Prof. Dr. Mehmet Akbaba Karabük Üniversitesi Bilgisayar Mühendisliği Bölümü

Benzer belgeler
DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ Deneyin Amacı

BLM 224 ELEKTRONİK DEVRELER. Hafta 8. Prof. Dr. Mehmet Akbaba Karabük Üniversitesi Bilgisayar Mühendisliği Bölümü

DENEY 6 BJT KUVVETLENDİRİCİLER

BÖLÜM 6 KÜÇÜK SİNYAL YÜKSELTEÇLERİ. Konular: Amaçlar:

Deney 1: Transistörlü Yükselteç

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

DENEY 5 TRANSİSTOR KUTUPLAMA KARARLILIK ve DC DUYARLILIk

KOB Statik Giriş Direnci. Kollektörü Ortak Yükselteç (KOB) Kollektörü Ortak Yükseltecin (KOB) Statik Karakteristikleri

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır.

TRANSİSTÖRLÜ KUVVETLENDİRİCİLER. ELEKTRONİK DEVRE TASARIM LABORATUARI-II Özhan Özkan / 2010

İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs)

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi

4. Bölüm: Çift Jonksiyonlu Transistörler (BJT) Doç. Dr. Ersan KABALCI

Beyzi Ortak Yükselteç (BOB) Beyzi Ortak Bağlantının Statik Giriş Direnci. Giriş, direncini iki yoldan hesaplamak mümkündür:

Elektrik Devre Lab

Çukurova Üniversitesi Biyomedikal Mühendisliği

Hafta 5 BLM 224 ELEKTRONİK DEVRELER. Prof. Dr. Mehmet Akbaba Karabük Üniversitesi Bilgisayar Mhendisliği Bölümü

Elektronik Ders Notları 6

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

MOSFET:METAL-OXIDE FIELD EFFECT TRANSISTOR METAL-OKSİT ALAN ETKİLİ TRANZİSTOR. Hafta 11

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

ELEKTRONİK 1 KUTUPLAMA DEVRELERİ HAZIRLIK SORULARI

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR

Bu bölümde iki kutuplu (bipolar) tranzistörlerin çalışma esasları incelenecektir.

TRANSİSTÖRÜN YAPISI (BJT)

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

ZENER DİYOTLAR. Hedefler

Şekil 1 de ortak emiterli bir devre görülmektedir. Devredeki R C, BJT nin doğru akım yük direnci olarak adlandırılır. Çıkış devresi için,

6. TRANSİSTÖRÜN İNCELENMESİ

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

Çukurova Üniversitesi Biyomedikal Mühendisliği

EEM211 ELEKTRİK DEVRELERİ-I

BJT KARAKTERİSTİKLERİ VE DC ANALİZİ

BJT TRANSİSTÖRLÜ DC POLARMA DEVRELERİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I

AREL ÜNİVERSİTESİ DEVRE ANALİZİ

DENEY NO:1 BJT Yükselticinin frekans Cevabı

TRANSİSTÖR KARAKTERİSTİKLERİ

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

T.C. ULUDAĞ ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK - ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ ELEKTRONĠK DEVRELER LABORATUVARI I

BÖLÜM 6 KÜÇÜK SİNYAL YÜKSELTEÇLERİ. Konular: Amaçlar:

BLM 224 ELEKTRONİK DEVRELER

EEME210 ELEKTRONİK LABORATUARI

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

DENEY 6-3 Ortak Kollektörlü Yükselteç

Çukurova Üniversitesi Biyomedikal Mühendisliği

Transistörler yarıiletken teknolojisiyle üretilmiş, azınlık-çoğunluk yük taşıyıcılara sahip solidstate elektronik devre elemanlarıdır.

8. FET İN İNCELENMESİ

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

Hafta 4 BLM 224 ELEKTRONİK DEVRELER. Prof. Dr. Mehmet Akbaba Karabük Üniversitesi Bilgisayar Mühendisliği Bölümü BJT TRANZİSTÖRLERİN TEMELLERİ

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

EEM 210 ELEKTRONİK LABORATUARI

Şekil Sönümün Tesiri

(BJT) NPN PNP

DENEY 3. Maksimum Güç Transferi

DENEY 6 BİPOLAR KUVVETLENDİRİCİ KÜÇÜK İŞARET

Şekil 1. Geri beslemeli yükselteçlerin genel yapısı

DENEY 8 FARK YÜKSELTEÇLERİ

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

Geçmiş yıllardaki vize sorularından örnekler

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi

BLM1612 DEVRE TEORİSİ

BÖLÜM 5 TRANSİSTÖRLERİN DC ANALİZİ. Konular: Amaçlar:

Bölüm 5 Transistör Karakteristikleri Deneyleri

BÖLÜM 1 RF OSİLATÖRLER

Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım kaynakları incelenecektir.

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

Deneyle İlgili Ön Bilgi:

FAZ KİLİTLEMELİ ÇEVRİM (PLL)

TRANSİSTÖRLERİN KUTUPLANMASI

Elektronik Laboratuvarı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

TRANSİSTÖRLER 1. ÇİFT KUTUP YÜZEYLİ TRANSİSTÖRLER (BJT)

Elektrik Devre Temelleri 3

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Deney 2: FARK YÜKSELTEÇ

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

DENEY 3. Maksimum Güç Transferi

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Şekil 1.1: Temel osilatör blok diyagramı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

Elektrik Devre Temelleri

Yükselteçlerde Geri Besleme

Transkript:

BJT YÜKSELTEÇLER (KUVVETLENDİRİCİLER) (BJT AMPLIFIERS) KÜÇÜK İŞARET ANALİZİ (AC ANALİZİ) Prof. Dr. Mehmet Akbaba Karabük Üniversitesi Bilgisayar Mühendisliği Bölümü 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 1

BJT YÜKSELTEÇLER Önceki bölümde, bipolar transistörün çalışması ve yapısı tanımlanmış ve bu elemanları içeren devrelerin dc cevabını tasarlanmış ve analiz edilmişti. Bu bölümde lineer yükselteç uygulamalarında bipolar transistörün kullanımı üzerinde durulacaktır. Lineer yükselteçler dendiğinde çoğu zaman analog sinyallerle uygulamalar anlaşılmaktadır. Analog sinyalin genliği limitleri içerisinde herhangi bir değerde olabilir ve zamana göre sürekli bir değişim arzedebilir. Bu durumda lineer yükselteçde çıkış sinyali giriş sinyalinin genellikle birden büyük bir sabit ile çarpılmış halidir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 2

Bu bölümde verilmek istenenler aşağıdaki gibi sıralabilir. Analog sinyal kavramını ve lineer yükselteç prensibini anlamak, Zamanla değişen küçük genlikli bir giriş sinyalini kuvvetlendiren bir tranzistör devresinin işleyişini incelemek, AC yük doğrusu kavramını anlamak ve çıkış sinyalinin maksimum simetrik salınımını belirlemek, Çok transistörlü ve çok katmanlı kuvetlendirici devrelerini analiz etmek, Bir yükselteç devresinde sinyal gerilim, akım ve güç kazancı kavramını tanımlamak ve hesaplamak. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 3

1.1 ANALOG SİNYALLER VE LİNEER YÜKSELTEÇLER Bu bölümde sinyalleri, analog devreleri ve yükselteçleri inceleyeceğiz. Bir sinyal bir çeşit bilgi içerir. Örneğin konuşan bir insan tarafından üretilen ses dalgaları başka bir insanla iletişim kuran insanın bilgilerini içerir. Bizim duyma, görme ve dokunma gibi fiziksel duyularımız doğal olarak analogtur. Analog sinyaller sıcaklık, basınç ve rüzgar hızı gibi parametreleri temsil eder. Aşağıda bir kompakt diskin çıkış sinyali, mikrofondan gelen bir sinyal veya kalp ritim monitöründen gelen bir sinyal gibi elektriksel sinyaller ile ilgilenceğiz. Elektriksel sinyaller zamanla değişen akım ve gerilim formundadır. Analog sinyalin genliği limitleri içerisinde herhangi bir değeri alabilir ve zamanla sürekli değişebilir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 4

Analog sinyalleri işleyen elektronik devreler analog devreler olarak isimlendirilir. Analog devreye bir örnek lineer yükselteçdir. Lineer bir yükselteç giriş sinyalini yükseltir ve genliği giriş sinyaliyle orantılı ve daha büyük olan bir çıkış sinyali üretirler. Pek çok günlük modern sistemde sinyaller işlenir ve dijital formda gönderilir veya alınır. Analog sinyal üretmek için bu dijital sinyaller bir dijital-analog dönüştürücü vasıtasıyla işlenmelidir. D/A ve A/D dönüştürücüler kullanılır. Bu bölümde, kuvvetlendirilecek analog bir sinyale baştan sahip olduğumuzu kabul edeceğiz. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 5

Belirli bir kaynaktan gelen zamanla değişen sinyaller faydalı olacak şekilde işlenebilmeden önce sıklıkla kuvvetlendirilmesi gerekir. Örneğin Şekil 1 kompakt disk sisteminin çıkışı olan bir sinyal kaynağını göstermektedir. Burada sinyal kaynağı D/A konvertörün çıkışı olup bu sinyal küçük güçlü olan ve zamanla değişen küçük bir akım ve gerilimden oluşur. Hoparlörü sürmek için gerekli güç kompakt diskin çıkış sinyalinden daha büyüktür dolayısıyla kompakt disk sinyali, sesin duyulabilmesi için hoparlörleri sürmeden önce kuvvetlendirilmelidir. Diğer sinyal örnekleri de bir mikrofonun çıkışı, dünya etrafında dönen bir mekikten alınan ses sinyalleri, hava uydusundan alınan video sinyalleri ve EKG cihazından alınan çıkış sinyalleri gibi aynı şekilde kullanışlı ve işlenebilir hale getirilmeden önce kuvvetlendirilmelidir (YÜKSELTİLMELİDİR) 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 6

Şekil 1 de gösterildiği üzere bir dc kaynak yükselteçye (yükseltece,(amplifikatöre)) bağlanmıştır. yükselteç devresinde, transistörün yükseltici olarak davranabilmesi için ileri-aktif bölgede kutuplanmış transistörler kullanılmalıdır. Burada hoparlör çıkışının kompakt diskin ürettiği sinyalin mümkün olduğunca net bir kopyası olması için çıkış sinyalinin giriş sinyalinin lineer kuvvetlendirilmiş hali olmasını gerekmektedir. Bu yüzden yükseltecin (amplifikatörün) lineer çalışmasını istemekteyiz. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 7

dc güç kaynağı dc güç Giriş işareti CD çalar zayıf işaret (sinyal) gücü Yükselteç (kuvvetlendirici ) güçlü işaret (sinyal) gücü (Amplifier) yük hoparlör Şekil 1.a: Kompakt disk çaların blok diyagramı 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 8

Şekil 1.b: Örnek bir yükseltici devresi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 9

Şekil 1 kuvvetlendiricinin iki tip analizini yapmamız gerekmektedir: İlki dc kaynak uyguladığımızdan dolayı dc analiz bunu kutuplama, eğilimleme veya ön gerilimleme olarak bililiyoruz. Bu analizin nasıl yapıldrığını önceki derslrimizde detaylı olarak işlemiştik. İkincisi zamanla değişen sinyal kaynağından dolayı zamanla değişen veya ac analizdir. Bu analizin nasıl yapılacağını, bu analiz için gerekli olan ac eşdeğer devresinin çıkartılışını bu dersimizde işleyeceğiz. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 10

Lineer bir yükselteçde süperpozisyon prensibi uygulanır. Süperpozisyon prensibi ugulandığında birden çok bağımsız giriş tarafından uyarılan lineer bir devrenin cevabı her bir giriş kaynağına karşı düşen cevapların tek tek toplamına eşittir. Ac analizi yapılırken aşağıdaki adımlar uygulanarak ac eşdeğer devre elde edilir. a) Bütün dc kaynaklar sıfıra eşitlenir ve kısa devre eşdeğeri yerleştirilir. b) Bütün kapasitörlerin yerine kısa devre eşdeğerleri konulur c) Adım a ve b de kısa devre yapılan elemanlar devreden kaldırılır d) Devre daha kullanılışlı ve daha mantıklı bir şekilde yeniden çizilir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 11

Yukarıdaki kurallar Şekil 3.a da verilen ortak emiterli yükselteç devresine uygulandığında Şekil 3.b de verilen bsitleştirilmiş ac eşdeğer devre elde edilir. Bu eşdeğer devrenin ac analizine tam hazır hale gelmesi için ileride göreceğimiz gibi ilave değişiklikler gerekecektir. Burada hem zamanla değişen ac işaretler (sinyaller) hemde dc işretlerle işlem yapacağız. Bu nedenle bu işaretleri biribirinden ayıran simgeler kullanılmalıdır. Tablo 1 kullanılacak olan simgeleri özetlemektedir. Büyük harf alt simgeli ve büyük harf değişken (örneğin V CE ) DC değeri, Küçük harf alt simgeli ve kücük harf (bazen büyük hafte kullanılmaktadır) değişken (örneğin v ce ) ac değeri, Büyük harf alt simgeli ve küçük harf değişken (örneğin v CE ), toplam ani değeri gösterir. (Şekil 2 ye bakınız). 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 12

DC devrede DC değer Ac eşdeğer devrede ac değer Toplam ani değer V BE v be v BE I B i b i B I C i c i C V CE v ce v CE I E i e i E Tablo 1: DC değer, ac değer ve toplam ani değeri gösteren simgeler 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 13

Şekil 2: DC sinyal, ac sinyal ve toplam ani değer gösterilimi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 14

Şekil 3.a: Ortak Emiterli Yükselteç Şekil 3.b: Basitleştirilmiş ac eşdeğer devre 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 15

2 BİPOLAR (BJT) LİNEER YÜKSELTEÇ (KUVVETLENDİRİCİ) Buradaki amaç tek bir transistörün küçük, zamanla değişen sinyali yükseltilmesinden yola çıkarak yükseltilme işlemini incelemek ve lineer yükseltecin analizinde kullanılan transistörün küçük-sinyal modelini geliştirmektir. Bu bölümda bipolar transistör (BJT) yükselteçlerini inceleyeceğiz. Bipolar transistörler (BJT) göreceli olarak yüksek kazançlarından dolayı geleneksel olarak lineer yükselteç devrelerinde kullanılmıştır. Analizimize bir önceki bölümde tartışılan bir bipolar devreyi göz önüne alarak başlayalım. Şekil 4(a) giriş sinyali V i olan ve hem dc hem de ac sinyali içeren bir devreyi gösterir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 16

Şekil 4.a 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 17

Şekil 4.b: Zamanla değişen sinyal kaynağının beyz dc kaynağı ile seri bağlandığı ortak-emiterli yükselyeç devresi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 18

Şekil 4.c (Şekil 1.b ye bakınız) 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 19

Şekil 1.b: Örnek yükselteç devresi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 20

Şekil 4(a) Bipolar transistör inverter devresini, Şekil 4(b) de V BB transistörü belirli bir Q noktasında kutuplandıran dc kaynağı, v S kuvvetlendirilecek sinyal olmak üzere ac kaynağı içeren aynı devreyi göstermektedir. Şekil 4(c) daha önceki dersimizde geliştirilen gerilim transfer karakteristiğini göstermektedir. Devreyi bir yükselteç olarak çalıştırmak için transistörü ileri-aktif bölgede kutuplandırarak Q (sükunet noktası veya çalışma noktası) noktasında çalıştırmak üzere dc gerilim ayarlanmalıdır. Bu dc analiz veya devre tasarımı bir önceki dersimizde (dc analizi-kutuplama yöntemleri) detaylı olarak işlenmişti. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 21

Örnek olarak sinüsoidal zamanla değişen bir sinyal dc giriş gerilimine V BB bindirilirse çıkış gerilimi zamanla değişen bir çıkış gerilimi üreterek transfer eğrisi boyunca değişecektir. Eğer zamanla değişen çıkış gerilimi giriş gerilimi ile doğru orantılı ve daha büyükse bu durumda devre lineer yükselteçtir. Bu şekilden transistör aktif bölgede kutuplanmamışsa çıkış geriliminin giriş gerilimindeki değişiklik ile orantılı değişmeyeceğini görürüz. Bu durumda artık bu bir yükselteç değildir. Bu bölümde bipolar transistörlerin ac analiz ve tasarımıyla ilgileneceğiz. Bunu yapmak için zamanla değişen çıkış ve giriş sinyalleri arasındaki bağıntıyı belirlemeliyiz. Bu amaçla devrenin temel çalışmasına bir öngörü oluşturması için ilk olarak grafiksel tekniği kullanacağız. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 22

2.1 Grafiksel Analiz ve AC Eşdeğer devre Şekil 5, Şekil 4.b da verilen transistörün karakteristiğini, dc yük doğrusu ve Q-çalışma nokrasını göstermektedir. Sinüsoidal sinyal kaynağı Vs şekilde gösterildiği gibi çalışma noktasındaki beyz akımına bindirilmiş zamanla değişen veya ac beyz akımı üretecektir. Zamanla değişen beyz akımı çalışma noktasındaki kollektör akımı üzerine bindirilmiş bir ac kollektör akımı indükleyecektir. Ac kollektör akımı R C üzerinde zamanla değişen bir gerilim üretecektir. Bu gerilimde şekilde gösterildiği gibi bir ac kollektör-emiter gerilimi indükler. Ac kollektör-emiter gerilimi veya çıkış gerilimi genellikle sinüsoidal giriş sinyalinden daha büyüktür. Bu durumda devre yükselteç olarak çalışır. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 23

Şekil 4.b: Zamanla değişen sinyal kaynağının beyz dc kaynağı ile seri bağlandığı ortak-emiterli yükselyeç devresi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 24

Time=Zaman Şekil 5: Ortak emiter transistör karakteristikleri, dc yük doğrusu, beyz akımında, kollektör akımında ve kollektör-emiter geriliminde sinüzoidal değişim 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 25

Devredeki akım ve gerilimlerdeki sinüzoidal değişimler arasındaki ilişkiyi belirlemek için matematiksel bir model veya metot geliştirmeliyiz. Bahsedildiği üzere bir lineer yükselteçte süperpozisyon uygulanarak dc ve ac analizler ayrı ayrı yapılabilir. Lineer bir yükselteç elde etmek için ac sinyaller arasında lineer bir ilişkiyi garantilemek üzere zamanla değişen veya ac akımlar ve gerilimler yeterince küçük olmalıdır. Bu amacı karşılamak için zamanla değişen sinyaller küçük sinyaller olarak kabul edilir. Böylece ac sinyallerin genlikleri bu lineer ilişkiyi elde etmek için yeterince küçük olmuş olurlar. Yeterince küçük kavramı veya küçük sinyal kavramı küçük sinyal eşdeğer devrelerinin geliştirdikçe daha detaylı olarak tartışılacaktır. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 26

Şekil 2.a daki devrenin beyzındaki zamanla değişen bir sinyal kaynağı V S beyz akımında zamanl değişen bir bileşen üretir. Bu da aynı zamanda zamanla değişen bir beyz emiter gerilimine sebep olur. Şekil 5 beyz akımı ve gerilimi arasında eksponansiyel ilişkiyi göstermektedir. DC çalışma noktası üzerine bindirilmiş zamanla değişen sinyallerin genliği küçük ise o halde ac beyz-emiter gerilimi ve ac beyz akımı arasında lineer bir ilişiki geliştirebiliriz. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 27

Şekil 6: Bindirilmiş sinüzoidal sinyallerle beyz emiter voltajına karşılık beyz akımı karakteristiği. Çalışma noktasındaki eğim küçük sinyal parametresi olan r e ile ters orantıldır. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 28

Ac Eşdeğer Devre Şekil 4 de verilen ortak emiter devresinin ac eşdeğerinin buraya kadar anlatılanlardan Şekil 7 deki gibi olacağını anlamak zor olmasa gerek: Şekil 7: Temel tranzistör devresi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 29

Şekil 8: npn transistörün hibrit-π eş değer devresi. AC sinyal akımları ve gerilimleri gösterilmektedir. Fazör sinyalleri parantez içinde gösterilmektedir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 30

V T termal gerilimi göstermektedir ve daha önce gördüüğümüz gibi V T =kt/q olarak verilmiştir. Burada k= boltzman sabitini T : Kevin cinsinden sıcaklığı ve q: elelektron yükünü ifade etmektedir. g m : kondüktans (iletkenlik) katsayısı V T her defasında yukarıdaki gibi hesaplanmaz. Ortam sıcaklığı 20 veya 25 o C kabul edilip 25 veya 26 mv olarak alınır. r e = v be /i e = V T /I EQ = 26 (V T (mv) / I E (ma) ) veya 25 (mv/i E (ma) olarak alınır. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 31

ac i c = β ac i b r v i be b i e v be /(1 ) (1 i e ) v be r e v i be e olarak tanımlandığından 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 32

r π =(1+β)r e veya yaklaşık olarak r π =βr e yazılabilir. g m v be I V CQ T v be r I e CQ I EQ r i b r e (( I CQ 1) / ) I CQ (1 ) r i e b i b Elde edilir. Bu durumda Şekil 7 deki ac eşdeğer devre yerine Şekil 8 deki eşdeğer devre verilebilir: 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 33

Şekil 9: Ortak emiter akım kazancı kullanarak BJT küçük sinyal eşdeğer devresi. AC sinyal akımları ve gerilimleri gösterilmektedir. Fazör sinyalleri parantez içinde gösterilmektedir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 34

R E direnci varsa ac eşdeğer devre aşağıdaki gibi olur: Şekil 10 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 35

i c i e alınırsa ac eşdeğer devre Şekil 11 daki gibi olur Şekil 11 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 36

Tranzistörün çikiş empedansı veya direncini Z o = r o göz önüne alırsak ac eşdeğer devre aşağıdaki gibi olur: r o direncinin tanımı aşağıda verilmiştir: V A Early gerilimi çok büyük olduğundan r o direnci genel olarak çok büyüktür ve çoğunlukla ihmal edilir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 37

Early gerilimi V A ve r o nun tanımları Şekil 11 ve Şekil 12 de verilmiştir Şekil 12.a: Early gerilimi V A nın tanımı 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 38

Şekil 12.b: Early gerilimi V A nın tanımı 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 39

Şekil 12: Çıkış direnci r o nun tanımı 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 40

AC Beta nın ( βac) DC Beta (β=βdc) ile Karşılaştırılması Şekil 14.a da gösterildiği gibi, tipik bir transistörün için I C akımının I B akımı ile değişimi lineer olmayan bir grafiktir. Eğer Eğrinin üzerinde bir Q noktasını seçersek ve beyz akım değerini I B kadar değiştirirsek, Şekil 14.b de gösterildiği gibi IC kadar değişir. Lineer olmayan eğrinin başka bir noktasında IC / IB oranı farklı olacaktır ve Q noktasında IC / IB oranı da değişebilir. β=β dc = IC / IB ve β ac = IC / IB olduğu için bu iki değer bir miktar değişiklik gösterebilir. Problem çözümlerinde çoğu kez β=β dc = β ac yaklaşıklığını kullanacağız. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 41

Şekil 14: β ac ve β dc parametrelerinin grafiksel gösterilimi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 42

Transistörlü yükselteçlerde kullanılan 3 temel bağlantı tipi Şekil 14 de ayrıntılı olarak verilmiştir. Bu bağlantı tipleri sırasıile (daha önce gördüğümüz gibi); Ortak-emiterli yükselteç Ortak-kollektörlü yükselteç Ortak-beyzli yükselteç olarak adlandırılır. Her bir bağlantı tipinin kendine has bir takım özellikleri vardır. Dolayısı ile kullanım alanları farklıdır. İlerleyen bölümlerde sıra ile her bir bağlantı tipinin özelliklerini, dc ve ac analizlerini ayrıntılı olarak inceleyeceğiz. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 43

Şekil 15.a: Ortak Emiterli yükselteç (kuvvetlendirici) 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 44

Şekil 15.b: Ortak Kollektörlü yükselteç (kuvvetlendirici) 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 45

Şekil 15.c: Ortak Beyzli yükselteç (kuvvetlendirici) 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 46

ORTAK EMİTERLİ YÜKSELTECİN ÖZELLİKLERİ Yükseltilecek veya kuvvetlendirilecek giriş işareti yükselticinin beyz-emiter terminalleri arasından uygulanmıştır. Çıkış işareti ise; yükselticinin kollektöremiter terminaller arasından alınmıştır. Dolayısıile emiter terminali giriş ve çıkışişareti için ortak uçtur. Bundan dolayıbu yükselteç ortak emiterli yükselteç (OE) olarak adlandırılır. Ortak emiter bağlantılıyükselteç devresinin temel özellikleri aşağıda sıralanmıştır. Gerilim Kazancı(Voltage Gain) : Var Akım Kazancı(Current Gain) : Var Güç Kazancı(Power Gain) : Var, yüksek Sinyal Faz Çevrimi : Var, 180 0 Giriş Empedansı: Orta düzeyde (500Ω-1kΩ) Çıkış Empedansı: Orta düzeyde (10KΩ-50KΩ 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 47

Gerilim bölücülü dc polarmaya sahip ortak emiterli yükselteç devreleri pratikte sık kullanır. Pek çok cihaz ve sistemin tasarımında kullanılan tipik bir yükselteç devresi Şekil 16 te verilmiştir. Şekil 16: Tipik bir OE yükselteç (kuvvetlendirici) devresi 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 48

OE devrede V s giriş sinyal kaynağıdır. R s direnci ise sinyal kaynağının iç direncidir. Yükseltilecek sinyal transistörün beyzine C 1 kapasitörü üzerinden uygulanmaktadır. C 1 değeri yeterince büyük (1µF-100µF) seçilmelidir. Çıkış sinyali ise kollektör üzerinden C 2 kapasitörü ile R L yük direnci üzerine alınmaktadır. C 2 değeride C 1 gibi uygun değerde seçilmelidir. Transistörün emiterine bağlı R E direnci, ac çalışmada transistörün kazancını azaltmaktadır. Orta frekans bölgelerinde çalışmada R E nin bu etkisi paralel bağlı C E kapasitörü tarafından yok edilmiştir. Bu nedenle C E kapasitörüde yeterince büyük (1µF-100µF) seçilmelidir. R E direnci sadece dc çalışmada transistörün kararlılığını sağlamaktadır. Bu nedenle C E kapasitörüne emiter bypass kapasitörü denilmektedir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 49

BJT Tranzistorlü Yükselteç devrelerinin ac eşdeğer devre örnekleri ve Gerilim Kazancı A v tanımı Şekil 16 de verilen ortak emiter bağlantılı yükselteç devresinin ele alalım. Devrenin analizi iki aşamada gerçekleştirilir. İlk aşama dc analizi, ikinci aşama ac analizidir. A V =Çıkış gerilimi/giriş gerilimi olarak tanımlanır. DC Analizi Devrenin dc analizi için ilk adım, dc eşdeğer devreyi çizmektir. DC eşdeğer için devrede bulunan kapasitörler açık devre kabul edilir ve V s sinyal kaynağı dikkate alınmaz. Bu koşullar yerine getirildiğinde oluşan dc eşdeğer devre Şekil 17 da verilmiştir. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 50

Şekil 17: Ortak emiter bağlantılı yükselteç devresinin dc eşdeğer devresinin Çıkarılması 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 51

Devrenin dc analizini yapalım. DC analizde amaç transistörün polarma akım ve gerilimleri hesaplayarak çalışma bölgesi belirlenmekti. O halde, Thevenin eşdeğer devresinden yararlanarak; 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 52

Bulunan sonuçlardan transistörün aktif bölgede çalıştığı görülmektedir. O halde ac analize geçebiliriz. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 53

ac analizi Devrenin ac analizi için ilk adım, ac eşdeğer devreyi çizip daha sonra hibrid π veya r e modelini çıkarmaktır. DC eşdeğer için devrede bulunan dc kaynaklar ve kapasitörler kısa devre kabul edilir. Bu koşullar altında oluşan ac eşdeğer devre Şekil 18 de verilmiştir Şekil 18: Ortak emiter bağlantılıyükselteç devresinin dc eşdeğer devresinin çıkarılması 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 54

Yükselteç devresinin küçük sinyal eşdeğer devresi için ikinci aşama ise transistörün eşdeğer modelini yerleştirmektir. Bu işlem sonucunda ortak emiterli yükselteç devresinin küçük sinyaller için eşdeğer devre modeli şekil 19 de verilmiştir. Şekil 19: Ortak emiterli yükselteç devresinin küçük sinyal eşdeğer devre modeli 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 55

Gerekli parametreleri hesaplayarak ac analize geçelim. Önce transistörün iletkenlik Katsayısını ve beyz-emiter arası sinyal gerilimi değerlerini bulalım. (r e 1/g m =10 Ω) (r π =βr e =100x10=1000 Ω =1 kω) r e doğrudan V T / I E olarakta hesaplanabilir. Eşdeğer devre modelinden yararlanarak Vs, Rs ve R in çevresinden hareket ederek göz denklemini yazarak V değerini bulalım. 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 56

v in =v π =0.149vs v0 ( 100mA/ V )( 0. 149v s )( 2/ 3) 9. 983v s A V =v o / v π A V 9. 983v 0. 149v 67 - İşareti giriş gerilimi ile çıkış gerilimi arasında 180 o faz farkından kaynaklanmaktadır (faz çevirici özelliği) s s 15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 57

15.04.2015 ELECTRONİK DEVRELER Prof. M. Akbaba 58 Veya b e in i v r L C L C b L C L C c o R R R R i R R R R i v 67 1 2 0 01 1 2 ) *(. * ) ( V L C e L C b e L C L C b in o V A R R r R R i r R R R R i v v A

KAYNAKLAR 1. Robert Boylestad and Louis Nashelski, Elektromik Cihazlar ve Devre Teorisi, Palme Yayıncılık 2. Mehmet Akbaba, Elektronik Ders Notları 3. Thomas L. Floyd, Electronic Devices, Merill Publishin Company 59