JOMINY DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ

Benzer belgeler
DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik. AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi.

Pratik olarak % 0.2 den az C içeren çeliklere su verilemez.

KTÜ, Metalurji ve Malzeme Mühendisliği Bölümü

CALLİSTER FAZ DÖNÜŞÜMLERİ

Çeliklere Uygulanan SERTLEŞTİRME YÖNTEMLERİ

2. Sertleştirme 3. Islah etme 4. Yüzey sertleştirme Karbürleme Nitrürleme Alevle yüzey sertleştirme İndüksiyonla sertleştirme

MALZEME BİLGİSİ DERS 11 DR. FATİH AY.

DENEYİN ADI: Çeliklerin Isıl İşlemi. AMACI: Çeliklerde ısıl işlem yoluyla mikroyapı ve mekanik özelliklerin değişiminin öğretilmesi.

ÇELİKLERİN ISIL İŞLEMLERİ. (Devamı)

Çeliklere Uygulanan SERTLEŞTİRME YÖNTEMLERİ

Faz dönüşümünün gelişmesi, çekirdeklenme ve büyüme olarak adlandırılan iki farklı safhada meydana gelir.

TEKNOLOJİSİ--ITEKNOLOJİSİ. Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ

Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ 1

ÇÖKELME SERTLEŞMESİ (YAŞLANMA) DENEYİ

Ç8620 Ç4140. ÖLÇÜLEN SERTLİK DEĞERİ (HRc) ÖLÇÜLEN SERTLİK DEĞERİ (HRc) SERTLEŞTİRİLMİŞ UÇTAN MESAFE (mm) Ç1050 Ç1040. ÖLÇÜLEN SERTLİK DEĞERİ (HRc)

Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ 1

BÖLÜM 4 KAYNAK METALURJİSİ

ÇELİĞİN ISIL İŞLEMLERİ

1 Prof. Dr. Cuma BİNDAL - Prof. Dr. S. Cem OKUMUŞ - Doç. Dr. İbrahim

ÇÖKELME SERTLEŞTİRMESİ

Isıl işlem, katı haldeki metal ve alaşımlarına belirli özellikler kazandırmak amacıyla bir veya daha çok sayıda, yerine göre birbiri peşine uygulanan

METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ MALZEME LABORATUVARI-I DERSİ

Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği

MMT440 Çeliklerin Isıl İşlemi 2 Sertleştirme Isıl İşlemi ve Sertleşebilirlik

3. MALZEME PROFİLLERİ (MATERİALS PROFİLES) 3.1. METAL VE ALAŞIMLAR. Karbon çelikleri (carbon steels)

OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ.BÖHLER W500

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BMM 205 Malzeme Biliminin Temelleri

BURULMA DENEYİ 2. TANIMLAMALAR:

Isıl işlemler. Malzeme Bilgisi - RÜ. Isıl İşlemler

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ALAŞIMLI ÇELİKLERİN SERTLEŞEBİLME KABİLİYETİNİN SAPTANMASI

MMT440 Çeliklerin Isıl İşlemi 2 Sertleştirme Isıl İşlemi ve Sertleşebilirlik

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ

MALZEME BİLGİSİ DERS 9 DR. FATİH AY.


Çeliklerin Fiziksel Metalurjisi

ÇELİKLERİN VE DÖKME DEMİRLERİN MİKROYAPILARI

TAHRİBATLI MALZEME MUAYENESİ DENEYİ

BÖHLER W303 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Sıcak iş Çeliklerinin Başlıca Özelliklerinin Karşılaştırılması

BÖHLER K600 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca çelik özelliklerinin karşılaştırılması

Burma deneyinin çekme deneyi kadar geniş bir kullanım alanı yoktur ve çekme deneyi kadar standartlaştırılmamış bir deneydir. Uygulamada malzemelerin

MALZEME BİLGİSİ. Katılaşma, Kristal Kusurları

MALZEME BİLGİSİ DERS 8 DR. FATİH AY. fatihay@fatihay.net

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

Bu tablonun amacı, çelik seçimini kolaylaştırmaktır. Ancak, farklı uygulama tiplerinin getirdiği çeşitli baskı durumlarını hesaba katmamaktadır.

BARTIN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ METALURJĠ VE MALZEME MÜHENDĠSLĠĞĠ

BURULMA DENEYİ 2. TANIMLAMALAR:

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Demir-Karbon Denge Diyagramı

Ç l e i l k i l k e l r e e e Uyg u a l na n n n Yüz ü ey e y Ser Se tle l ş e t ş ir i me e İ şl ş e l m l r e i

BÖHLER W300. Sıcak iş Çeliklerinin Başlıca Özelliklerinin Karşılaştırılması

YTÜ Makine Mühendisliği Bölümü Mekanik Anabilim Dalı Genel Laboratuvar Dersi Eğilme Deneyi Çalışma Notu

Fe-C ve Fe-Fe 3 C FAZ DİYAGRAMLARI

ÇÖKELME SERTLEŞTİRMESİ HOŞGELDİNİZ

1. AMAÇ Çeliklerde ısıl işlem yoluyla mikroyapı ve mekanik özelliklerin değişiminin incelenmesi

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

MMT407 Plastik Şekillendirme Yöntemleri

FZM 220. Malzeme Bilimine Giriş

BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK VE MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 3 NOKTA EĞME DENEYİ FÖYÜ

OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ

Mühendislik Mimarlık Fakültesi Makine Mühendisliği Bölümü

Isıl İşlemde Risk Analizi

ÇELİKLERİN KAYNAK KABİLİYETİ

DEMİR KARBON FAZ DİYAGRAMI

genel denklemin elde edilebilir. Şekil 1' den, M=P.V yazılabilir. Böylece elastik eğri denklemi

Yüzey Sertleştirme 1

Demirin Kristal Yapıları

Demir-Karbon Denge Diyagramı

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

BÖHLER W302. Sıcak iş Çeliklerinin Başlıca Özelliklerinin Karşılaştırılması

Faz ( denge) diyagramları

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 9B - BURULMA DENEYİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 2 s Mayıs 2004

Paslanmaz Çeliklerin Kaynak İşlemi Esnasında Karşılaşılan Problemler ve Alınması Gereken Önlemler Paslanmaz çeliklerin kaynak işlemi esnasında

ÇEKME DENEYĠ. ġekil 1. Düşük karbonlu yumuşak bir çeliğin çekme diyagramı.

MMT209 Çeliklerde Malzeme Bilimi ve Son Gelişmeler 10 Yüksek mukavemetli yapı çelikleri. Yrd. Doç. Dr. Ersoy Erişir Güz Yarıyılı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

MUKAVEMET ARTIRICI İŞLEMLER

İmal Usulleri. Döküm Tekniği

Dislokasyon hareketi sonucu oluşan plastik deformasyon süreci kayma olarak adlandırılır.

BÖHLER K110 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD.ŞTİ. Başlıca Çelik özelliklerinin kıyaslaması

BÖHLER K460 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca Çelik Özelliklerinin Karşılaştırılması

YORULMA HASARLARI Y r o u r l u m a ne n dir i?

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

BÖHLER K720 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca çelik özelliklerinin karşılaştırılması

Uygulamalar ve Kullanım Alanları

BAZI ÖRNEKLER Soru 1 - Soru 2 -

Doç.Dr.Salim ŞAHİN SÜRÜNME

MMT209 Çeliklerde Malzeme Bilimi ve Son Gelişmeler 3 Çelik üretimi. Yrd. Doç. Dr. Ersoy Erişir Güz Yarıyılı

MALZEME BİLİMİ. Mekanik Özellikler ve Davranışlar. Doç. Dr. Özkan ÖZDEMİR. (DERS NOTLARı) Bölüm 5.

Mikroyapısal Görüntüleme ve Tanı

BÖHLER S700 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca çeliklerin özelliklerinin karşılaştırılması:

BÖHLER S705 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca çeliklerin özelliklerinin karşılaştırılması:

METALLERDE KATILAŞMA HOŞGELDİNİZ

OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ.

OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ.

Geleneksel Malzemelerdeki Gelişmeler

Kaynaklı Birleştirmelere Uygulanan Tahribatlı Deneyler

METALURJİ VE MALZEME MÜH. LAB VE UYG. DERSİ FÖYÜ

KIRIK YÜZEYLERİN İNCELENMESİ

Transkript:

1. DENEYİN AMACI: Bu deney ile incelenen çelik alaşımın su verme davranışı belirlenmektedir. Bunlardan ilki su verme sonrası elde edilebilecek maksimum sertlik değeri olup, ikincisi ise sertleşme derinliğidir (sertleşme kabiliyeti). Detayları Türk Standartları 1381 de verilmiştir. 2. TEORİK BİLGİ: 2.1.Sertleşebilirlik Aşırı yüksek ve dinamik yükler altında ve/veya soğukta çalışan çelik makine elemanlarının bu koşullarda başarıyla çalışabilmesi için kübik martenzit (ıslah) yapısında olması gerekir. Çeliğin bu yapıya ulaşabilmesi önce martenzitik bir yapıya kavuşturulması ardından da ıslah edilmesi ile mümkündür. Çelik malzemenin martenzite dönüştürülebilmesi için malzemenin östenit sahasından belirli bir kritik hızın üzerinde soğutulması gerekir ki bu işlem su verme olarak adlandırılır. İnce kesitli parçalarda alaşımsız çelikler suda soğutularak bu hız değerleri yakalanabilmektedir. Ancak kalın kesitli parçalarda parça suya dahi atılsa iç kesimlerin soğuması yavaş olmakta ve kritik soğutma hızını yakalamak zorlaşmaktadır. Bu durum özellikle büyük boyutlu makine parçalarının tüm kesitine su verme işleminin zorlaşmasına hatta imkansızlaşmasına yol açmaktadır. Kritik soğuma hızı, TTT diyagramlarında burun noktasını kesmeden sağlanan en düşük soğuma hızıdır. Su verme işleminde uygulanan soğuma hızı, kritik soğuma hızından daha yüksek ise, perlit ve beynit dönüşümü tamamen engellenerek martenzit yapısı oluşur. Eğer soğuma hızı kritik soğuma hızından daha düşük ise en son yapıdaki martenzitin miktarı ve buna bağlı olarak da sertlik azalır. Bu yolla sağlanan sertlik değeri çeliğin karbon miktarına bağlıdır. Ostenitleme işleminden sonra karbür olarak kalan karbon, martenzit reaksiyonunda yer almadığı için sertliğe etki etmez. Şekil 1, martenzit miktarı, sertlik ve karbon miktarı arasındaki ilişkiyi göstermektedir. 1

Şekil 1. Martenzit miktarı, sertlik ve karbon miktarı ilişkisi. Çeliklerin yüzeyden derinlere kadar martenzite dönüştürülebilmeye yatkınlığı malzemenin sertleşebilirliği olarak adlandırılır. Sertleşebilirlik deneyleri su verme ile elde edilen sertlik derinliğinin ölçülmesi esasına dayanır. Bu derinlik, martenzit miktarının yüzeyden itibaren yarıya indiği ya da % 50 martenzit ve beynitin var olduğu mesafe olarak ifade edilmektedir. Yüksek sertleşebilirliğe sahip bir çeliğin karakteristik özelliği, yüksek sertleşme derinliği göstermesi veya büyük parçalar halindeyken bile tam olarak sertleşebilmesidir. Sertleşebilirlik ile sertlik farklı kavramlardır. Maksimum sertlik çeliğin karbon miktarına bağlıdır. Sertleşebilirlik ise çeliğin kimyasal bileşimine ( karbon ve alaşım elementleri ) ve su verme sırasında ostenit tane boyutuna bağlıdır. Çelik parçanın boyutları arttığı zaman soğuma hızı düşer ve çekirdek sertliği, ferrit ve perlit gibi fazların oluşumuna bağlı olarak azalır (Şekil 2). 2

Şekil 2. AISI 8630 çeliği için Jominy deneyinden elde edilen verilerle sürekli soğuma eğrileri ve sürekli zaman dönüşüm diyagramı arasındaki ilişkilerinin gösterimi 2.2.Sertleşebilirliğe etki eden faktörler Alaşım elementlerinden sertleşebilirliği en fazla C, B, Cr, Mn, Mo, Si ve Ni etkiler. Karbon, martenzitin sertliğini kontrol eder. Çelikte % 0,6 ya kadar C içeriği arttığında çeliğin sertliği artar. Daha yüksek seviyelerdeki karbon içeriği olduğu durumda, ostenitten martenzite dönüşüm tamamlanamaz. Bu da yapıda kalıntı ostenit bulunmasına sebep olur. Bu durumda yapıda martenzitin yanında ostenit bulunacağından sertlik daha düşük seviyelerde kalır. Karbon miktarının yüksek olması malzemenin daha gevrek bir davranış göstermesine neden olur ve daha sonra yapılacak olan işlemlerde sorunlar yaratabilir. Bu yüzden % 0,4 C a kadar olan çeliklerde sertleşebilirlik kontrolü daha kolaydır. Çeliğin martenzitinin sertliğine karbonun etkisi 3

su verme sonrası karbon atomunun yapı içerisine zoraki olarak sıkışması ile izah edilebilir. Diğer alaşım elementleri ise kafes yapısında zoraki kalmadıklarından karbonun etkisini yapmazlar. Bor, % 0,002-0,003 oranında çeliğe ilave edildiğinde % 0,5 Mo ilavesindeki etkiyi gösterir. Bor düşük karbonlu çeliklere ilave edildiğinde sertleşebilirlikte en büyük etkiyi gösterir. Cr, Mo, Mn, Si, Ni ilaveleri çelikte ostenitten ferrit ve perlite dönüşümü geciktirir. Bu elementler ara yüzeyde tane büyümesini engelleyerek sertleşebilirliği arttırırlar. Ostenit tane boyutunun artması ile sertleşebilirlik artar. Ferrit ve perlitin çekirdekleşmesi ostenit tane sınırında heterojen çekirdekleşme ile gerçekleşir. Ostenit tane boyutunun artması çekirdekleşme için gereken bölgenin daha az olmasını sağlar ve faz dönüşümü gecikir. Bu yüzden ostenitleme sıcaklığı yüksek seçilerek tane boyutunun büyük olması sağlanabilir. 3. DENEY MALZEMELERİ VE EKİPMANLAR: Deney numunesi ve boyutları: Jominy deneyi için 25,4 mm çapında ve 101,6 mm uzunluğunda silindirik bir çelik çubuk kullanılır (Şekil 3). Şekil 3 : Jominy uçtan su verme deney numunesi şekil ve boyutları Makro Vickers (30 kgf) ya da Rockwell C sertlik testi Fırın Jominy deney düzeneği 4

Şekil 4. Jominy deney düzeneği 4. DENEYİN YAPILIŞI: Sertleşebilirliğin belirlenmesi amacıyla en yaygın kullanılan deney Jominy deneyidir. Bu deneyde 25 mm çapındaki 100 mm boyundaki silindirik bir numune Şekil 4 te gösterilen düzenekle alın kısmından su ile soğutulur. Parça boyunca farklı soğuma hızları elde edilir. Numune su hortumundan 12,5 mm mesafede olacak şekilde yatay bir yüzey üzerine oturtulur. Su sıcaklığı 24-28 C dir. Deney numunesi önce normalize edilir, verilen boyutlarda işlendikten sonra bileşimine göre uygun su verme sıcaklığına (ostenitleme sıcaklığı) kadar ısıtılır ve bu sıcaklıkta en az 30 dakika tutulur. Bu sürenin sonunda fırından çıkarılan numune süratli bir şekilde deney düzeneğine yerleştirilir ve bir ucundan su püskürtmek suretiyle soğutulur. Soğuma hızı, çelik çubuk boyunca su verilmiş uçtan itibaren kademeli olarak azalır. Çubuk soğutulduktan sonra eksenine paralel ve yüzeyden itibaren 0,4-0,5 mm derinliğinde talaş kaldırma işlemi yapılarak düzgün bir yüzey elde edilir. Daha sonra bu yüzey kullanılarak, su verilmiş uçtan itibaren belli aralıklarla çubuğun sertliği ölçülür. Sertlik ölçümleri su vermenin yapıldığı alından başlanarak 1,5-1,5-2-2-2-2-2- 2 mm olan mesafelerde yapılır. Toplam 15 mm yi bulan bu noktalardan sonra 5 er mm aralıklarla ölçümler yapılır. Elde edilen sertlik değerleri mesafeye bağlı olarak bir grafik üzerinde belirtilerek, Jominy eğrileri elde edilir. 5

5. SONUÇLAR VE YORUMLAMA: Çeliğin sertleşebilirlik özelliklerinin tarifi için, aşağıdaki metotlardan birisi kullanılır: a) Sertlik-su verme ucundan uzaklık değişim eğrisinin çizilmesi veya eğriye ait verilerin tablo halinde sunulması. b) Çeliğin alaşım miktarına bağlı olarak, su verme ucundan ve belirtilen bir mesafedeki sertlik değerleri üzerinden sertleşmenin sayısal olarak tanımı yapılabilir. Su verme ucundan artan uzaklıkla sertliğin azalması yapıda dönüşüme uğrayan martenzitin miktarıyla ilişkili olarak değişmektedir (Şekil 5). Şekil 5. Jominy deneyi sonucu elde edilen, sertliğin su verilen uçtan uzaklığa göre değişimini veren sertleşebilirlik eğrisi 6. DENEY RAPORU Deney raporu aşağıdaki soruların cevaplarını içermelidir. a) Deney aşamalarını 5 madde ile özetleyiniz. b) 1040 ve 4140 çeliğinin elde edilen mesafe-sertlik verilerine göre sertleşebilirlik eğrisini çiziniz ve eğriler arasındaki farkı açıklayınız. c) Her bir mesafede oluşabilecek mikro yapıları çiziniz. d) Yüksek alaşımlı çeliklere neden Jominy deneyi uygulanmamaktadır? Açıklayınız. 6

7. KAYNAKLAR Dokuz Eylül Üniversitesi Metalurji ve Malzeme Mühendisliği Bölümü Jominy Sertleşebilirlik Testi Deney Föyü Ondokuz Mayıs Üniversitesi Malzeme Bilimi ve Mühendisliği Bölümü, Malzeme Üretim Laboratuarı I Deney Föyü Sakarya Üniversitesi Deney Föyü Yıldız Teknik Üniversitesi Metalurji ve Malzeme Mühendisliği Bölümü Deney Föyü Malzeme Bilgisine Giriş, Mehmet Yüksel, Cemal Meran 7