ayrışan) 4 5 4 Ötektik öncesi Ötektik Ötektik öncesi Ötektik

ÖTEKTOİD REAKSİYON Soğuma sırasında bir katı fazdan iki ayrı katı fazın oluşması reaksiyonudur. Ötektoid reaksiyon: (Katı) Soğuma (Katı) + (Katı)

T A S T ötektik +S S+ T B T ötektoid 1 2 + + X ötektoid %B X ötektik

PERİTEKTİK VE PERİTEKTOİD REAKSİYON Kısmi çözünürlük gösteren alaşım sistemlerinde elementlerin ergime sıcaklıklarının çok farklı olması durumunda meydana gelen faz reaksiyonlarıdır. Peritektik reaksiyon: Sıvı + (Katı) Soğuma (Katı) Peritektoid reaksiyon: (Katı) + (Katı) Soğuma (Katı)

Peritektik reaksiyon: Sıvı + (Katı) Soğuma (Katı) Peritektoid reaksiyon: (Katı) + (Katı) Soğuma (Katı)

ARAFAZLAR VE METALLERARASI BİLEŞİKLER Faz diyagramlarının birden fazla reaksiyon içermeleri durumunda görülür. Arafazın tekbir kimyasal bileşik olması durumunda metaller arası fazlar söz konusudur. Metaller arası fazlar çok sert ve gevrek malzemelerdir. Arafazlar Metallerarası bileşikler

DEMİR KARBON FAZ DİYAGRAMI Sıcaklık ( o C) T ötektik T ötektoid Fe 3 C: Sementit : Ferrit : Ostenit %C: ağırlık olarak

ÖRNEK 1150 o C, 920 o C, 750 o C, 450 o C ve 300 o C lerde yatay çizgiler vardır. 1150 o C: δ + L γ, peritektik 920 o C: L 1 γ + L 2 a monotektik 750 o C: L γ + β, a ötektik 450 o C: γ α + β, a ötektoid 300 o C: α + β μ or a peritektoid Yukarıda verilen faz diyagramında bulunan 3 adet farklı faz reaksiyonlarını tespit ediniz. (c)2003 Brooks/Cole, a division of Thomson Learning, Inc

DEMİR KARBON FAZ DİYAGRAMI Sıcaklık ( o C) T ötektik T ötektoid Fe 3 C: Sementit : Ferrit : Ostenit %C: ağırlık olarak

DEMİR SEMENTİT FAZ DİYAGRAMI %C(sementit) C 3xFe C 12 3x55 12 6.67 Sementit; demir karbon faz diyagramında metallerarası bir bileşiktir. Pratikte Fe-C diyagramında sementite kadar olan bölge önemlidir. Sementit; %6,67 C konsantrasyonuna sahiptir. Atom ağrılıkları dikkate alındığında; Fe:56, C:12.

Fe/C ve Fe/Fe3C FAZ DİYAGRAMI

Fe/Fe3C FAZ DİYAGRAMI Sıcaklık ( o C) 1148 o C T ötektik T ötektoid Fe 3 C: Sementit : Ferrit : Ostenit : Delta demir %C: ağırlık olarak

DEMİR SEMENTİT FAZ DİYAGRAMI +S (ostenit) +S 1148 o C S T ötektik Sementit : Fe 3 C Ferrit : Perlit : + Fe 3 C Ostenit: Delta demir: Ledeburit. Perlit Ledeburit T ötektoid Çelik Dökme demir %C: ağırlık olarak

ÇELİK İÇİN ÖNEMLİ SICAKLIKLAR A1 sıcaklığı: Ötektoid reaksiyon sıcaklığı A2 sıcaklığı: Küri sıcaklığı (769 o C). Bu sıcaklıkta manyetiklik kaybolur. A3 sıcaklığı: Ötektoid altı çeliklerde tam ostenit alanına geçiş sıcaklığı (C oranına bağlı olarak değişir) Acm sıcaklığı: Ötektoid üstü çeliklerde tam ostenit alanına geçiş sıcaklığı (C oranına bağlı olarak değişir) A 3 + A cm A 1 +Fe 3 C +Fe 3 C

ÇELİK Çelik; %2 ye kadar C içeren demir alaşımına verilen isimdir. Otektoit çelik; %0,8 C içeren çeliğe ötektoit çelik adı verilir. Bu kompozisyonun altındaki çeliklere ötektoit altı çelikler (C oranı < %0,8), bu bileşimden daha fazla C içeren çeliklere ötektoid üstü çelikler (C oranı > %0,8) adı verilir. C oranının %2 yi geçmesi durumunda malzeme artık çelik olarak değil, dökme demir (cast iron) olarak adlandırılır.

ÇELİK Perlit: Ötektoit reaksiyon sonrası -Fe ve Fe 3 C tarafından oluşturulan özel yapıya verilen isimdir. C miktarı %0,8 iken (ötektoit çelik) %100 perlitik yapı elde edilir. C miktarı sıfıra doğru azaldıkça, perlit azalır, ferrit (-Fe) artar. C miktarı %0,8 in üzerinde arttıkça, perlit miktarı azalır, sementit miktarı artar. (ferrit) taneleri (Açık renk) Sementit taneleri (Koyu renk)

I II III I II III + 1 2 3 4 Perlit 1 2 1 2 3 4 +Fe 3 C Sementit 5 3 5 Otektoit Bileşim Perlit Perlit

+ + Perlit %100 Perlit γ +Fe 3 C Perlit +Fe 3 C Otektoit Bileşim

DÖKME DEMİR C içeriği %2 den daha fazla olan demir-karbon alaşımıdır. Artan karbon oranı yapıyı kırılgan hale getirir. Sıvı fazdan katılaşması sırasında soğuma hızlarına bağlı olarak farklı iç yapılara sahip olabilir. Hızlı soğuma: Beyaz dökme demir. Yavaş soğuma: Kır dökme demir (ferritik, ferritik/perlitik, perlitik). Temper dökme demir: BDD in tavlanması ile. Küresel dökme demir: Mg, Ce gibi grafiti küreselleştiren alaşım elementleri katılması ile.

BEYAZ DD Katılaşma (Sıvı fazdan katıya dönüşme) sırasında soğuma hızı yüksek tutulursa Beyaz DD elde edilir. Bu yapıda sementit baskındır dolayısıyla sert ve gevrektir.

KIR DÖKME DEMİR Sıvı fazdan çok yavaş soğuma ile karbon difüzyonla bir araya toplanarak lamelli bir yapı oluşturur. Ferritik kır dökme demir : Çok yavaş soğuma hızı. Ferritik-perlitik kır dökme demir : Biraz daha hızlı olması durumunda. Perlitik kır dökme demir: Daha hızlı olması durumunda oluşur. Perlit oranı arttıkça dayanım artar. Tüm durumlarda süneklik çok kötüdür. Lamelli yapıda keskin uçların oluşturduğu çentik etkisi nedeniyle mekanik özellikler çok kötüdür. Grafit Lameller Perlitik DD Ferritik DD Ferritik-Perlitik DD Perlit Artan Soğuma Hızı

KIR DÖKME DEMİR Grafitin dayanımı demirin yanında ihmal edilebilecek kadar küçüktür. Dolayısıyla grafit bölgeler boşluk gibi davranır. Bir de keskin köşelerin oluşturduğu çentik etkisi ilave olunca yapı çok gevrek-kırılgan davranır. Dolayısı ile kır DD ler genelde basmaya karşı zorlanan parçalarda kullanılır. Çekme zorlanmaları olan yerlerde kullanılmaz. Lameller

TEMPER VE KÜRESEL GRAFİTLİ DD Lamellerin mekanik özelliklere olumsuz etkisini ortadan kaldırmak amacıyla grafitlerdeki keskin kenarları ortadan kaldırmak amacıyla bazı işlemlere tabi tutulur.

TEMPER DÖKME DEMİR (TDD) Temper DD: Hızlı soğuma ile elde edilen beyaz dökme demir yaklaşık 950 o C de uzun süre (48 saat) tavlanır ve sementit yapı içerisindeki kararsız karbon bir araya toplanarak temper grafiti denilen topak halinde yapılar meydana getirir. Bu yapıda süneklik %10 a kadar artabilir. Soğuma hızına göre Ferritik TDD, Ferritik-perlitik TDD ve Perlitik TDD şeklinde 3 farklı TDD elde edilebilir. Ferritik TDD Temper grafiti Perlitik TDD Artan Soğuma Hızı Ferritik-Perlitik TDD Perlit

KÜRESEL DÖKME DEMİR (KDD) Eriyik DD içerisine Mg ve Sb gibi grafitleri küreselleştiren alaşım elementleri katılır. Bu şekilde oluşan grafitler küresel şekillidir ve süneklik %20 lere kadar artar. Soğuma hızına göre Ferritik KDD, Ferritik-perlitik KDD ve Perlitik KDD şeklinde 3 farklı KDD elde edilebilir. Küresel grafit Perlitik KDD Ferritik KDD Ferritik-Perlitik KDD Perlit Artan Soğuma Hızı

EKLER

Segregasyon: Malzemede kompozisyon farklılıklarının bulunmasıdır. Katılaşma sırasındaki yetersiz difüzyon nedeniyle genelde ortaya çıkar. Dengesiz katılaşmanın oluşturduğu uniform olmayan kompozisyon segregasyonun gelişmesini veya dentrit kolları arasında kısa mesafede oluşan ve göbek olarak bilinen mikro segregasyonu göstermektedir. Katı eriyik alaşımlarının katılaşması sırasında dentritik büyüme ısısal alt soğuma/aşırı soğuma olmadığı durumda bile tipik olarak meydana gelir. Coring: Döküm ürünlerde kimyasal segregasyondur. Mikrosegregasyonveya dentritler arası segregasyon olarak da bilinir. Homojenizasyon Isıl İşlemi: Dengesiz katılaşma esnasındaki mikrosegregasyonları azaltmak için uygulanan ısıl işlemdir. Makrosegregasyon: Dengesiz katılaşma sonucu malzemede uzun mesafelerde görülen kompozisyon farklarıdır. Sprey atomizasyon: Seramik uçlar /nozzle kullanılarak ergimiş alaşım veya metallerin püskürtülmesidir.

Sıcak Yırtılma: Mikrosegregasyon sıcak yırtılmaya veya denge solidüs altındaki sıcaklıklarda düşük ergime noktalı dentritler arası malzemenin ergimesine neden olabilir. Homojenizasyon: Sıcak yırtılma problemleri ve dentritler arası segregasyon, homojenizasyon ısıl işlemi uygulanarak azaltılabilir. Makrosegregasyon: Makrosegregasyon merkez ve yüzey arasında, geniş bir mesafe üzerinde olur.