BİLİŞİM TEKNOLOJİLERİ



Benzer belgeler
T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) BİLİŞİM TEKNOLOJİLERİ TRANSİSTÖR VE FET

TRANSİSTÖRÜN YAPISI (BJT)

ELEKTRONİK DEVRE TASARIM LABORATUARI-I

8. FET İN İNCELENMESİ

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

MOSFET. MOSFET 'lerin Yapısı

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

6. TRANSİSTÖRÜN İNCELENMESİ

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

(BJT) NPN PNP

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)

Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

ALAN ETKİLİ TRANSİSTÖR

ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise...

Elektronik Ders Notları

Elektronik Ders Notları 5

Bölüm 8 FET Karakteristikleri

MOSFET:METAL-OXIDE FIELD EFFECT TRANSISTOR METAL-OKSİT ALAN ETKİLİ TRANZİSTOR. Hafta 11

4. Bölüm: Çift Jonksiyonlu Transistörler (BJT) Doç. Dr. Ersan KABALCI

Bölüm 7 FET Karakteristikleri Deneyleri

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

Çukurova Üniversitesi Biyomedikal Mühendisliği

BJT KARAKTERİSTİKLERİ VE DC ANALİZİ

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

DENEY 1:JFET TRANSİSTÖR VE KARAKTERİSTİKLERİ

Transistörler yarıiletken teknolojisiyle üretilmiş, azınlık-çoğunluk yük taşıyıcılara sahip solidstate elektronik devre elemanlarıdır.

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

TRANSİSTÖR KARAKTERİSTİKLERİ

Çukurova Üniversitesi Biyomedikal Mühendisliği

FET Transistörün Bayaslanması

DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ Deneyin Amacı

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR

İletken, Yalıtkan ve Yarı İletken

DENEY 1: DİYOT KARAKTERİSTİKLERİ

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı

Şekil 1: Diyot sembol ve görünüşleri

Bölüm 5 Transistör Karakteristikleri Deneyleri

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

BJT (Bipolar Junction Transistor) :

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

MOSFET Karakteristiği

Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir.

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır.

TRANSİSTÖRLERİN KUTUPLANMASI

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

ZENER DİYOTLAR. Hedefler

DENEY 6: MOSFET. Şekil 6.1. n ve p kanallı MOSFET yapıları

DENEY 1 DİYOT KARAKTERİSTİKLERİ

ELEKTRONİK DEVRE ELEMANLARI

TRANSİSTÖRLER 1. ÇİFT KUTUP YÜZEYLİ TRANSİSTÖRLER (BJT)

DENEY-3. FET li Yükselticiler

Deney 1: Transistörlü Yükselteç

Metal Oksitli Alan Etkili Transistör (Mosfet) Temel Yapısı ve Çalışması

GERİLİM REGÜLATÖRLERİ DENEYİ

Deney 2: FET in DC ve AC Analizi

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

BJT TRANSİSTÖRLÜ DC POLARMA DEVRELERİ

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

Geçmiş yıllardaki vize sorularından örnekler

EEME210 ELEKTRONİK LABORATUARI

EEME 210 ELEKTRONİK LABORATUARI

BÖLÜM 4 BİPOLAR JONKSİYON TRANSİSTÖR. Konular: Üretilen ilk yarıiletken transistör ve bulan bilim adamları

SCHMITT TETİKLEME DEVRESİ

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

ELEKTRONİK-I DERSİ LABORATUVARI DENEY 2: Zener ve LED Diyot Deneyleri

DENEY 4 TRANSİSTÖR KARAKTERİSTİĞİ KOLLEKTÖR EĞRİSİ

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

1. Yarı İletken Diyotlar Konunun Özeti

KOB Statik Giriş Direnci. Kollektörü Ortak Yükselteç (KOB) Kollektörü Ortak Yükseltecin (KOB) Statik Karakteristikleri

Deneyle İlgili Ön Bilgi:

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır,

Doğru Akım Devreleri

1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

FET: FIELD EFFECT TRANZISTORS ALAN ETKİLİ TRANZİSTÖRLER JFET LERİN DC ANALİZİ. Hafta 9

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi:

İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs)

DENEY-2 BJT VE MOSFET İN DC ÖZELLİKLERİNİN ÇIKARTILMASI

(VEYA-DEĞİL kapısı) (Exlusive OR kapısı) (Exlusive NOR kapısı)

Bu bölümde iki kutuplu (bipolar) tranzistörlerin çalışma esasları incelenecektir.

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

Transkript:

T.C. MİLLİ EĞİTİM BAKANLIĞI BİLİŞİM TEKNOLOJİLERİ TRANSİSTÖR VE FET 523EO0075 Ankara, 2011

Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik olarak öğrencilere rehberlik etmek amacıyla hazırlanmış bireysel öğrenme materyalidir. Millî Eğitim Bakanlığınca ücretsiz olarak verilmiştir. PARA İLE SATILMAZ.

İÇİNDEKİLER AÇIKLAMALAR... ii GİRİŞ... 1 ÖĞRENME FAALİYETİ 1... 3 1. TRANSİSTÖR... 3 1.1. Transistör Çeşitleri... 3 1.2. Transistörün Yapısı ve Çalışması... 4 1.3. Transistörün Polarmalandırılması ( Kutuplanması)... 8 1.4. Akım, Gerilim Yönü ve I B Akımı Hesaplama... 9 1.5. Transistör Sağlamlık Kontrolü... 11 1.5.1. Transistörlerin Analog AVOmetre ile Sağlamlık Kontrolü... 11 1.5.2. Transistörlerin Dijital AVOmetre ile Sağlamlık Kontrolü... 12 1.6. Transistörün Anahtarlama Elemanı Olarak Kullanılması... 14 1.7. Transistörün Yükselteç Olarak Kullanılması... 15 1.8. Katolog Bilgilerini Okuma... 18 UYGULAMA FAALİYETİ... 20 ÖLÇME VE DEĞERLENDİRME... 22 ÖĞRENME FAALİYETİ 2... 23 2. FET... 23 2.1. FET Çeşitleri... 23 2.2. JFET Yapısı ve Çalışması... 24 2.3. JFET in BJT ye Göre Üstünlükleri... 26 2.4. JFET in Karakteristikleri... 27 2.5. FET ve MOSFET Ölçme... 29 2.6. JFET Parametreleri ve Formülleri... 29 2.7. JFET Polarmalandırılması (Kutuplanması)... 31 2.7.1. Sabit Polarma Devresi... 31 2.7.2 Self Polarma Devresi... 31 2.7.3. Gerilim Bölücülü Polarma... 32 2.8. JFET li Yükselteç Devreleri... 33 2.9. Mosfet lerin Yapısı, Çalışması ve Karakteristikleri... 33 2.9.1 Azaltan Tip MOSFET (D-MOSFET) Yapısı... 34 2.9.2 Azaltan Tip MOSFET (D-MOSFET) Çalışması ve Karakteristiği... 35 2.9.3 Çoğaltan Tip MOSFET (D-MOSFET) Yapısı... 35 2.9.4. Çoğaltan Tip MOSFET (D-MOSFET) Çalışması ve Karakteristiği... 36 2.9.5. MOSFET Parametreleri... 37 UYGULAMA FAALİYETİ... 38 ÖLÇME VE DEĞERLENDİRME... 40 MODÜL DEĞERLENDİRME... 41 CEVAP ANAHTARLARI... 43 KAYNAKÇA... 44 i

AÇIKLAMALAR AÇIKLAMALAR KOD ALAN DAL/MESLEK MODÜLÜN ADI MODÜLÜN TANIMI 523EO0075 Bilişim Teknolojileri Bilgisayar Teknik Servisi Transistör ve FET Transistör ve FET uygulamalarının anlatıldığı öğrenme materyalidir. SÜRE 40 / 32 ÖN KOŞUL YETERLİK MODÜLÜN AMACI Kaydediciler modülünü tamamlamış olmak Transistörler ile çalışma yapmak Genel Amaç Bu modül ile gerekli ortam sağlandığında, transistör ve fet uygulamalarını gerçekleştirebileceksiniz. Amaçlar Transistör uygulamalarını gerçekleştirebileceksiniz. FET uygulamalarını gerçekleştirebileceksiniz. EĞİTİM ÖĞRETİM ORTAMLARI VE DONANIMLARI ÖLÇME VE DEĞERLENDİRME DC güç kaynağı, Transistör, FET, elektronik malzemeler, malzeme çantası Her faaliyet sonrasında o faaliyetle ilgili değerlendirme soruları ile kendi kendinizi değerlendireceksiniz. Öğretmen modül sonunda size ölçme aracı (uygulama, soru-cevap)uygulayarak modül uygulamaları ile kazandığınız bilgi ve becerileri ölçerek değerlendirecektir. ii

GİRİŞ GİRİŞ Sevgili Öğrenci, Günümüzde, elektrik elektronik teknolojisi baş döndürücü bir şekilde gelişmiş ve hayatımızın her alanına hükmetmeyi başarmıştır. Bugün farkında olmadan yaşamımızın bir parçası haline gelen pek çok sistemin arka planında kusursuz çalışan elektronik devreler bulunmaktadır. Bu devreleri tanımak, devrelerde kullanılan malzemelerin yapısını, çalışmasını öğrenmek elektronikle uğraşan herkes için önemlidir. Bu devrelerin genelinde kullanılan elamanlardan en önemlilerinden ikisi de transistör ve FET tir. Hemen hemen elektronik devrelerinin hepsinde bu elamanları görmek mümkündür. Bu elamanlar olmasa bile bu elamanlardan meydan gelmiş entegre devre elamanlarını görebiliriz. Bu yüzden bu elamanların yapısının, çalışmasının ve kullanım yerlerinin öğrenilmesi elektronikle ilgilenen öğrenciler için çok önemlidir. Bu modülde konular çok fazla detaya inmeden verilmiş ancak şekillerle desteklenerek görsel bir zenginlik kazandırılmıştır. Konular işlenirken verilen devrelerin uygulamaya yönelik olmasına dikkat edilmiştir. Bu modül iki bölümden oluşmaktadır. Birinci bölümde transistörün yapısı, çalışması ve kullanım alanları incelenirken ikinci bölümde; FET in yapısı, çalışması ve kullanım alanları incelenmiştir. Bu modülün elektronik ile ilgilenen tüm öğrencilere faydalı olacağı inancındayım. 1

2

ÖĞRENME FAALİYETİ 1 AMAÇ ÖĞRENME FAALİYETİ 1 Bu faaliyette verilen bilgiler doğrultusunda transistörlerin genel yapısı ve temel özelliklerini tanıyıp, ürün bilgi sayfasındaki özellikler doğrultusunda devreye uygun transistörü seçerek transistör uygulamalarını gerçekleştirebileceksiniz. ARAŞTIRMA Transistörün nerelerde kullanıldığını araştırınız. Bunun için çevrenizde bulunan elektronik üzerine çalışan iş yerlerinden ve internetten faydalanabilirsiniz. 1.1. Transistör Çeşitleri 1. TRANSİSTÖR İki P tipi madde arasına N tipi madde veya iki N tipi madde arsına P tipi madde konularak elde edilen elektronik devre elamanına transistör denir. Transistörler, kullanma amaçlarına göre üç çeşittir. Anahtarlama devre transistor leri Osilatör devre transistor leri Amplifikatör devre transistor leri Transistörlerde yarı iletken maddelerin bir araya getirilmesinde çeşitli metotlar kullanılır. Bu metotlara göre yapılan transistörler üç çeşittir. Nokta temaslı transistorler Yüzey temaslı transistorler Alaşım veya yayılma metodu ile yapılan transistörler Genelde elektronik devrelerde kullandığımız transistörler yüzey temaslı transistörlerdir. Bu yüzden bundan sonraki konularımızda bu transistörler üzerinde duracağız. Bu transistörler P ve N maddelerinin sıralanmasına göre iki tipte yapılır. Bunlar; PNP transistorler NPN transistorler 3

1.2. Transistörün Yapısı ve Çalışması Transistör imalatında kullanılan yarı iletkenler, birbirlerine yüzey birleşimli olarak üretilmektedir. Bu nedenle Bipolar Jonksiyon Transistör olarak adlandırılır. Transistörün temel yapısı şekil 1.1 de gösterilmiştir. Şekil 1.1: Transistörün temel yapısı BJT transistörler katkılandırılmış P ve N tipi malzeme kullanılarak üretilir. Transistörler NPN ve PNP olmak üzere iki temel yapıda üretilir. NPN transistörde 2 adet N tipi yarı iletken madde arasına 1 adet P tipi yarı iletken madde konur. PNP tipi transistörde ise, 2 adet P tipi yarı iletken madde arasına 1 adet N tipi yarı iletken madde konur. Dolayısıyla transistör 3 adet katmana veya terminale sahiptir. Transistörün her bir terminaline işlevlerinden ötürü; Emiter (Emiter), Beyz (Base) ve Kolektör (Collector) adları verilir. Bu terminaller; genelde E, B ve C harfleri ile sembolize edilirler. Şekil 1.2: NPN tipi transistör fiziksel yapısı, şematik sembolü ve diyot eş değer devresi Şekil 1.3: PNP tipi transistör fiziksel yapısı, şematik sembolü ve diyot eşdeğer devresi 4

Transistörler genellikle çalışma bölgelerine göre sınıflandırılarak incelenebilir. Transistörün çalışma bölgeleri; kesim, doyum ve aktif bölge olarak adlandırılır. Transistör; kesim ve doyum bölgelerinde bir anahtar işlevi görür. Özellikle sayısal sistemlerin tasarımında transistörün bu özelliğinden yararlanılır ve anahtar olarak kullanılır. Transistörün çok yaygın olarak kullanılan bir diğer özelliği ise yükselteç olarak kullanılmasıdır. Yükselteç olarak kullanılacak bir transistör aktif bölgede çalıştırılır. Yükselteç olarak çalıştırılacak bir transistörün PN jonksiyonları uygun şekilde polarmalandırılmalıdır. Şekil 1.4 te NPN ve PNP tipi transistörlerin yükselteç olarak çalıştırılması için gerekli polarma gerilimleri ve bu gerilimlerin polariteleri verilmiştir. NPN tipi bir transistörde; beyz-emiter jonksiyonu doğru yönde, beyz-kolektör jonksiyonu ise ters yönde polarmalanır. Her iki transistorün de çalışma ilkeleri aynıdır. Sadece polarma gerilimi ve akımlarının yönleri terstir. Bu nedenle bu bölüm boyunca NPN tipi bir transistörün çalışmasını analiz edeceğiz. Şekil 1.4: NPN ve PNP transistörlerin kutuplandırılması (polarmalandırılması) Transistörün yükselteç olarak çalışması şekil 1.5 te verilen bağlantılar dikkate alınarak anlatılacaktır. NPN tipi bir transistörde beyz terminaline, emitere göre daha pozitif bir gerilim uygulandığında doğru polarma yapılmıştır. Bu polarma etkisiyle geçiş bölgesi daralmaktadır. Bu durumda P tipi maddedeki (beyz) çoğunluk akım taşıyıcıları, N tipi maddeye (emiter) geçmektedir. Emiter-beyz polarmasını iptal edip, beyz-kolektör arasına ters polarma uygulayalım. Bu durumda çoğunluk akım taşıyıcıları sıfırlanacaktır. Çünkü geçiş bölgesinin kalınlığı artacaktır. (Diyodun ters polarmadaki davranışını hatırlayınız). Azınlık akım taşıyıcıları, beyz-kolektör jonksiyonundan V CB kaynağına doğru akacaktır. Özet olarak yükselteç olarak çalıştırılacak bir transistörde; Beyz-emiter jonksiyonları doğru, beyz-kolektör jonksiyonları ise ters polarmaya tabi tutulur diyebiliriz. Bu durum şekil-1.5 te ayrıntılı olarak verilmiştir. Şekil 1.5: NPN tipi transistör jonksiyonlarının doğru ve ters polarmadaki davranışları 5

Transistörün nasıl çalıştığını anlamak amacıyla yukarıda iki kademede anlatılan olayları birleştirelim. Şekil 1.6 da NPN tipi bir transistöre polarma gerilimleri birlikte uygulanmıştır. Transistörde oluşan çoğunluk ve azınlık akım taşıyıcıları ise şekil üzerinde gösterilmiştir. Transistörün hangi jonksiyonlarına doğru, hangilerine ters polarma uygulandığını şekil üzerindeki geçiş bölgelerinin kalınlığına bakarak anlayabilirsiniz. Şekil 1.6: NPN tipi transistörde çoğunluk ve azınlık akım taşıyıcılarının akışı Doğru yönde polarmalanan beyz-emiter jonksiyonu, çok sayıda çoğunluk taşıyıcısının P tipi malzemeye (beyze) ulaşmasını sağlar. Beyz bölgesinde toplanan taşıyıcılar nereye gidecektir. I B akımına katkıda mı bulunacaklardır yoksa N tipi malzemeye mi geçeceklerdir. Beyz bölgesinin (P tipi malzeme) iletkenliği düşüktür ve çok incedir. Bu nedenle; az sayıda taşıyıcı yüksek dirence sahip bu yolu izleyerek beyz ucuna ulaşacaktır. Dolayısıyla beyz akımı, emiter ve kolektör akımlarına kıyasla çok küçüktür. Şekil 1.6 da gösterildiği gibi çoğunluk taşıyıcılarının çok büyük bir bölümü, ters polarmalı kolektör-beyz jonksiyonu üzerinden difüzyon yoluyla emiter ucuna bağlı N tipi malzemeye geçecektir. Çoğunluk taşıyıcılarının ters polarmalı jonksiyon üzerinden kolaylıkla geçmelerinin nedeni, N-tipi maddede (emiterde) bulunan oyuklardır. Bu durumda akım miktarı artacaktır. Sonuç kısaca özetlenecek olursa; emiterden enjekte edilen elektronların küçük bir miktarı ile beyz akımı oluşmaktadır. Elektronların geri kalan büyük bir kısmı ile kolektör akımı oluşmaktadır. Buradan hareketle; emiterden enjekte edilen elektronların miktarı, beyz ve kolektöre doğru akan elektronların toplamı kadar olduğu söylenebilir. Transistör akımları arasındaki ilişki aşağıdaki gibi tanımlanabilir. I E = I C +I B Kısaca, kolektör akımının miktarı beyz akımının miktarı ile doğru orantılıdır ve kolektöre uygulanan gerilimden bağımsızdır. Çünkü kolektör ancak beyzin toplayabildiği taşıyıcıları alabilmektedir. Emiterden gelen taşıyıcıların yaklaşık %99 u kolektöre geçerken geriye kalan çok küçük bir kısmı beyze akar. Bir transistörün çalışması için gerekli şartları kısaca özetleyelim. Transistörün çalışabilmesi için; beyz-emiter jonksiyonu doğru yönde, beyzkolektör jonksiyonu ise ters yönde polarmalandırılmalıdır. Bu çalışma biçimine transistörün aktif bölgede çalışması denir. 6

Beyz akımı olmadan, emiter-kolektör jonksiyonlarından akım akmaz. Transistör kesimdedir. Farklı bir ifadeyle; beyz akımı küçük olmasına rağmen transistörün çalışması için çok önemlidir. PN jonksiyonlarının karakteristikleri transistörün çalışmasını belirler. Örneğin; transistör, V BE olarak tanımlanan beyz-emiter jonksiyonuna doğru yönde bir başlangıç gerilimi uygulanmasına gereksinim duyar. Bu gerilimin değeri silisyum transistörlerde 0.7V, germanyum transistörlerde ise 0.3V civarındadır. Transistörde Çalışma Bölgeleri Transistörlerde başlıca 3 çalışma bölgesi vardır. Bu bölgeler; aktif bölge, kesim (cutoff) bölgesi ve doyum (saturation) bölgesi olarak adlandırılır. Transistörün çalışma bölgeleri şekil 1.7 de transistörün çıkış karakteristiği üzerinde gösterilmiştir. Bu bölgeleri kısaca inceleyelim. Şekil 1.7: Transistörlerde çalışma bölgeleri Aktif Bölge: Transistörün aktif bölgesi; beyz akımının sıfırdan büyük (IB>0) ve kolektör-emiter geriliminin 0V dan büyük (VCE>0V) olduğu bölgedir. Transistörün aktif bölgede çalışabilmesi için beyz-emiter jonksiyonu doğru, kolektör-beyz jonksiyonu ise ters yönde polarmalanır. Bu bölgede transistörün çıkış akımı öncelikle beyz akımına, küçük bir miktarda VCE gerilimine bağımlıdır. Transistörün aktif bölgede nasıl çalıştığı, transistörün çalışması bölümünde ayrıntılı olarak incelenmişti. Doğrusal yükselteç tasarımı ve uygulamalarında transistör genellikle bu bölgede çalıştırılır. Kesim Bölgesi: Transistörün kesim bölgesinde nasıl çalıştığı şekil 1.8.a yardımıyla açıklanacaktır. Şekilde görüldüğü gibi transistörün beyz akımı I B =0 olduğunda, beyzemiter gerilimi de VBE=0V olacağı için devrede kolektör akımı (I C ) oluşmayacaktır. Bu durumda transistör kesimdedir. Kolektör-emiter jonksiyonları çok yüksek bir direnç değeri gösterir ve akım akmasına izin vermez. Transistörün kolektör-emiter gerilimi V CE, besleme gerilimi V CC değerine eşit olur. Kolektörden sadece I C0 ile belirtilen çok küçük bir akım akar. Bu akıma sızıntı akımı denir. Sızıntı akımı pek çok uygulamada ihmal edilebilir. 7

a) Transistörün kesim bölgesinde çalışması b) Transistörün doyum bölgesinde çalışması Şekil 1.8: Transistörün kesim ve doyum bölgesinde çalışması Doyum Bölgesi: Transistörün doyum (saturation) bölgesinde çalışma şekil 1.8.b yardımıyla açıklanacaktır. Transistöre uygulanan beyz akımı artırıldığında kolektör akımı da artacaktır. Bu işlemin sonucunda transistörün V CE gerilimi azalacaktır. Çünkü I C akımının artması ile R C yük direnci üzerindeki gerilim düşümü artacaktır. Kolektör-emiter gerilimi doyum değerine ulaştığında (V CE (DOY)) beyz-emiter jonksiyonu doğru yönde polarmalanacaktır. Sonuçta I B değeri daha fazla yükselse bile I C akımı daha fazla artmayacaktır. Doyum bölgesinde çalışan bir transistörün kolektör-emiter gerilimi V CE yaklaşık 0V civarındadır. Bu değer genellikle V CE (DOY)=0V olarak ifade edilir. 1.3. Transistörün Polarmalandırılması ( Kutuplanması) Transistörün çalışmasını sağlayacak şekilde, emiter, beyz ve kolektörünün belirli değerdeki ve işaretteki (±), DC gerilim ile beslenmesine transistörün polarmalandırılması (kutuplandırılması) denir. Transistörlerin çalışması için gerekli ilk şart, DC polarma gerilimlerinin uygun şekilde bağlanmasıdır. Şekil 1.9 da NPN ve PNP tipi transistörler için gerekli polarma bağlantıları verilmiştir. Transistörün beyz-emiter jonksiyonuna V BB kaynağı ile doğru polarma uygulanmıştır. Beyz-kolektör jonksiyonuna ise V CC kaynağı ile ters polarma uygulanmıştır. Şekil 1.9: NPN ve PNP transistörlerin polarmalandırılması 8

1.4. Akım, Gerilim Yönü ve I B Akımı Hesaplama Bir transistör devresinde akım ve gerilimler arasında belirli ilişkiler vardır. Transistörün her bir terminalinde ve terminalleri arasında oluşan gerilim ve akımlar birbirinden bağımsız değildir. NPN transistörün her bir jonksiyonundan geçen akımlar ve jonksiyonlar arasında oluşan gerilimler ve yönleri şekil 1.10 üzerinde gösterilmiş ve adlandırılmıştır. I B : Beyz akımı (dc) I E : Emiter akımı (dc) I C : Kolektör akımı (dc) V BE : Beyz-emiter gerilimi (dc) V CB : Kolektör-beyz gerilimi (dc) V CE : Kolektör-emiter gerilimi (dc) Şekil 1.10: Transistörde akım ve gerilimler Transistörün beyz-emiter jonksiyonu VBB gerilim kaynağı ile doğru yönde polarmalanmıştır. Beyz-kolektör jonksiyonu ise VCC gerilim kaynağı ile ters yönde polarmalanmıştır. Beyz-emiter jonksiyonu doğru yönde polarmalandığında tıpkı ileri yönde polarmalanmış bir diyot gibi davranır ve üzerinde yaklaşık olarak 0.7V (silisyum) gerilim düşümü oluşur. V BE = 0.7 Volt Devrede I.Göz için Kirsoff Gerilimler Kanununa göre denklem yazılırsa; V BB I B R B V BE olur. Buradan I B akımı çekilirse; V BB V BE I B R B I B V BB V R B BE 9

Örnek 1.1: Çözüm: Yukarıda verilen devrede I B akımını bulunuz. I B V BB V R B BE I B 5 0.7 10 4.3 I B I B = 430 µa 10 Örnek 1.2: Yukarıda görülen devrede V BB = 9V, I B =1mA ise R B direncinin değerini bulunuz. (V BE =0,7 V alınız.) Çözüm: VBB VBE RB I B 9 0,7 R B 1 8,3 R B R B =8,3KΩ 1 10

1.5. Transistör Sağlamlık Kontrolü 1.5.1. Transistörlerin Analog AVOmetre ile Sağlamlık Kontrolü Resim 1.1: Analog AVOmetre Analog ölçü aleti direnç (X1) kademesine alınır. Problardan biri herhangi bir ayakta sabit tutulurken, diğer prob ayrı ayrı boştaki diğer iki ayağa değdirilir. Sağlam bir transistörde prob bir uçta sabit iken diğer prob her iki ayağa değdirildiğinde ölçü aleti değer göstermelidir. Değer okunmuyorsa sabit ucu tespit etmek amacıyla, ölçüm ayakları değiştirilerek işlemler tekrarlanır. Değer gösterdiği andaki sabit uç beyz, yüksek değer okunduğundaki ayak emiter ve düşük değer görülen ayak ise kolektördür. Değer okunduğunda beyzdeki uç artı ise transistör PNP, eksi ise NPN tipidir. Bunun sebebi analog AVOmetrelerde pil uçları ile çıkış uçları farklı polaritede olmalarıdır. Ayrıca sağlam bir transistörde ölçü aleti probları kolektör emiter arasına değdirildiğinde her iki yönde de değer göstermemesi gerekir. 11

1.5.2. Transistörlerin Dijital AVOmetre ile Sağlamlık Kontrolü Resim 1.2: Dijital AVOmetre Dijital ölçü aleti diyot test kademesine alınır. Problardan biri herhangi bir ayakta sabit tutulurken, diğer prob ayrı ayrı boştaki diğer iki ayağa değdirilir. Sağlam bir transistörde prob bir uçta sabit iken diğer prob her iki ayağa değdirildiğinde ölçü aleti değer göstermelidir. Değer okunmuyorsa sabit ucu tespit etmek amacıyla, ölçüm ayakları değiştirilerek işlemler tekrarlanır. Değer gösterdiği andaki sabit uç beyz, yüksek değer okunduğundaki ayak emiter ve düşük değer görülen ayak ise kolektördür. Değer okunduğunda beyzdeki uç artı ise transistör NPN, eksi ise PNP tipidir. Bunun sebebi dijital AVOmetrelerde pil uçları ile çıkış uçları aynı polaritededir. Aynen analog ölçü aletinde olduğu gibi sağlam bir transistörde ölçü aleti probları kolektör emiter arasına değdirildiğinde her iki yönde de değer göstermemesi gerekir. 12

Şekilde görülen transistörün sağlamlık kontrolünü ve uçlarının tespitini dijital multimetre ile yapalım. Resim 1.3: Transistör sağlamlık kontrolü Resim 1.3.a. Kırmızı Prob Transistörün 1 nu.lı ucuna siyah prob 2 nu.lı ucuna temas ettirildi. Resim 1.3.b. Kırmızı Prob Transistörün 1 nu.lı ucuna siyah prob 3 nu.lı ucuna temas ettirildi. Resim 1.3.c. Kırmızı Prob Transistörün 2 nu.lı ucuna siyah prob 3 nu.lı ucuna temas ettirildi. Resim 1.3.d. Kırmızı Prob Transistörün 2 nu.lı ucuna siyah prob 1 nu.lı ucuna temas ettirildi. Resim 1.3.e. Kırmızı Prob Transistörün 3 nu.lı ucuna siyah prob 1 nu.lı ucuna temas ettirildi. Resim 1.3.f. Kırmızı Prob Transistörün 3 nu.lı ucuna siyah prob 2 nu.lı ucuna temas ettirildi. 13

Sonuç: Bu transistörün 1 nu.lı ucuna kırmızı probu sabit şekilde tutup 2 ve 3 nu.lı uçlara siyah probu sırasıyla değdirdiğimizde değer göstermektedir. Bu yüzden 1 nu.lı uç Transistörün beyz ucudur. Beyz ucunda sabit tutulan uç kırmızı prob olduğundan bu transistör NPN tipi transistördür. 1-2 nu.lı uçlar arasında görülen değer, 1-3 nu.lı uçlar arasından görülen değerden daha küçüktür. Bu yüzden 2 nu.lı uç Kolektör, 3 nu.lı uç emiterdir. Resim 1-3 te görüldüğü gibi kolektör emiter (2-3 nu.lı uçlar) arası her iki yönde de açık devre göstermektedir. 1.6. Transistörün Anahtarlama Elemanı Olarak Kullanılması Transistörün bir anahtar olarak nasıl kullanıldığı şekil 1.11 de verilmiştir. Şekil 1.11 a da görüldüğü gibi transistörün beyz-emiter jonksiyonu ters yönde polarmalanmıştır. Dolayısıyla transistör kesimdedir. Kolektör-emiter arası ideal olarak açık devredir. Transistör bu durumda açık bir anahtar olarak davranır. a) Transistör kesimde -Anahtar AÇIK b) Transistör doyumda -Anahtar KAPALI Şekil 1.11: Transistörün anahtar olarak çalışması Şekil 1.11. b de ise transistörün beyz-emiter jonksiyonu doğru yönde polarmalanmıştır. Bu devrede beyz akımı yeterli derecede büyük seçilirse transistör doyum bölgesinde çalışacaktır. Kolektör akımı maksimum olacak ve transistörün kolektör-emiter arası ideal olarak kısa devre olacaktır. Transistör bu durumda kapalı bir anahtar gibi davranır. Transistörlü anahtar uygulaması: Pek çok endüstriyel uygulamada veya sayısal tasarımda devrelerin çıkışından alınan işaretlerin kuvvetlendirilmesi istenir. Örneğin şekil1.12.a da devre çıkışından alınan bir kare dalga işaretin bir LED i yakıp söndürmesi için gerekli devre düzeneği verilmiştir. Giriş işareti; 0V olduğunda transistör kesimdedir, LED yanmayacaktır. Giriş işareti +V (Silisyum için 0.7 V dan büyük, germanyum için 0.3V dan büyük olmalıdır) değerine ulaştığında ise transistör iletime geçecek ve LED yanacaktır. 14

a) Transistörün anahtar olarak çalışması b) Transistörle röle kontrol Şekil1.12: Transistörün anahtar olarak kullanılması Şekil 1.12 b de ise devre çıkışından alınan işaretin kuvvetlendirilerek bir röleyi, dolayısıyla röle kontaklarına bağlı bir yükü kontrol etmesi gösterilmiştir. 1.7. Transistörün Yükselteç Olarak Kullanılması Transistörün en temel uygulama alanlarından biri de yükselteç (amplificator) devresi tasarımıdır. Temel bir yükselteç devresinin işlevi, girişine uygulanan işareti yükselterek (kuvvetlendirerek) çıkışına aktarmasıdır. Transistörlü temel bir yükselteç devresi şekil 1.13 te verilmiştir. Devrede kullanılan DC kaynaklar transistörün aktif bölgede çalışmasını sağlamak içindir. Devre girişine uygulanan AC işaret (V IN ) ise yükseltme işlemine tabi tutulacaktır. Transistörlü yükselteç devresinde; devrenin yükselteç olarak çalışabilmesi için DC besleme (polarma) gerilimlerine gereksinim vardır. Dolayısıyla transistörlü yükselteç devreleri genel olarak iki aşamada incelenilir. Bu aşamalar; Transistörlü yükselteç devrelerinin DC analizi Transistörlü yükselteç devrelerinin AC analizi Şekil 1.13: Transistörlü yükselteç devresi 15

DC Analiz İyi bir yükselteç tasarımı için transistörün özelliklerine uygun DC polarma akım ve gerilimleri seçilmelidir. Dolayısıyla yükselteç tasarımında yapılması gereken ilk adım transistörlü yükselteç devresinin DC analizidir. Analiz işleminde transistörün çalışma bölgesi belirlenir. Bu bölge için uygun akım ve gerilimler hesaplanır. Sonuçta; transistörlü yükselteç devresi AC çalışmaya hazır hale getirilir. AC Analiz Transistörlü yükselteç tasarımında ikinci basamak, tasarlanan veya tasarlanacak yükselteç devresinin AC analizidir. Yükselteç devresinin AC analizi yapılırken eş değer devrelerden yararlanılır. Şekil 1.14.a da transistörlü temel bir yükselteç devresi verilmiştir. Aynı devrenin AC eş değer devresi ise şekil 1.14. b de görülmektedir. a) Transistörlü yükselteç devresi b) Transistörlü yükselteç devresinin AC eş değeri Şekil 1.14: Transistörlü temel yükselteç devresi ve AC eş değeri Transistörlü bir yükselteç devresinin AC eş değer devresi çizilirken, DC kaynaklar kısa devre yapılır. Yükselteç devresi doğal olarak girişinden uygulanan AC işareti yükselterek çıkışına aktaracaktır. Dolayısıyla bir kazanç söz konusudur. Yükseltecin temel amacı da bu kazancı sağlamaktır. Bir yükselteç devresi; girişinden uygulanan işaretin genliğini, akımını veya gücünü yükseltebilir. Dolayısıyla bir akım, gerilim veya güç kazancı söz konusudur. Yükselteçlerde kazanç ifadesi A ile sembolize edilir. Gerilim kazancı için A V, Akım kazancı için A I ve güç kazancı için A P sembolleri kullanılır. Örneğin şekil 1.14 te görülen yükselteç devresinin gerilim kazancı A V ; VO AV V 16 g

Beta (ß) ve Alfa (α) kazançları β akım kazancı, ortak emiter bağlantıda akım kazancı olarak da adlandırılır. Bir transistör için β akım kazancı, kolektör akımının beyz akımına oranıyla belirlenir. I C β = I B β akım kazancı bir transistör için tipik olarak 20-200 arasında olabilir. Bununla birlikte β değeri 1000 civarında olan özel tip transistorler de vardır. β akım kazancı kimi kaynaklarda veya üretici kataloglarında h FE olarak da tanımlanır. β = h FE Kolektör akımını yukarıdaki eşitlikten; IC= β.i B olarak tanımlayabiliriz. Transistörde emiter akımı; I E =I C +I B idi. Bu ifadeyi yeniden düzenlersek; I E = β.i B +I B I E = I B (1+ β) değeri elde edilir. Ortak beyzli bağlantıda akım kazancı olarak bilinen α değeri; kolektör akımının emiter akımına oranı olarak tanımlanır. I C α = I B Emiter akımının kolektör akımından biraz daha büyük olduğu belirtilmişti. Dolayısıyla transistörlerde α akım kazancı 1 den küçüktür. α akım kazancının tipik değeri 0.95-0.99 arasındadır. Emiter akımı; I E =I C +I B değerine eşitti. Bu eşitlikte eşitliğin her iki tarafı I C ye bölünürse; α DC =I C /I E ve β DC =I C /I B olduğundan, yukarıdaki formüle yerleştirilirse; değeri elde edilir. Buradan her iki akım kazancı arasındaki ilişki; olarak belirlenir. Bir transistörde α akım kazancı değeri yaklaşık olarak sabit kabul edilir. Ancak α akım kazancı değerinde çok küçük bir değişimin, β akım kazancı değerinde çok büyük miktarlarda değişime neden olacağı yukarıdaki formülden görülmektedir. 17

Örnek : Bir transistörün β akım kazancı değeri 200 dür. Beyz akımının 75µA olması durumunda, kolektör akımı, emiter akımı ve α akım kazancı değerlerini bulunuz. Çözüm: I C = 200. (75µA) I C = 150mA I E =I C +I B =(1+ β)i B I E = (1+200)75µA I E = 150,75mA 1.8. Katolog Bilgilerini Okuma Uluslararası bir çok firma, transistör üretimi yapar ve kullanıcının tüketimine sunar. Transistör üretimi farklı ihtiyaçlar için binlerce tip ve modelde yapılır. Üretilen her bir transistör farklı özellikler içerebilir. Farklı amaçlar için farklı tiplerde üretilen her bir transistör; üreticiler tarafından birtakım uluslararası standartlara uygun olarak kodlanırlar. Transistörler; bu kodlarla anılır. Üretilen her bir transistörün çeşitli karakteristikleri üretici firma tarafından kullanıcıya sunulur. 1.8.1. Uluslararası Standart Kodlama Transistörlerin kodlanmasında birtakım harf ve rakamlar kullanılmaktadır. Örneğin AC187, BF245, 2N3055, 2SC2345, MPSA13 vb. gibi birçok transistör sayabiliriz. Kodlamada kullanılan bu harf ve rakamlar rastgele değil, uluslararası standartlara göredir ve anlamlıdır. Günümüzde kabul edilen ve kullanılan başlıca 4 tip standart kodlama vardır. Birçok üretici firma bu kodlamalara uyarak transistör üretimi yapar ve tüketime sunarlar. Yaygın olarak kullanılan standart kodlamalar aşağıda verilmiştir. Avrupa Pro-electron Standardı (Pro-electron) Amerikan jedec standardı (EIA-jedec) Japon (JIS) Firma Standartları 1.8.1.1 Avrupa Standardı (Pro-Electron Standardı) Avrupa ülkelerinde bulunan transistör üreticilerinin genellikle kullandıkları bir kodlama türüdür. Bu kodlama türünde üreticiler transistörleri; AC187, AD147, BC237, BU240, BDX245 ve benzeri şekilde kodlarlar. Kodlamada genel kural, önce iki veya üç harf sonra rakamlar gelir. Kullanılan her bir harf anlamlıdır ve anlamları aşağıda ayrıntılı olarak açıklanmıştır. İlk Harf: Avrupa (Pro Electron) standardına göre kodlanmada kullanılan ilk harf, transistörün yapım malzemesini belirtmektedir. Germanyumdan yapılan transistörlerde kodlama A harfi ile başlar. Örneğin AC121, AD161, AF254 vb. kodlanan transistörler germanyumdan yapılmıştır. Silisyumdan yapılan transistörlerde ise kodlama B harfi ile başlar. Örneğin; BC121, BD161, BF254 vb. kodlanan transistörler silisyumdan yapılmıştır. 18

İkinci Harf: Transistörlerin kodlanmasında kullanılan ikinci harf Avrupa Standardına göre, transistörün kullanım alanlarını belirtir. Örnek kodlamalar aşağıda verilmiştir. AC: Avrupa (Pro Electron) Standardına göre, düşük güçlü alçak frekans transistörüdür. Germanyumdan yapılmıştır. AC121, AC187, AC188, AC547 gibi... BC: Avrupa (Pro Electron) Standardına göre, düşük güçlü alçak frekans transistörüdür ve Silisyumdan yapılmıştır. BC107, BC547 gibi... Üçüncü Harf: Avrupa (pro electron) standardında bazı transistörlerin kodlanmasında üçüncü bir harf kullanılır. Üçüncü harf, ilk iki harfte belirtilen özellikler aynı kalmak koşuluyla o transistörün endüstriyel amaçla özel yapıldığını belirtir. Örnek olarak; BCW245, BCX56, BFX47, BFR43, BDY108, BCZ109, BUT11A, BUZ22 vb. gibi 1.8.1.2 Amerikan (Jedec) Standardı Amerikan yapımı transistörler 2N ifadesi ile başlayan kodlar ile isimlendirilmişlerdir. Bu kodlarda: Birinci rakam : Elemanın cinsini gösterir. Birinci harf : Transistörün yapım malzemesini belirtir. Son rakamlar : Tipini ve kullanma yerini gösterir. Örneğin 2N3055 teki 2 rakamı transistör olduğunu, N harfi transistörün silisyumdan yapıldığını ve 3055 imalat seri numaralarını belirtir. 1.8.1.3 Japon Standardı Japon yapımı transistörler 2S ifadesi ile başlayan kodlar ile isimlendirilmişlerdir. Bu kodlarda Birinci rakam : Elemanın cinsini gösterir. Birinci harf : Transistörün yapım malzemesini belirtir. İkinci harf : Tipini ve kullanma yerini gösterir. Örneğin 2SC1384 de 2 rakamı elamanın transistör olduğunu, S harfi transistörün silisyumdan yapıldığını C harfi NPN tipi yüksek frekans transistörü olduğunu ve 1384 imalat seri numaralarını belirtir. 19

UYGULAMA UYGULAMA FAALİYETİ FAALİYETİ Transistörün Anahtar Olarak Kullanılması Devresinin İncelenmesi Amaç: Bu uygulama faaliyetini başarı ile tamamladığınızda, Transistörün anahtar olarak kullanılması devresini kurup çalıştırabileceksiniz. Elektronik simülasyon programları ile devrenin çalışmasını inceleyiniz. Kullanılacak Araç Gereçler: 1. Breadboard 2. Güç Kaynağı 3. AVO metre 4. Devre şemasında belirtilen elamanlar Transistörün Anahtar Olarak Kurulup Çalıştırılması S1 R3 470R R1 10K D1 LED-BLUE Q1 BC237 B1 9V R2 10K Şekil 1.15: Transistörün Anahtar Olarak Kullanılması İşlem Basamakları Şekil 1.13 teki devreyi montaj seti üzerine kurunuz. R1 = 10 K, R2 = 10 K ve R3=470Ω olarak seçiniz. Güç kaynağının canlı ucunu R3'ün ve S1 anahtarının ucuna bağlayınız. Devreyi kurmadan önce transistörün ve LED diyodun sağlamlık kontrolünü yapınız. Devreye enerji vermeden önce devreni tekrar kontrol ediniz. 20 Öneriler Güç kaynağının bağlantılarını doğru yaptığınızdan emin olunuz. Gerilim değerini 9V olarak ayarladığından emin olunuz. Sağlamlık kontrolü hakkında bu modülün en başında verilen bilgileri hatırlayınız. S1 anahtarına bastığınız zaman LED diyot yanmıyorsa ya devreyi yanlış kurmuşsunuz ya da devrede açık devre vardır. Devreyi tekrar kontrol ediniz.