Çelik Bir Bacanın Dinamik Davranışının Analizi

Benzer belgeler
ENDÜSTRİYEL BİR TESİSTE ÇELİK BACA DAVRANIŞININ DENEYSEL VE TEORİK YÖNTEMLERLE BELİRLENMESİ

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

Şekil 1. DEÜ Test Asansörü kuyusu.

SARSMA TABLASINA YERLEŞTİRİLMİŞ 3 KATLI HASARLI VE HASARSIZ ÇELİK YAPI MODELİNİN DİNAMİK KARAKTERİSTİKLERİNİN BELİRLENMESİ

DOKUZ KATLI TÜNEL KALIP BİNA SONLU ELEMAN MODELİNİN ZORLAMALI TİTREŞİM TEST VERİLERİ İLE GÜNCELLENMESİ

BACA DİNAMİĞİ. Prof. Dr. Hikmet Hüseyin H

TESTBOX Serisi Cihazlar ile Tarihi Bir Yapıda Kablosuz Yapısal Sağlık Takibi

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ

Musa DEMİRCİ. KTO Karatay Üniversitesi. Konya

ÇOK KATLI BİNALARIN DEPREM ANALİZİ

Yapı Sağlığı İzleme Sistemlerinin Farklı Taşıyıcı Sistemli Uzun Açıklıklı Tarihi Köprülere Uygulanması

YAPILARIN ZORLANMIŞ TİTREŞİM DURUMLARININ ARAŞTIRILMASI

Güçlendirme Alternatiflerinin Doğrusal Olmayan Analitik Yöntemlerle İrdelenmesi

YAPILARIN TİTREŞİM GENLİĞİNE GÖRE DİNAMİK ÖZELLİKLERİNİN DEĞİŞİMLERİNİN İNCELENMESİ *

İtme Sürme Yöntemi İle İnşa Edilmiş Sürekli Ardgermeli Köprülerin Deprem Tasarımı. Özgür Özkul, Erdem Erdoğan, Hatice Karayiğit

BETONARME BİR YAPIDA ÇEVRESEL VE KUVVET ETKİSİNDE TİTREŞİM ANALİZLERİ AMBIENT AND FORCED VIBRATION SURVEY IN A REINFORCED CONCRETE BUILDING

MEVCUT BİR SU DEPOSUNUN DİNAMİK ÖZELLİKLERİNİN TİTREŞİM KAYITLARI İLE BELİRLENMESİ

Dersin Adı Dersin İngilizce Adi Seçmeli / Zorunlu. Tez Çalışması Thesis Zorunlu Computer Applications in Civil Engineering

SÜLEYMANİYE CAMİİ NİN FARKLI DEPREM KAYITLARI ALTINDA DAVRANIŞININ İNCELENMESİ

Bölüm 3. Tek Serbestlik Dereceli Sistemlerin Zorlanmamış Titreşimi

BETONARME BİR YAPININ ÇEVREL TİTREŞİM KAYITLARI İLE SADECE TAŞYICI SİSTEMLİ VE İNŞAATI TAMAMLANMIŞ DURUMDA DİNAMİK PARAMETRELERİNİN BELİRLENMESİ

SARILMIŞ VE GELENEKSEL TİP YIĞMA YAPILARIN DEPREM DAVRANIŞLARININ İNCELENMESİ. Ali URAL 1

ÇOK KATLI BETONARME YAPILARIN DİNAMİK ANALİZİ

Temel Kavramlar ve Hesap Yöntemleri. Döşeme Sistemlerinde Titreşim Ve Kullanım Durumlarına Göre Tasarım. Neden döşeme titreşimleriyle ilgileniyoruz?

Sıvı Depolarının Statik ve Dinamik Hesapları

Data Merkezi. Tunç Tibet AKBAŞ Arup-İstanbul Hüseyin DARAMA Arup- Los Angeles. Tunç Tibet AKBAŞ

Yapı Sistemlerinin Hesabı İçin. Matris Metotları. Prof.Dr. Engin ORAKDÖĞEN Doç.Dr. Ercan YÜKSEL Bahar Yarıyılı

LAZER SENSÖRLERLE BİR ROBOTUN DOĞAL FREKANSLARININ VE STATİK ÇÖKMELERİNİN ÖLÇÜMÜ

PİEZOELEKTRİK YAMALARIN AKILLI BİR KİRİŞİN TİTREŞİM ÖZELLİKLERİNİN BULUNMASINDA ALGILAYICI OLARAK KULLANILMASI ABSTRACT

GERÇEK ZAMANLI YAPI SAĞLIĞI İZLEME SİSTEMLERİ

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ

Antakya da Güçlendirme Uygulaması Yapılan Okul Binalarında Uygulanan Titreşim Testleri ve Beklenen Sonuçlar

Zorlamalı Titreşim ş Testleri

YARI RİJİT BİRLEŞİMLİ ÇELİK ÇERÇEVELERİN ANALİZİ

T.C. MÜHENDİSLİK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ

hir Osmangazi Üniversitesi, Mühendislik

PERDE DUVARLI MODEL BİR BİNANIN DİNAMİK DAVRANIŞINA YÖNELİK PARAMETRİK ÇALIŞMA

DEPREM YÖNETMELİĞİNDEKİ FARKLI ZEMİN SINIFLARINA GÖRE YAPI DAVRANIŞLARININ İRDELENMESİ

Yapı Sönüm Oranının Belirlenmesinde Kullanılan Yöntemlerin Sayısal ve Deneysel Olarak İncelenmesi

KÖPRÜ SARSMA DENEYLERİYLE ARAÇLARIN KÖPRÜ DEPREM DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ FARKLI YER HAREKETLERİ ETKİSİNDEKİ SİSMİK DAVRANIŞININ İNCELENMESİ

PERİYOT HESAPLAMASINDA P- ETKİSİ: SARSMA TABLASI DENEYİ

DENİZ PETROL TLP-TİPLİ PLATFORMUN MODEL DİNAMİK İNCELENMESİ

HARAKETLİ YÜK PROBLEMİNİN DENEYSEL OLARAK İNCELENMESİ

MEVCUT YAPILARIN DĠNAMĠK ÖZELLĠKLERĠNĠN MĠKROTREMOR ÖLÇÜMLERĠ ĠLE BELĠRLENMESĠ

Perdeli-Çerçeveli Taşıyıcı Sistemli Binalarda Taşıyıcı Sistem Seçiminin Yapı Davranışı Üzerindeki Etkisinin İncelenmesi

TEKNOLOJİK ARAŞTIRMALAR

ÇELİK BİNALARDA MODAL ÖZELLİKLERİN DEĞIŞİMİNİN YAPIM SÜRESİNCE İZLENMESİ

DENEYSEL MODAL ANALİZ YÖNTEMİ İLE DÜZLEM ÇERÇEVELERİN DİNAMİK KARAKTERİSTİKLERİNİN BELİRLENMESİ

GEAsystem. İnşaat mühendisliğinde vibrasyon ölçümleri için etkin çözümler. w w w. s e q u o i a. i t

T.C. SÜLEYMAN DEMĐREL ÜNĐVERSĐTESĐ MÜHENDĐSLĐK FAKÜLTESĐ MAKĐNE MÜHENDĐSLĐĞĐ BÖLÜMÜ

Yapısal Analiz Programı SAP2000 Bilgi Aktarımı ve Kullanımı. Doç.Dr. Bilge Doran

Deprem Kayıtlarının Seçilmesi ve Ölçeklendirilmesi

ÇELİK UZAY ÇATI SİSTEMLİ HAL YAPILARIN DEPREM DAVRANIŞLARININ İNCELENMESİ. Armağan KORKMAZ *, Zeki AY **

Yığma yapı elemanları ve bu elemanlardan temel taşıyıcı olan yığma duvarlar ve malzeme karakteristiklerinin araştırılması

BİNALARDA KISA KOLONA ETKİ EDEN PARAMETRELERİN İNCELENMESİ

BETONARME BİR BİNADA BÖLME DUVARLARIN BİNA DİNAMİK ÖZELLİKLERİNE OLAN ETKİLERİNİN İNCELENMESİ

1. YARIYIL / SEMESTER 1

SERAMAR Projesi nin. Mehmet Cemal Genes Mustafa Kemal Üniversitesi, Mühendislik Fakültesi, Hatay, Türkiye

DEPREME KARŞI GÜÇLENDİRME ÖNCESİ VE SONRASINDA BİR BİNANIN DİNAMİK ÖZELLİKLERİNİN DENEYSEL MODAL ANALİZ YÖNTEMİYLE BELİRLENMESİ

UZAYSAL VE DOLU GÖVDELİ AŞIKLARIN ÇELİK ÇATI AĞIRLIĞINA ETKİSİNİN İNCELENMESİ

ANALİTİK MODEL GÜNCELLEME YÖNTEMİ KULLANILARAK KÖPRÜLERİN HASAR TESPİTİ

YAPI MEKANİĞİ LABORATUVARI

Binaların Deprem Dayanımları Tespiti için Yapısal Analiz

Binaların Dinamik Parametrelerinin Operasyonal Modal Analiz Yöntemiyle Belirlenmesi *

BETONARME ÇERÇEVELERİN DEPREM HESABINDA TASARIM İVME SPEKTRUMU UYUMLU DİNAMİK YÖNTEMLERİN KARŞILAŞTIRILMASI

Küçük Ölçekli Sarsma Tablası Test Modelleri için Uygun Ölçeklendirme Katsayısının Araştırılması

Betonarme Yapıların Davranışının Zaman Tanım Alanında Hesap Yöntemi ile Belirlenmesi

BETONARME YAPILARDA BETON SINIFININ TAŞIYICI SİSTEM DAVRANIŞINA ETKİSİ

DERS BİLGİLERİ DEPREM MÜHENDİSLİĞİNE GİRİŞ CE CE 381 Yapısal Analiz. Yrd. Doç. Dr. Özden Saygılı

1.1 Yapı Dinamiğine Giriş

Karayolu Köprülerinin Modal Davranışına Kutu Kesitli Kiriş Şeklinin Etkisi Doç. Dr. Mehmet AKKÖSE

T.C. ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ (Y.L.) PROGRAMI EĞİTİM ÖĞRETİM YILI DERS KATALOĞU

BAÜ Müh-Mim Fak. Geoteknik Deprem Mühendisliği Dersi, B. Yağcı Bölüm-5

Hava Aracının Üzerinden Titreşim Kaynaklı Enerji Hasatı Çalışmaları

CAM GİYDİRME CEPHENİN YÜKSEK BİNALARIN DİNAMİK ÖZELİKLERİNE ETKİLERİ ÜZERİNE BİR VAK A ANALİZİ

UZUN AÇIKLIKLI BETONARME KARAYOLU KÖPRÜLERİNİN DEPREM GÜVENLİKLERİNİN HASARSIZ DİNAMİK DENEYSEL YÖNTEMLERLE BELİRLENMESİ: BİRECİK KÖPRÜSÜ ÖRNEĞİ

ÇEVRESEL TİTREŞİM VERİLERİ KULLANILARAK KEMER BARAJLARIN HASAR DEĞERLENDİRMESİ

Betonarme Binalarda İnşa Aşamalarının Dinamik Karakteristiklere Etkisinin Operasyonal Modal Analiz Yöntemiyle Belirlenmesi

DOĞRUSAL OLMAYAN SİSMİK İZOLASYON SİSTEMLERİNİN PERFORMANSLARININ YAPISAL PARAMETRELERE OLAN DUYARLILIĞI

HELİKOPTER ALT YAPILARININ DİNAMİK ANALİZİ İÇİN DÜŞÜK DERECEDE MODELLEME

Eşdeğer Deprem Yüklerinin Dağılım Biçimleri

Tarihi Niksar Kulak Kümbetinin Deprem Altındaki Sismik Davranışının Değerlendirilmesi

MMU 420 FINAL PROJESİ. 2015/2016 Bahar Dönemi. Bir Yarı eliptik yüzey çatlağının Ansys Workbench ortamında modellenmesi

Beton Sınıfının Yapı Performans Seviyesine Etkisi

YIĞMA YAPILARIN YAPISAL DAVRANIġININ ĠNCELENMESĠ

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş

BİNALARIN BİRİNCİ DOĞAL TİTREŞİM PERİYODUNUN YAKLAŞIK OLARAK BELİRLENMESİ* Approximate Determinatıon Of First Natural Vibratıon Period Of Buildings *

Prof.Dr. BEYTULLAH TEMEL

Yapıların Dinamik Analizinde Kullanılan Sönüm Modellerinin İncelenmesi

Posta Adresi: Karadeniz Teknik Üniversitesi, Mühendislik Fak. İnşaat Müh. Bölümü, Trabzon

Uzay Çatı Sistemlerinin ANSYS Paket Programı Kullanılarak Statik Analizi

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş

Posta Adresi: Sakarya Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Esentepe Kampüsü/Sakarya

YAPILARDA BURULMA DÜZENSİZLİĞİ

Selçuk Üniversitesi ISSN 1302/6178 Journal of Technical-Online YIĞMA BİR OKUL BİNASININ DEPREM PERFORMANS ANALİZİ.

TDY 2007 de Kullanılan Farklı Zemin Sınıfları İçin Performans Değerlendirme Yöntemleri Üzerine Bir Araştırma

DİKEY DOĞRULTUDA KÜTLE DÜZENSİZLİĞİ OLAN YAPILARIN DEPREM ALTINDAKİ DAVRANIŞI

DEPREM ETKİSİNDEKİ YAPI DAVRANIŞINA ZEMİN TAŞIMA GÜCÜNÜN ETKİSİ. Özet

Transkript:

Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(2), 115-123 ss., Aralık 2015 Çukurova University Journal of the Faculty of Engineering and Architecture, 30(2), pp. 115-123, December 2015 Çelik Bir Bacanın Dinamik Davranışının Analizi Gökhan GÜRSOY *1, Hüseyin R. YERLİ 1, Selçuk KAÇIN 2 1 Çukurova Üniversitesi, İnşaat Mühendisliği Bölümü, Adana 2 İskenderun Teknik Üniversitesi, İnşaat Mühendisliği Bölümü, Hatay Geliş tarihi:15.09.2015 Kabul tarihi:12.10.2015 Özet Giderek artan endüstriyel tesislerin (termik ve nükleer santraller, demir çelik fabrikaları, değişik imalata yönelik fabrikalar) ihtiyacı olan endüstriyel bacalar için ülkemizde henüz bir standart bulunmamaktadır. Yine bu yapıların modellenmesi için paket programlar kullanılmakta ancak gerçek davranışı hakkında saha çalışmalarına gerek duyulmaktadır. Bu çalışmada Hatay ili İskenderun ilçesinde yer alan, Türkiye nin en eski demir çelik fabrikalarından biri olan İskenderun Demir ve Çelik A.Ş. (İsdemir) nin 3. Yüksek fırın soba bacası incelenmiştir. Anahtar Kelimeler: Baca, Yapısal analiz, Mevcut titreşim. Determination of a Steel Chimney s Dynamic Behavior Abstract Increasingly, industrial facilities (thermal and nuclear power plants, steel mills, factories for different manufacturing) for industrial chimneys in need in our country does not yet have a standard. Software packages are used for modeling of these structures and field works are needed to identify real behaviour of these structures. In this study Located in the town of Iskenderun of Hatay province, one of the Turkey's oldest iron and steel factories, İsdemir s 3 Blast Furnace Stoves Chimneys were investigated. Keywords: Chimney, Structural analysis, Ambient vibration. * Yazışmaların yapılacağı yazar: Gökhan GÜRSOY, Çukurova Üniversitesi, İnşaat Mühendisliği Bölümü, Adana.e. eng.gursoy@gmail.com Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015 115

Çelik Bir Bacanın Dinamik Davranışının Analizi 1. GİRİŞ Bacaların dinamik davranışları çok uzun yıllardan beri mühendislerce incelenmektedir. Başlangıçta sadece tuğladan yapılan yüksek bacalar, daha sonraki yıllarda betonarme olarak imal edilmiş ve daha sonra da çelik bacalar üretilmiştir. 19. yüzyıl sonlarından 1950 li yıllara kadar yapılan bacaların hemen hemen hepsi tuğla bacalardan oluşmaktaydı (Pallares vd. 2006) [1]. Günümüzde kullanım amacına, yüksekliklerine, tiplerine göre çok farklı şekillerde sınıflandırılabilen bacalara rastlanmaktadır. Aşırı rüzgar yükü sebebiyle veya deprem etkisiyle yıkılan bacalar oldukça yüksek yapılar olduklarından yıkıldıklarında da çevresindeki büyük bir alanı etkilemektedir. Bu sebeple bacaların dinamik davranışı konusunda yapılan çalışmalar oldukça eskiye dayanmaktadır. Son yıllarda ise özellikle kullanılmayan eski tuğla bacalar birer kültürel miras olarak görülmekte ve bu bacaların güçlendirilerek korunması konusunda çalışmalara rastlanmaktadır (Pallares vd. 2011) [2]. Baca gibi yüksek yapılarda önemli yıkıcı etki olan rüzgar yükü etkisi altında bacaların dinamik davranışlarının incelendiği çalışmalar da mevcuttur (Sanada vd. 1992) [3]. Son yıllarda teknolojideki hızlı gelişmeler inşaat mühendisliğinde de önemli aşamalar kaydedilmesini sağlamıştır. Bu gelişmelerden en dikkat çekici olanı yapının dinamik davranışının incelenmesi konusunda izlenen yöntemlerdir. Eskiden laboratuvar testleri veya analitik yöntemler ile çözülen birçok problem günümüzde gerçek yapılara kurulan izleme sistemleri sayesinde daha doğru olarak hesaplanabilmektedir. Eskiden yapıların deprem altındaki dinamik davranışı analitik modeller veya sarsma tablaları üzerine kurulan küçük ölçekli modeller üzerinde yapılan araştırmalar ile yapılmaktaydı. Günümüzde ise yapı izleme sistemleri sayesinde deprem bölgelerindeki yapılara aletler yerleştirilerek alınan deprem verileri yapıların deprem davranışı konusunda gerçekçi bilgiler vermektedir. Mevcut yapılardan alınan verileri laboratuvar ortamında yapılan deneylerden ve analitik modellerden alınan verileri geçersiz kılan değil, tamamlayan veriler olarak düşünülmelidir. Yapı izleme sistemleri ikiye ayrılır: Bir tanesinde yapıya cihazlar yerleştirilip deprem esnasında okuma alınır, diğer yöntemde ise mevcut titreşimler sensörler vasıtası ile kaydedilir. Mevcut titreşimlerin ölçülmesinde de iki yol kullanılabilir. Bunlardan birincisinde yapıya titreşim üretici cihaz ve bu titreşimleri kaydedebilecek sensörler yerleştirilir (zorlanmış titreşim deneyleri), ikincisinde ise titreşim üretici cihazlara ihtiyaç duyulmadan yerleştirilen sensörlerden mevcut titreşim (ambient vibration) kayıtları alınır. California da yapılan Zorlanmış titreşim ve mevcut titreşim testleri yaklaşık 65 yıldır yürütülmektedir. The U.S. Coast ve Geodetic Survey mevcut titreşim analizleri ile yapılan temel periyodlarını ölçmeye 1930 ların başlarında başladı. Yaklaşık 30 yıl sonra Crawford ve Ward, 1964 [4] bu testi inceledi ve yapıların titreşim modlarının ve düşük frekanslarının belirlenmesinde kullanılabileceğini gösterdi. Trifunac (1972) rüzgarı ve mikro sarsıntıları çerçeve sistem yapıların testinde kullandı. Birkaç yıl sonra mevcut titreşim analizlerinin sonuçlarıyla aynı iki bina üzerindeki zorlanmış titreşim testinin sonuçlarını karşılaştırdı. İki testin de sonuçları benzer ve tutarlıydı [5]. Mevcut titreşim analizlerine 1990 ve 2000 lerde daha derin çalışmalarla katkı sağlanmaya devam edildi. Mevcut titreşim analizinin en sık kullanım alanlarından biri de doğal frekansların titreşimlerinin yapıların mod şekillerinin bulunmasını içerir. Mevcut titreşim analizleri, aynı zamanda parametre tahminlerini ve yapıların model özelliklerini geliştirmede kullanılır. Cracow University of Technology, ve Building Research Institute, Polonya da yapılan çalışmalarda 100 m uzunluğundaki yeni bir çelik bacanın rüzgar etkisi altındaki titreşimler sonucu bulonlarında oluşan hasarların nedenleri incelenmiştir. Baca ve paralel bina mevcut mod ve frekansları ölçülerek mevcut yapı davranışlarının farklılıkları üzerinde durularak hasarın nedeni açıklanmıştır [6]. 116 Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015

Gökhan GÜRSOY, Hüseyin R. YERLİ, Selçuk KAÇIN Bu çalışmada İskenderun Demir Çelik Fabrika sahasında içerisinde yer alan yaklaşık 65 metre yüksekliğindeki 3. Yüksek Fırın (3.YF) bacasının dinamik özelliklerinin mevcut titreşim kayıtları ile belirlenmesine çalışılmaktadır. 2006 yılında inşaatı gerçekleştirilen baca, betonarme kazıklı temel üzerine oturmaktadır. Bacaya yüksek fırın gazı refrakter kaplı bir kanal vasıtası ile gelmektedir. Gaz tünelinden gelen yüksek fırın gazı baca içerisinden geçerek emisyon kontrolü ile birlikte şarj edilmektedir. 2. MATERYAL VE METOT 2.1. Materyal 2.1.1. Hızölçerler Hız ölçüm cihazları üç bölümden oluşmaktadır, bir adet hız sensörü, bir adet dönüştürücü ve bir adet kayıt kutusu (Şekil 2). Bu sistemdeki cihazların birbiri ile bağlantısı şu şekilde yapılmaktadır; hız sensörü üzerindeki su terazisi ile dengeye getirildikten sonra kablo ile kayıt ünitesine bağlanır. Bir dönüştürücü ile ana kayıt ünitesine (Network Control Centre) bağlanır. Sensörler yapıdaki mevcut titreşimleri algılar ve kaydeder. Bu çalışmada İSDEMİR A.Ş. de bulunan çelik bacadaki mevcut titreşimler ölçülerek bacanın bazı dinamik karakteristik özelliklerinin bulunması amaçlanmıştır (Şekil 1). Bu amaçla sensör yerleşimleri yapılarak titreşim kayıtları analiz edilmiş ve paket program yardımı ile yapı modellenerek sonuçlar karşılaştırılmıştır. Şekil 2. Hız sensörü ve bağlantıları 2.2. Yöntem 2.2.1. Serbest Titreşim Hareketi Çok serbestlik dereceli sistemlerde serbest titreşimden doğal modlar bulunur. Çok serbestlik sistemlerde serbestlik derecesi sayısı kadar doğal mod ve bunlara karşılık gelen doğal titreşim periyotları mevcuttur. Sistemin koordinat noktalarının yer değiştirmelerinin birbirlerine oranları serbest titreşimin herhangi bir zamanında sabittir. Genel denklemden, sönüm kuvvetleri ve dış kuvvetler çıkarılırsa, çok serbestlik dereceli sistemin, serbest titreşim hareket denklemi elde edilir. Genel dinamik hareket denklemi; mx (t) = P(t) kx(t) cx (t) (1) Şekil 1. Baca genel görünüşü veya Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015 117

Çelik Bir Bacanın Dinamik Davranışının Analizi mx (t) + cx (t) + kx(t) = P(t) (2) şeklini alır. Kütleyi harekete zorlayacak dış etkenler bulunmaması halinde ise, sistemin serbest titreşim denklemi şu şekildedir: mx (t) + cx (t) + kx(t) = 0 (3) 2.2.1.1. Sönümsüz Serbest Titreşim Dış zorlamalar sona erdikten sonra sürmeye devam eden salınımlara serbest titreşim denir. Serbestçe titreşen, tek serbestlik dereceli bir sistemde sönüm olmadığı varsayılırsa, hareketi tanımlayan denklem; mx (t) + kx(t) = 0 (4) halini alır. Denklem şu şekilde yazılabilir; x (t) + ( k m)x(t) = 0 (5) Buradan sönümsüz serbest titreşim frekansı; x (t) + ω 2 (x(t)) = 0 (6) ω 2 = k m ve ω = k m (7) olarak yazılabilir. 2.2.1.2. Sönümlü Serbest Titreşim Tek serbestlik dereceli sönümlü bir sistemde hareketi tanımlayan denklem mx (t) + cx (t) + kx(t) = P(t) (8) Şeklinde olup, x=e αt olarak ele alındığında denklem, Sönüm oranı; ξ = c (11) 2ωm olarak bulunur. Çözümü geçerli kılacak α değerleri 3.11 denkleminin kökleridir. Dolayısıyla bu değerler; α 1 = ξω + ω ξ 2 1 (12) α 2 = ξω ω ξ 2 1 (13) olarak hesaplanır [7]. 2.2.2. Deneyin Yapılışı 3.YF Soba Bacası bulunduğu bölge itibari ile yoğun rüzgar yüklerinin yanı sıra temele 10 ila 20 m mesafelerde sıcak maden geçişini sağlayan demiryollarının yanında yer almaktadır. Proses gereği yüksek fırına yüksek tonajlarda hammadde beslemelerinde titreşimlere maruz kalmaktadır. Deney sırasında taşıma işlemleri için 1000 tonluk BK1000 vinci kullanılmıştır. 28.04.2014 tarihinde sensör yerleşimi için yüksekte çalışabilir, ağır ve tehlikeli işlerde çalışabilir raporlu çalışana sensör yerleşimleri ve bağlantıları konusunda baca tabanında detaylı bilgiler verilmiştir. Burada sensörlerin (MR) aynı doğrultuda olmaları ve aynı yöne bakmaları büyük önem arz etmektedir. Uygulamalı olarak yapılan bilgilendirmenin ardından iş güvenliği açısından emniyetli bir şekilde sensörler Şekil 3-5 de görülen sıra ile yerleştirilmiştir. mα 2 + cα + k = 0 (9) halini alır. Buradan hareketle; α 2 + ( c m )α + (k m ) = α2 + 2ξωα + ω 2 (10) olarak elde edilir. Şekil 3. Sensör bağlantıları 118 Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015

Gökhan GÜRSOY, Hüseyin R. YERLİ, Selçuk KAÇIN Şekil 5. Sensörlerin taşınması 3. BULGULAR 3.1. Deney Sonuçları 3.1.1. Data Analizi Şekil 4. 3.YF soba bacası sensör yerleşimleri Deneyler sonucunda elde edilen verilerin işlenmesi VIEW2002 paket programı ile yapılmıştır. Aletlerden alınan kayıtların analiz edilmeden önce veri işleme denilen bir data temizleme işleminden geçirilmesi gerekir. Bu işlem analizi kolaylaştırdığı Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015 119

Çelik Bir Bacanın Dinamik Davranışının Analizi gibi hata oranlarını da azaltır. Bu kayıtlar için veri işlemesi aşağıdaki adımları kapsar (Şafak, 2007): 1. Datadaki ortalama değerlerin ve lineer hataların ayıklanması (base-line correction). 2. Kayıtlarda gürültünün fazla olduğu çok düşük ve çok yüksek frekanslı kısımların filtre edilmesi. 3. Yapıda mevcut en yüksek frekans değerleri göz önüne alınarak gerekirse kayıtlardaki örnekleme aralığının yükseltilmesi (decimation) 4. Eğer sensörlerden alınan kayıtlar senkronize değilse analitik yöntemler kullanılarak kayıtların senkronize edilmesi. Şekil 6. 3.YF soba bacası hız grafiği 3.1.2. Modal Frekansların Bulunması Yapının modal frekanslarının bulunması en basit yolu işlenmiş datanın Fourier transformunu almaktır. Fourier transformu esas olarak datanın sonlu sayıda sinüs eğrisinin genliklerini değiştirerek ve birbirine göre kaydırarak toplanmasına eşdeğer hale getirilmiş işlemidir. Fourier tarnsformunda genliğin maksimum olduğu frekanslar yapının modal frekansını gösterir (Şafak, 2007). MR adı verilen sensörlerden elde edilen grafikler aşağıda sıralanmaktadır (Şekil 6-8). Deney sonucu elde edilen kayıtlar VIEW2002 paket programı ile analiz edilerek bacanın hakim frekans değerleri Şekil 9 ve Çizelge 1 de sunulmuştur. Şekil 7. 3.YF soba bacası ivme grafiği 3.2. Model Sonuçları Deneysel verilerin karşılaştırılabilmesi açısından bacanın, sonlu elemanlar yöntemini temel alan yapısal analiz programı SAP2000 Nonlineer ile modellemesi yapılmıştır (Şekil 10). Modelleme çalışmalarında elde edilen değerler karşılaştırılmıştır (Çizelge 2). Modelde, temel, perde, refrakter ve sac elemanlar ayrı olarak tanımlanmıştır. İki ayrı yüzeyin beraber hareket etmesini sağlamak amacı ile link elemanlar kullanılmıştır. Şekil 8. 3.YF soba bacası deplasman grafiği 120 Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015

Gökhan GÜRSOY, Hüseyin R. YERLİ, Selçuk KAÇIN Şekil 9. 3.YF soba bacası hakim frekansı Çizelge 1. Deney sonucu elde edilen hakim frekans değerleri 3.YF soba bacası 1.Main 2.Main 3.Main Frekans(Hz) Frekans (Hz) Frekans (Hz) MR1 0,610 0,659 0,659 MR2 0,610 0,659 12.43 MR3 0,610 0,659 0,659 MR4 0,610 0,659 0,659 4. SONUÇ Bu çalışma kapsamında Hatay İli İskenderun İlçesi sınırlarında bulunan İSDEMİR A.Ş. 3. yüksek fırın soba bacası ele alınmış ve yapı üzerine yerleştirilen sensörlerle mevcut titreşim analizleri yapılmıştır. Yapılan deneyler sonucunda bacanın doğal periyotları ve modlarına ait mod şekilleri elde edilmiştir. Elde edilen sonuçlar SAP2000 sonuçları ile birlikte verilmiştir. Bacanın üzerindeki sıcaklık etkisinin değişken olması, baca giriş noktalarında salınımın engellenmesi, Google vana gibi rijit unsurların baca bağlantı noktalarında bulunması gibi nedenler ile deney sonuçları ile bilgisayar modeli mod değerleri arasında farklılıklar gözlemlenmekle Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015 121

Çelik Bir Bacanın Dinamik Davranışının Analizi Şekil 10. Baca detayı ve Mod şekilleri Çizelge 2. Model sonucu elde edilen hakim frekans değerleri Periyot Sn 3.YF soba bacası Frekans Hz 1,5606 0,6408 1,5606 0,6408 birlikte sonuçların yakın çıktığı değerlendirilmektedir. Deney sonucu elde edilen verilerin model verilerine oranı: 1,028 olarak bulunmuştur. Yapının modelinde shell elemanların kullanılması ve link elemanlar ile düğüm noktalarından birleştirilerek beraber hareketlerinin sağlanması gerçek davranışa en yakın sonucu vermektedir. 5. KAYNAKLAR 1. Pallares F. J., Agüero A., Martin M., 2006. Seismic Behaviour of Industrial Masonry 122 Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015

Gökhan GÜRSOY, Hüseyin R. YERLİ, Selçuk KAÇIN Chimneys, International Journal of Solids and Structures Volume 43: 2076-2090. 2. Pallares J. F., Ivorra S., Palleras L., Adam M. J., 2011. State of the Art of İndustrial Masonry Chimneys: A Review from Construction to Strengthening Construction and Building Materials 25: 4351-4361. 3. Sanada S., Suzuki M., Matsumoto H., 1992. Full Scale Measurements of Wind Force Acting on a 200 M Concrete Chimney And Chimney s Response Journal of Wind Engineering and Industrial Aerodynamic 41-44:2165-2176 4. Crawford, R., Ward H.S., 1964. Determination of the Natural Periods of Buildings. Bull. Seis. Soc. Amer., 54,1743-1756. 5. Trifunac, M.D., 1972. Comparison Between Ambient and Forced Vibration Experiments. Earthquake Engineering and Structural Dynamics. Vol. 1, Issue 2, Pages 133 150. 6. Kaweckia J., and Zuranskı J.A., 2007. Cross- Wind Vibrations of Steel Chimneys a New Case History. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, No. 9-11, pp. 1166-1175. 7. Yerlici V., 2007. Yapı Dinamiğine Giriş. Boğaziçi Üniversitesi Yayınevi. 8. Seismosoft, 2013. SeismoStruct - A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures (online). Available from URL: http://www.seismosoft.com 9. SAP2000. V15 Paket Programı, 2013. Computers and Structures Inc. 10. Chopra, A. K., 1995. Dynamics of Structures: Theory and Applications to Earthquake Engineering. 11. Şafak E., 2007. Yapı Titreşilerinin İzlenmesi;Nedir, Neden Yapılır, Nasıl Yapılır ve Ne Elde Edilir? 6. Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015 123

Çelik Bir Bacanın Dinamik Davranışının Analizi 124 Ç.Ü.Müh.Mim.Fak.Dergisi, 30(2), Aralık 2015