Işıkla Bilgi İletiminin Tarihçesi. Işık Kuramının Tarihçesi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Işıkla Bilgi İletiminin Tarihçesi. Işık Kuramının Tarihçesi"

Transkript

1 Işıkla Bilgi İletiminin Tarihçesi Bilgi iletişiminin tarihi oldukça eskiye dayanır. İlk çağlar da insanlar ateş yakarak iletmek istedikleri bilgiyi bir tepeden bir başka tepeye aktardılar. Işık kullanılarak yapılan bu ilk haberleşmede insanoğlu belki de hala en gelişmiş ışık detektörünü yani gözü kullandı. Işık üreten kaynak olarak ateş kullanılıyor ve bu ışık insan gözünce algılanarak bilgi bir noktadan başka bir noktaya aktarılıyordu. Bu ilkel haberleşme tekniğinde en büyük zorluk, haberleşme uzaklıklarının çok sınırlı olması ve aktarılan bilginin büyüklüğünün az olmasıydı. Daha sonra gelişen iletişim teknolojileri, çeşitli ortamlardan yararlanarak bilginin iletilmesini sağladılar. Genelde kullanılan, elektrik sinyalinin iletken kablolar aracılığı ile bir noktadan diğerine aktarılmasına dayalı teknolojilerdi. Ancak son elli yıl içinde, ilkçağlarda kullanılan yönteme geri dönüldü ve iletişimde ışık tekrar kullanılmaya başlandı. Son yıllardaki iletişim teknolojilerindeki sıçramanın tabanında fiber optik teknolojilerindeki gelişmeler olduğunu söylemek doğru olur. Işık Kuramının Tarihçesi Fiber optiğin insanları neden bu kadar çok etkilediğini daha iyi anlamak için belki de önce ışık kuramının tarihçesine bakmak gerekir. Son 3000 yıl içinde ışık ile ilgili geliştirilen onlarca kuramdan önemli olan altısı şunlar: 1) Dokunma 2) Işıma 3) Parçacık 4) Dalga 5) Elektromanyetik 6) Kuantum Dokunma kuramı, temelinde hissetmeye dayalı bir teori. Eski çağlarda, gözün görünmez bir cisim göndererek maddeye dokunduğu ve onu algıladığı sanılırdı. Işıma kuramıysa dokunma kuramının tersine parlak cisimlerin gönderdiği ışın veya parçacıkların cisimler üzerinden sekerek göze gelmesine ve algılanmasına dayanır. Işıma kuramı 11. yüzyılda dokunma kuramına göre daha fazla kabul gördü. Bundan sonra gelen iki kuram Sir Isaac Newton un parçacık ve Christian Huygens in dalga kuramları. Bunlar, birbirlerine tam ters olan kuramlar. Newton a 1

2 göre ışık, parçacık olarak düz bir doğru üzerinde yol alır. Diğer bir deyişle, ışık bir parçacıklar sistemidir ve kaynağından her yöne düz doğrular boyunca yol alırlar. Newton un fizik yasası parçacıkların cisimlerden yansımasını açıklayabiliyor. Huygens in dalga kuramıysa Newton un kuramını kabul etmiyor. Ona göre, eğer ışık parçacıklardan oluşsaydı birbiriyle karşılaşan ışık demetleri kendilerini yok etmeliydi. Huygens, bunu açıklamak için karşılaşan iki su akıntısını örnek gösterdi. Gerçekten de ışık bu tür bir özellik göstermez ve ışık demetleri karşılaştıklarında, su örneğinde olduğu gibi bir olay ortaya çıkar. Huygens, ışığın bir dalga olduğunu öne sürdü. Ona göre ışık ve onunla ilgili olaylar tümüyle dalga kuramına oturtulmalıydı. Buna karşılık Newton da eğer ışık bir dalgaysa, hareketi boyunca rastladığı köşeleri de dönmesi gerektiğini ancak bunun olmadığını ileri sürerek dalga kuramını reddetti. Bu günün bilimiyse ışığın gerçekten köşeleri döndüğünü gösterebiliyor. Ancak dalga boyunun çok küçük olmasından dolayı bu olayın gözle görünmesi olası değil. Dalga kuramı, 1800 lü yıllarda kabul gördü. Parçacık kuramıysa 1800 lü yılların sonlarında tamamen terk edildi. On dokuzuncu yüzyılın sonlarında, James Clerk Maxwell, elektrik, manyetizma ve ışığı bir kuramda birleştirdi. Bu kurama elektromanyetik teori dendi. Maxwell e göre ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalgaların özelliklerini gösterir. Maxwell, elektrik ve manyetik sabitlerden yararlanarak ışık hızını hesapladı. Gerçi bulduğu hız kabul edilebilir değer içinde; ancak Maxwell in teorisi fotoelektrik etkisini açıklayamıyor de Heinrich Hertz, metal üzerine gönderilen belli özellikteki ışığın, elektronları metal yüzeyinden kopardığını buldu de Max Planck, ışık ile ilgili başka bir kuram geliştirdi. Buna göre ışık, içinde enerji olan küçük bir paket içinde iletilir ve madde tarafından emilir. Bu küçük pakete quanta adını verdi. Quanta içindeki enerji, ışığın frekansıyla doğru orantılı. Albert Einstein, Planck ın kuramını tamamen kabul ederek ışığın quanta olarak iletilmesinin ve madde tarafından emilmesinin yanında, ışığın quanta olarak yol aldığını ileri sürdü. Einstein, quanta birimi olarak foton u kabul etti te Einstein kuantum kuramını kullanarak fotoelektrik olayını açıkladı. Kuantum kuramı, iki temel kuramın, parçacık ve dalga kuramlarının birleştirilmesiydi. Bu birleştirme zorunluydu; ışık bazen parçacık bazen de dalga özelliği gösterir. Işık, enerji nin bir biçimidir. Fotonlar, ancak bu fotonun hareket halinde olması durumunda var olurlar. Işığın boşluktaki hızı saniyede 3x10 8 metredir. Fiber optikle ışığın en yakın ilişkisi yansımadır. Newton yasaları ışığın nasıl 2

3 yansıdığını açıklayabiliyorlar Newton kuramına göre, ışığın bir yüzeye gelme açısıyla yansıma açısı değişmez. Işığın çok önemli bir özelliğiyse kırılma. Kırılma, ışığın değişik ortamlarda yol almasında ortaya çıkıyor. Belli özellikteki bir ortamdan başka özellikteki ortama geçerken ışık kırılır. Işığın hızı, hareket ettiği orta ma bağlı olarak bazen artar bazen de azalır. Örneğin, ışık havada camdan daha hızlı gider. Bir ortamdan diğeri. ne geçerken ışık hızının değişmesi onun kırılmasına neden olur. Fiber optik teknolojisi, son bir kaç yüzyıldır geliştirilen ışık kuramının bir sonucu. Gördük ki eski zamanda ateş sinyal aracı olarak kullanılmıştı. Bilim geliştikçe haberleşmede kullanılan sinyalleme şekil değiştirdi ve bu işlem çok daha karışık bir hale geldi. Işıkla ilgili bilim adamlarının çalışmaları çok eskiye dayanmakla birlikte, fiber teknolojilerindeki gelişme oldukça yeni. Fiber Kablolarla İletişim Yukarıdaki şekilde göründüğü gibi herhangi bir bilgi (ses, veri ya da görüntü) önce elektrik sinyaline dönüştürülür. Işık kaynağında bu sinyaller ışık sinyaline çevrilir. Burada önemli bir nokta fiberler hem sayısal hem de analog sinyali taşıyabilir. Birçok kimse fiberlerin sadece sayısal sinyalleri taşıdığını düşünebilir (ışık kaynağının açılıp kapanmasıyla). Sinyal bir kere ışık sinyaline çevrildikten sonra, fiber içinde detektöre gelinceye kadar yol alır. Burada ışık sinyali tekrar elektrik sinyaline dönüştürülür. Son olarak da elektrik sinyalinin şifresi çözülerek bilgiye (ses, veri veya görüntü) dönüştürülür. İletişimde kullanılan fiber kabloların temel üç bölümü vardır.iç kısımda fiberin damarı, daha sonra çeperi ve en dış bölümde ise kablonun kaplama bölümü bulunur (Şekil 3). Aşağıdaki şekil, tipik bir fiber kablonun ara kesitini gösteriyor. Damar, ışık sinyalinin yol aldığı, daha başka bir deyişle bilginin iletildiği bölüm. Telekomünikasyon endüstrisinde genel olarak 8.3 mikrometreden 62.5 mikrometreye kadar olan büyüklüklerde fiber kablolar kullanılıyor. Standart telekomünikasyon fiberinin damar çapı 8.3 mikrometre (tek mod ), 50 mikrometre (çoklu mod), 62.5 mikrometre (çoklu mod) civarında bulunuyor. Damar bölgesini saran çeperin yarı çapı 125 mikrometre, fiber kablonun 3

4 tamamının yarıçapıysa 250 mikrometre ile 900 mikrometre arasında değişir. Bu büyüklükleri insan saçının çapı olan 70 mikrometre ile karşılaştırabiliriz. Işık, fiber optik kabloya girdikten sonra dengeli bir şekilde yol alır ve buna mod denir. Fiber kablonun tipine bağlı olarak yüzlerce çeşit mod oluşturulabilir. Her mod, giriş ışık sinyalinin bir bölümünü taşır. Daha genel bir deyişle fiber içindeki mod sayısı, fiber damarının çapına, ışığın dalga boyuna ve sayısal açıklık denilen büyüklüğe bağlıdır. Günümüzde kullanılan temel iki tip fiber optik kablo vardır: tek mod ve çoklu mod fiberler. Bunları dış görünümleriyle ayırmak olası değildir. Her iki tip de iletişim ortamı olarak kullanılmakta. Ancak değişik uygulamalarda değişik şekillerde kullanılırlar. Tek Mod Fiberler: Işığın tek bir modda ya da tek bir yolda ilerlemesine olanak tanırlar (Şekil 4). Damar çapları 8.3 mikrometredir. Tek modlu fiberler, düşük sinyal kayıplarının olduğu ve yüksek veri iletişim hızının gerektirdiği durumlarda kullanılırlar. Çoklu Mod Fiberler: Işığın birden fazla modunu ileten fiberlerdir. Tipik damar çapları 50 mikrometre ile 62.5 mikrometre arasında değişir. Çoklu mod fiberler, kısa mesafeli uygulamalarda kullanılırlar. Fiber Optiğin Temel Prensipleri Fiber kablonun çalışması, ışığın tam yansıma prensibine dayanıyor. Işık, fiber kablo içinde (damarında) çeperlerden yansıyarak ilerler. Tam yansımanın olabilmesi ışık demetinin fiber kabloya giriş açısına bağlıdır. Kırılma indeksi, ışığın bulunduğu ortamdaki yayılım hızını gösteren bir kavram. Işık boşlukta saate km lik bir hızla ilerler. Kırılma indeksi, ışığın boşluktaki hızının herhangi bir ortamda hızına bölünmesinden elde edilir: Kırılma İndeksi=(Işığın Boşluktaki Hızı)!(Işığın Ortamdaki Hızı) Boşluktaki kırılma indeksi bu durumda 1 dir. Aşağıdaki tablo, bazı tipik ortamlar için kırılma indeksini gösteriyor. 4

5 Ortam Tipik Kırılma Işık Hızı İndeksi (Kızılötesi) Boşluk 1 Hızlı Hava Su 1.33 Fiber Kablo Çeperi 1.46 Fiber Kablo Damarı 1.48 Yavaş Bir ortamda ilerleyen ışık, başka bir ortama girdiğinde herhangi bir kayıp olmadan geldiği ortama geri yansırsa buna tam yansıma denir. Fiber kabloların çeperi (dış kaplama bölümü) ve damarı (iç bölümü) değişik malzemelerden yapıldığı için fiber içinde ilerleyen ışık, damar bölgesinden çepere çarptığında tam yansımaya uğrayarak damara geri döner. Tam yansımanın olabilmesi için çeperin kırılma indeksinin damarınkinden daha az olması gerekir. Işığın fiber kablo içinde tam yansımaya uğrayarak ilerleyebilmesi için fiberin damar bölgesine giren ışığın belli bir açının altında olması gerekir. Bu kritik açının oluşturduğu hayali koniye kabul konisi denebilir. Kabul konisinin büyüklüğü, çeper ve damar kırılma indeksine bağlıdır. Aşağıdaki şekil bu tür bir yapıyı gösteriyor 5

6 Uygulama Prensipleri Elektromanyetik spektrumda insan gözünün algılayabildiği bölgeye görünür bölge diyoruz. Görünür bölgede ışığın dalga boyu, ışık renkleriyle ifade edilebilir. Gökkuşağı renkleri kırmızı, turuncu, sarı, yeşil, mavi ve mor aşağıdaki şekilde gösterildiği gibi görünür bölgede bulunurlar. Fiber optik iletişiminde kullanılan elektromanyetik dalgaların dalga boyu görünür bölgenin üzerinde bulunur. Tipik optik iletişim dalga boyları, 850 nanometre (nm), 1310 nm, ve 1550 nm dir. Hem lazerler hem de LED ler fiber optik kablolar üzerinden ışık sinyali üretiminde kullanılabilir. Lazer kaynakları 1310 veya 1550 nanometre ve tek mod uygulamalarında uygundur. LED lerse 850 veya 1300 nanometre dalga boyundaki çoklu mod uygulamalarında kullanılır. FREKANS Fiberin en iyi çalıştığı bazı dalga boyu aralık pencereleri bulunuyor. Bunlara çalışma penceresi denebilir. Her pencere, tipik dalga boyunun etrafında oluşur (Şekil 7). Aşağıdaki tablo bu pencereleri veriyor. Pencere Dalga boyu nm 850 nm nm 1500 l600nm l3lonm 1550nm Bu pencerelerin seçilmesinin nedeni, fiber optiğin en iyi çalıştığı bölgeler olması, diğer bir deyişle eldeki ışık kaynağıyla iletişim özelliklerinin en iyi şekilde çakışması. Sistemin frekansındansa şu anlaşılıyor: Sayısal veya analog sinyalin modülasyon frekansı veya diğer bir anlatımla ışık kaynağı tarafından bir saniyede gönderilen sinyal sayısı. Frekans, hertz birimi ile ölçülür. 1 hertz saniyede bir pulsa (atmaya) karşılık gelir. İletişimde kullanılan pratik birimse megahertz dir (MHz) ve saniyede bir milyon atmaya karşılık gelir. Fiber Optik Kablolarda Kayıplar Fiber kablo içinde yol alan ışık sinyalinin enerjisi ve dolayısıyla şekli, değişik 6

7 nedenlerle kayba uğrar (Şekil 8). Bu kayıp desibel cinsinden ölçülür (db/km). Belli bir mesafede kullanılan fıberin düşük kayıplı olması gerekir. Dolayısıyla düşük kayıplı fiber optik sistemleri tercih edilir. Örneğin ilk çıkış gücünün %50 sinin kaybı, 3.0 db lik bir kayba karşılık gelir. Fiber kablolar birleştirildiğinde ya da sistem içine monte edildiğinde, bazı kayıplarla karşılaşılır (Şekil 9). Iki fiber kablo uç uca birleştirilirse, tipik kayıp 0.2 db dir. Kayıp nedenleri pek çok olmakla birlikte iç ve dış kayıplar olarak iki sınıfa ayrılabilir. Işık sinyali, fiber kablo içinde herhangi bir düzensiz bölgeye gelirse saçılıma uğrar ve saçılıma uğramış sinyal o bölge tarafından emilerek ilerlemesi engellenebilir. Rayleigh saçılımı, bilinen en önemli saçılım tipidir (genelin %96 sı). Fiber içindeki ışık, fiberi oluşturan cam atomları ile etkileşir. Işık dalgaları atomlarla esnek çarpışma yapar ve ışık dalgası saçılıma uğrar. Eğer ışık saçılımdan sonra tam kırılmayı sağlayan açıdan daha büyük bir açıyla çepere çarparsa, fiber kabloyu terk eder ve kaçar. İkinci tip iç kayıp, ışık sinyalinin fiber tarafından emilmesidir. Bu tür kayıplar genel kayıpların %3-5 ini oluşturur. Işık sinyalinin fıber tarafından emilmesinin nedeni, fiberi oluşturan camın içinde bulunan kirliliklerdir. Bunlar titreşim veya başka çeşit enerji kayıplarına neden olurlar (Şekil 10). Diğer kayıp tipiyse dış kayıplardır. Örneğin, eğer fiber optik kablo bükülürse bu bölgedeki gerilim artar ve gerilimin artması da kırılma indeksini değiştirir. Bu durumda ışık sinyalinin tam yansıması gerçekleşmeyerek damar bölgesinin terk edilmesine neden olur. Bu tür eğilmelere makro bükülüm adı verilir. Bu bükülümler mikro düzeyde kablonun içinde olursa yine sinyal fiberin damar bölgesini terk ederek kayba neden olur Işık atması, fiber kablo içinde yolculuğu sırasında yayılır. Bu durumda atma genişleyerek bir önceki veya bir sonraki atma ile çakışır; yani gönderilen ışık sinyali artık ayrılamaz hale gelir. Sonuç olarak iletilen bilginin karakteristik özelliği yitirilmiş olur. Diğer bir anlatımla bilgi kaybolur. Daha önce anlatıldığı gibi yayılma, ışık sinyalinin dağılmasına neden olur. Bu dağılma, ışık atmalarının birbirleriyle birleşmelerine neden olur. Belli bir mesafede ve belli bir frekansta gönderilen atma, alıcı tarafından oku-namaz hale gelir. Bunun dışında, genellikle çoklu mod fiberlerde görünen sinyallerin üs tüste gelip karışması da bilginin kaybına neden olur. Sistemlerin bant aralığı bir kilometrede megahertz (MHz) ile ölçülür. Örneğin eğer bir sistemin bant aralığı 200 MHz-km ise, bir saniyede 200 milyon atma (puls) bir kilometrelik fiber içinde 7

8 birbirlerine karışmadan algılayıcıya ulaşır. Sonuç ve Eğilimler Endüstrinin gelişimine bakıldığında, bilgi çağının 1985 te başladığını ve 1995 yılından itibaren hızının yavaşladığını söylemek yanlış olmaz. Artık yeni bir çağa, iletişim çağına hızla ilerliyoruz. Bu çağın en önemli karakteri, bilgiye ulaşmanın ve bilginin dağıtımının yeni iletişim araçlarıyla yapılması. İnsanların İnternet i kullanmaya başlaması ve bu konudaki talebin çok hızlı artması, ulusal iletişim altyapısının tekrar gözden geçirilmesine ve yenilenmesine neden olmuş bulunuyor. Kromatik dağılım, ışık kaynağında kullanılan dalga boyu aralığına bağlıdır. Lazer veya LED ler tarafından üretilen ışığın dalga boyu belli bir aralıkta olur. Fiber içinde yol alan değişik dalga boyundaki dalgalar, değişik hızlara sahiptir. Dolayısıyla eşit mesafeleri farklı sürelerde alırlar; bu da sinyalin yayılmasına neden olur. Sinyalin gereğinden fazla yayılması onun karakterini bozar ve bilginin kaybolmasına neden olur. Bu tür kayıplar, tek mod fiber optik uygulamalarında oldukça önemlidir. Bant Aralığı: Bant aralığını, ışık sinyali gönderildikten sonra diğer uçta bulunan detektörün ayırabileceği özellikleri taşıyan bilgi miktarı olarak tanımlayabiliriz. Bu çağa ulusal bazda ayak uydurmanın en önemli kriteriyse, ülkedeki iletişim trafiğinin büyüklüğü. İletişimi arttırmanın ve çağa ayak uydurmanın yoluysa doğal olarak alt yapının yeterince iyi olmasına bağlıdır. Dolayısıyla fiber teknolojilerinin ülkemizde yoğun olarak kullanılması yaşamsal öneme sahip bir gereklilik. Bilgi çağında insanlar daha çok tek yönlü, etkileşimsiz olarak bilgiye ulaşmanın yolunu arıyorlardı. Yeni durumda, yani iletişim çağında koşullar hızla değişiyor. Yeni durumda insanlar bilgiye ulaşmada ve diğerleri ile iletişimde çift yönlü ve etkileşimli araçlar kullanıyorlar. Fiber optik kablolar artık tüm ülkelerde hızla bakır kabloların ve diğer iletişim araçlarının yerini alıyor. Fiber optik kabloların diğer iletişim ortamlarından en önemli farkı, ses, veri ve görüntü iletişimindeki yüksek hız. Fiber kablo uçları yakında oturma odamıza kadar uzanacak. Diğer uçtaysa, milyonlarca bilgi kaynağının ve etkileşimli iletişim sağlayabildiğimiz kişilerin olduğunu düşünürsek globalleşmenin ne olduğunu ve önemini anlamak şüphesiz daha kolay olacak. Lazerin Çalışma Mantığı Devrede kullanılan lazer piyasada satılan çok düşük güçlü tipte bir lazerdir. Yaydığı ışığın dalga boyu 630 nm 680 nm arasındadır ve çıkış gücü yaklaşık 1mW civarındadır. Ve devrede kullanılacak olan fototransiztörün de kullanılan 8

9 lazerin dalga boyuna uygun ve çalışma frekansına uygun olarak seçilmelidir. Laboratuarda yapılan deneyler esnasında fototranzistörün yaklaşık 50 khz e kadar lazerden gönderilen kare dalgayı formunu bozmadan okuya bildiği gözlemlenmiş olup daha yüksek frekanslarda ise fototransiztörün kare dalga formunun özelliğini yitirerek okuduğu kayıt edilmiştir. Çalışma ortamındaki aydınlık düzeyi de veri iletimindeki kaliteyi azaltmaktadır. Bunun önüne geçebilmek için fototranzistörün merceğine lazerin dalga boyuna uygun filtre konması da veri aktarımının kararlı olmasında fayda sağlar. Veri aktarma yöntemleri İletilecek olan verinin bozulmadan ve içeriğini kaybetmenden iletilecek olan noktaya kadar gitmesini sağlamak amacıyla veri kendinden daha yüksek frekanslarda ki bir sinyal ile modüle edilerek yollanılır. Aynı şekilde veriyi alacak olan kısım da veriyi aldıktan sonra gelen sinyalden taşıyıcı işareti çıkartarak iletilmek istenen veriyi elde eder. Alıcı da bu işlemleri yapan devreye ise biz demodule edici kısım diyoruz. Başlıca dört tip modülâsyon tekniği vardır. Genlik Modülâsyonu (A.M.) Frekans Modülâsyonu (F.M.) Faz Modülâsyonu (P.M.) Darbe Modülâsyonu (I.M.) Bu modülâsyon teknikleri hakkın da bir açıklamak gerekirse Genlik Modülasyonu:Veri sinyalinin genliği ile orantılı bir şekilde taşıyıcı sinyalin genliğini değiştirme mantığına dayanır. Matematiksel olarak ifade etmek gerekirse 9

10 V = Ac [ 1 + M cos m t ] cos c t Ac : Taşıyıcı sinyalin genliği 1 + M: Modüleli sinyalin genliği m : Taşıyıcı sinyalin frekansı c :Veri sinyalinin frekansı Frekans Modülasyonu: Veri sinyalinin genliği ile taşıyıcı sinyalin frekansını değiştirme tekniğidir. Matematiksel olarak açıklamak gerekirse V = A cos [M cos m t ] cos c t + M f F m (t) ] F m (t) = B sin m t A : Taşıyıcı sinyalin genliği M: Modüleli sinyalin genliği m : Taşıyıcı sinyalin frekansı c :Veri sinyalinin frekansı FazModülasyonu: Bu modülasyon tipinde ise veri sinyalinin genliği ile taşıyıcı frekansın fazı değiştirilir.bu modülasyon tirinin matematiksel modeli ise 10

11 V = A cos ( c t + M f sin m t) A : Taşıyıcı sinyalin genliği M: Modüleli sinyalin genliği m : Taşıyıcı sinyalin frekansı c :Veri sinyalinin frekansı Uygulama Devreleri Buradaki devrede verici tarafından girişe uygulanan gerilim yardımı ile mosfette drain source arasında bir akım akması sağlanır. Bu I d aynı zaman da lazerden geçerek lazerin akımla orantılı bir ışkı vermesini sağlar. Böylelikle giriş sinyali ile orantılı bir lazer ışığı elde edilmiş olur. Burada bir genlik modülasyonu söz konusudur. Fakat taşıyıcı sinyal her ne kadar bir DC gerilimiş gibi gözükse de aslında lazer ışığıdır. Bu sayede veri sinyali modüle edilmiş olur. Alıcı kısmın da ise fototransiztör yardımıyla lazer ışığı ile orantılı bir akım yardımıyla gate girişinde potansiyometre ile ayarlanmış bir seviye üzerine bu sinyal uygulanır. Bilindiği üzere mosfetler gerilim kontrollü akım kaynağı gibi 11

12 davranırlar. Böylelikle gate ucunda ki gerilim yardımıyla drainden akan akım direnç üzerinde gerilim düşümüne yol açar ve çıkışta gerilim oluşur. Fakat bu devrenin dezavantajı ise ortamda ki aydınlık düzeyinden oldukça etkilenmesidir. Bunu önüne ise fototransiztöre uygun dalga boyunda bir filtre takılarak geçilir. Aynı zamanda lazer sinyali de bir taşıyıcı sinyale bindirilse bu sorun ortadan kalkar.bu ise bir sonraki devrede denenmiştir. Bu devre de ise lazer bir gerilim kontrollü bir osilatör üzerinden sürülmüştür. Bu sayede bir frekans modülasyonu sağlamak amaçlanmıştır. Giriş gerilimiyle orantılı sabit genlikli bir çıkış sinyali ile lazere enerji gönderilir. Alıcı devre ise bu gönderilen yüksek frekanslı sinyali yükselterek limitör yardımıyla oluşacak tepeleri keserek PLL devresinin girişine uygular. PLL (Phase Lock Loop) ise burada uygulanan giriş sinyalini çıkışında ki sinyal ile faz detektörü yardımıyla karşılaştırarak bir gerilimi çıkışa doğru yollar bu sinyal bir yükselteçten geçerek çıkışa uygulanır. VCO (Voltaj Kontrollü Osilatör ) ise çıkışta ki gerilim le orantılı bir sinyali faz karşılaştırıcısına göndererek bir geri besleme sağlar. Sonuç olarak girişten uygulanan freekans değişimleri artık çıkışta gerilim değişimlerine dönüşmüştür. Bu sinyalde bizim lazerde modüle ettiğimiz veri sinyalidir. Devrede yapılan hesaplar ise ; 12

13 Verici devresinde 2k < R1 < 20 k 0,75 * V + < Vc < V + fo < 1MHz 10 V <V + <24 V Kabulleri ile çıkış frekansı formülü Çıkış frekansı 50 khz seçilirse fo = 2 / ( R 1 *C 1 ) * ( V + - Vc ) / V + Fo Vcc Vc C1 R1 50 khz 12 V 10.5 V 1000 pf 5 K Alıcı devresinde ise 13

14 2 K < R1 < 20K olmalı C2 =330 pf fo = 0.3 / (R1 * C1 ) fo R1 C1 50 khz 6 K 1 nf Lazerle Veri Aktarımının Kullanım Alanları : Lazerle veri aktarımının en büyük avantajı elektrik alan kirliliği yaratmamasıdır ve bakır kabloya göre yüksek veri transferi sağlamasıdır. Ayrıca bilgisayar teknolojisi sayesinde her türlü verinin (ses görüntü vb.) aktarımına izin vermesidir. Elektrik alanın kirli olduğu yerlerde bakır üzerinde oluşabilecek parazitler ise veri iletimine zarar verebilirken lazerde hiç bir etkisi yoktur. Veya yüksek sıcaklığın olduğu mesela bir fırın içerisinden veri sorunsuzca akıp gidebilir. Fakat bunun yanında dezavantajları ise gün ışığından etkilenme uzak mesafeden odaklama gibi sorunlar vardır. Odaklama probleminin önüne geçmek için mercek gibi optik elemanlardan faydalanılabilir. Pratikteki kullanım alanları ise yakın mesafelerde kablo çekilmesine olanak olmayan yerlerde mesela örnek vermek gerekirse yakın iki bina arasında çatılardan veya pencereden veri göndermeyi mümkün kılar. Eğer mesafe vermek gerekirse deneyde kullanılan lazer ile 300 metreye kadar veri göndermek mümkündür. Veya yukarıda bahsi geçtiği gibi yüksek sıcaklıktaki bir fırın gibi fabrika ortamlarında kullanılabilir. Fabrikada ki gibi elektrik alan bakımından son derece kirliliğin olduğu yerlerde kullanılabilir. Ve kurulan ufak bir bilgisayar ağının kapasitesi kaldırabilecek kadar yüksek veri kapasitesi vardır. 14

15 Lazerle Sayısal Verinin Yollanması Lazerle sayısal veri yollanırken kullanılan devrede 4 adet dijital giriş kullanılmıştır. Yapılan devre ile bu girişler sürekli olarak kontrol edilerek baştan sona doğru bir sırada arka arkaya eklenerek yollanmaktadır. Bu esnada alıcı devrenin gelen bitlerden hangisinin birinci bit hangisinin sonuncu bit olduğunu ise satır başı ve satır sonu bilgilerinden anlayacaktır. Burada ise satır başı sinyali olarak 0.5 ms lik lojik 1 sinyali kullanılmıştır. Satır sonu sinyali olarak ta 100 ms lik lojik 0 sinyali kullanılarak bitlerin sırasının karışmaması sağlanmıştır. Burada girişleri tarayıp sürekli olarak bir sıraya dizmesi amacıyla ve bu gelen bitleri birbirinden ayırma işleri 2 adet PIC tarafından yapılmaktadır. Kullanılan PIC ler ise 16F84 tür. Ayrıca kod çözme işlemini yapan devreyi kısaca açıklamak gerekirse sürekli olarak döngüde bekleyip birinci bitten önce gelen 0.5 ms lik start sinyali ile devre 1 ms bekleyerek örneklenmiş veriyi tam ortasında yakalayarak her hangi karmaşıklığa engel olmuştur. 15

16 Alıcı yani kod çözücü olan devreye gelen lazer ışığı başka bir devre tarafından elektrik sinyallerine çevrilmiştir. Burada lazer ışığını algılamak için hassasiyeti yüksek olduğu için fototransiztör kullanılmıştır. Burada kullanılan devre ise aşağıdaki gibidir. Burada çıkış son traniztörün köllektöründen alınmaktadır. Böylece kod çözücü devrenin ihtiyaç duyduğu sinyal elde edilmiş olur. PIC lerin programı çalıştırırken aynı süreleri tutturmaları gerektiğinden her iki PIC in clock süreleri aynı olmak zorundadır. Devrede kullanılan kristal frekansı ise 3,27 MHz tir. Böylece 4 bitlik veri saniyede yaklaşık olarak 32 kere tazeleme hızı ile gönderilmektedir. Yani sistemin hızı 128 bit/sn saniyedir. Bu değer fazla olmamakla birlikte eğer röle açma kapama gibi yüksek hızlı olmayan uygulamalarda kullanılacaksa yeterli olacaktır. 16

17 PIC ile kodlama yapan devrenin baskı aşağıdaki gibidir. Kod çözmeyi gerçekleştiren baskı devre ise.. 17

18 Veriyi alıp kod çözen PIC te yüklü olan program ise aşağıdaki gibidir. ; TITLE : Multiplexer data DECODER ; Filename : MUX_DE10.ASM ; Date Started : 21/7/98 ; Last edit : 31/7/98 ; File Version : 1.0 ; ; Author : David L. Jones ; ; Files required: ; p16f84.inc ; ; Notes: ; ASSUMING 1MHz XTAL CLOCK WHICH GIVES 4us PER INSTRUCTION ; list p=16f84 ; list directive to define processor #include <p16f84.inc> ; processor specific variable definitions CONFIG _CP_OFF & _WDT_ON & _PWRTE_ON & _XT_OSC ;***** VARIABLE DEFINITIONS LOOP1 EQU 0CH ; LOOP VARIABLE FOR 1ms ROUTINE COUNT1 EQU 0DH ; DELAY VARIABLE COUNT2 EQU 0EH ; DELAY VARIABLE OUTP EQU 0FH ; TEMP OUTPUT VARIABLE FOR DATA LATCHING ORG 0x000 ; processor reset vector - start of code ;******************************* INITIALISATION STUFF CLRF PORTB ; reset portb BSF STATUS, RP0 ; select bank 1 MOVLW B' ' ; PINS RB4=INPUT & ALL OTHERS=OUTPUT MOVWF TRISB ; UPDATE TRISB REGISTER TO DEFINE I/O PINS BCF STATUS, RP0 ; SELECT BANK 0 ;******************************* START: CLRWDT ; RESET WATCHDOG TIMER CLRF COUNT1 ; CLEAR LOWER COUNT VARIABLE CLRF COUNT2 ; CLEAR UPPER COUNT VARIABLE CLOOP: INCFSZ COUNT1,1 ; INC LOW COUNTER AND SKIP NEXT STATEMENT IF ZERO GOTO SKIP1 INCF COUNT2,1 ; INCREMENT THE HIGH COUNT VARIABLE SKIP1: BTFSS PORTB,4 ; IF DATA INPUT IF HIGH THEN SKIP NEXT STATEMENT GOTO CLOOP ; LOOP WHILE DATA INPUT IS LOW 18

19 FLAG) 16ms MOVLW 0F0H ANDWF COUNT2,0 BTFSC STATUS,Z GOTO CLOOP CLRF OUTP ; MASK OUT LOWER 4 BITS OF HIGH COUNTER (TO SET Z ; THIS CHECKS TO SEE IF AT LEAST 16ms HAVE PASSED ; SKIP NEXT STATEMENT OF ZERO FLAG IF NOT SET ; CONTINUE TIMING AND CHECKING PORT IF NOT AT LEAST ; CLEAR TEMP OUTPUT LATCH VARIABLE CALL DELAY1 ; DELAY FOR 1ms TO WAIT FOR THE MIDDLE OF BIT0 BTFSC PORTB,4 ; CHECK IF DATA INPUT IS HIGH BSF OUTP,0 ; SET BIT0 CALL DELAY1 ; DELAY FOR 1ms TO WAIT FOR THE MIDDLE OF BIT1 BTFSC PORTB,4 ; CHECK IF DATA INPUT IS HIGH BSF OUTP,1 ; SET BIT0 CALL DELAY1 ; DELAY FOR 1ms TO WAIT FOR THE MIDDLE OF BIT2 BTFSC PORTB,4 ; CHECK IF DATA INPUT IS HIGH BSF OUTP,2 ; SET BIT0 CALL DELAY1 ; DELAY FOR 1ms TO WAIT FOR THE MIDDLE OF BIT3 BTFSC PORTB,4 ; CHECK IF DATA INPUT IS HIGH BSF OUTP,3 ; SET BIT0 MOVF OUTP,0 MOVWF PORTB GOTO START ; MOVE LATCH VARIABLE INTO W ; LATCH BIT0-BIT3 ONTO PORT PINS ; CONTINUE LOOPING FOREVER ;******************************** 1ms DELAY SUBROUTINE DELAY1: MOVLW 0x52 ; LOOP COUNT VALUE MOVWF LOOP1 ; SET LOOP VARIABLE L1: DECFSZ LOOP1,1 ; DEC LOOP COUNTER AND SKIP NEXT STATEMENT IF LOOP COUNTER=0 GOTO L1 ; CONTINUE LOOPING UNTIL ZERO RETURN END ; END OF PROGRAM 19

20 Veri yollayan PIC te yüklü olan program ise aşağıdaki gibidir. ; TITLE : Multiplexer data ENCODER ; Filename : MUX_EN10.ASM ; Date Started : 17/7/98 ; Last edit : 30/7/98 ; File Version : 1.0 ; ; Author : David L. Jones ; ; Files required: ; p16f84.inc ; ; Notes: ; ASSUMING 1MHz XTAL CLOCK WHICH GIVES 4us PER INSTRUCTION ; list p=16f84 ; list directive to define processor #include <p16f84.inc> ; processor specific variable definitions CONFIG _CP_OFF & _WDT_ON & _PWRTE_ON & _XT_OSC ;***** VARIABLE DEFINITIONS LOOP1 EQU 0CH ; LOOP VARIABLES LOOP05 EQU 0DH LOOP100 EQU 0EH ORG 0x000 ; processor reset vector - start of code ;******************************* INITIALISATION STUFF CLRF PORTB ; reset portb BSF STATUS, RP0 ; select bank 1 MOVLW B' ' ; PINS RB0-3=INPUT & RB4-7=OUTPUT MOVWF TRISB BCF OPTION_REG,NOT_RBPU ; ENABLE PULL-UP'S ON PORTB PINS BCF STATUS, RP0 ; SELECT BANK 0 ;******************************* START: CLRWDT ; RESET WATCHDOG TIMER BCF PORTB, 4 ; SET SERIAL DATA O/P LOW CALL DELAY100 ; DELAY 100ms BSF PORTB, 4 ; SET SERIAL DATA O/P HIGH (START BIT) CALL DELAY05 ; DELAY 0.5ms ;******************************** SEND BIT 0 BTFSC PORTB, 0 ; CHECK BIT 0 I/P, AND SKIP IF CLEAR GOTO SET0 BCF PORTB, 4 ; BIT 0 MUST BE LOW, SO SET O/P LOW GOTO SKIP0 20

21 SET0: BSF PORTB, 4 ; BIT 0 MUST BE HIGH, SO SET O/P HIGH SKIP0: CALL DELAY1 ; DELAY FOR 1ms ;******************************** SEND BIT 1 BTFSC PORTB, 1 ; CHECK BIT 1 I/P, AND SKIP IF CLEAR GOTO SET1 BCF PORTB, 4 ; BIT 1 MUST BE LOW, SO SET O/P LOW GOTO SKIP1 SET1: BSF PORTB, 4 ; BIT 1 MUST BE HIGH, SO SET O/P HIGH SKIP1: CALL DELAY1 ; DELAY FOR 1ms ;******************************** SEND BIT 2 BTFSC PORTB, 2 ; CHECK BIT 2 I/P, AND SKIP IF CLEAR GOTO SET2 BCF PORTB, 4 ; BIT 2 MUST BE LOW, SO SET O/P LOW GOTO SKIP2 SET2: BSF PORTB, 4 ; BIT 2 MUST BE HIGH, SO SET O/P HIGH SKIP2: CALL DELAY1 ; DELAY FOR 1ms ;******************************** SEND BIT 3 BTFSC PORTB, 3 ; CHECK BIT 3 I/P, AND SKIP IF CLEAR GOTO SET3 BCF PORTB, 4 ; BIT 3 MUST BE LOW, SO SET O/P LOW GOTO SKIP3 SET3: BSF PORTB, 4 ; BIT 3 MUST BE HIGH, SO SET O/P HIGH SKIP3: CALL DELAY1 ; DLEAY FOR 1ms GOTO START ; CONTINUE LOOPING FOR EVER ;******************************** 1ms DELAY SUBROUTINE DELAY1: MOVLW 0x52 ; LOOP COUNT VALUE MOVWF LOOP1 ; SET LOOP VARIABLE L1: DECFSZ LOOP1,1 ; DEC LOOP COUNTER AND SKIP NEXT STATEMENT IF LOOP COUNTER=0 GOTO L1 ; CONTINUE LOOPING UNTIL ZERO RETURN ;******************************** 0.5ms DELAY SUBROUTINE DELAY05: MOVLW 0x28 ; LOOP COUNT VALUE MOVWF LOOP05 ; SET LOOP VARIABLE L05: DECFSZ LOOP05,1 ; DEC LOOP COUNTER AND SKIP NEXT STATEMENT IF LOOP COUNTER=0 GOTO L05 ; CONTINUE LOOPING UNTIL ZERO RETURN ;******************************** 100ms DELAY SUBROUTINE DELAY100: MOVLW 0x64 ; LOOP COUNT VALUE (100) MOVWF LOOP100 ; SET LOOP VARIABLE L100: DECFSZ LOOP100,1 ; DEC LOOP COUNTER AND SKIP NEXT STATEMENT IF LOOP COUNTER=0 GOTO CALL1 ; CONTINUE LOOPING UNTIL ZERO GOTO ENDLOOP ; FINISHED LOOPING CALL1: CALL DELAY1 ; DELAY FOR 1ms GOTO L100 ENDLOOP: RETURN END ; END OF PROGRAM 21

22 Kaynaklar: 1. Elektronik elemanlar ve devre teorisi,robetr Boylestad,Louis Nashelsky 2. Elektronik Prensipler, Güngör Polat, Süleyman Serçe 3. Elektronik Mühendisliği C.L. Allemy,K.W. Atwood 4. Radyo Alıcıları, Celal Tutar 5. Endüstriyel Elektronik,Masahiro Maesako, Naci Candan 6. Endüstriyel Kontrol, Mehmet Emin Aydınyüz, Salih Zeki Taşçı 7. Bilim Teknik Dergisi, Sayı 397 Frequncy Modulation Circuits, Chapter 40 22

23 Işıkla Bilgi İletiminin Tarihçesi... 1 Işık Kuramının Tarihçesi... 1 Fiber Kablolarla İletişim... 3 Fiber Optiğin Temel Prensipleri... 4 Ortam Tipik Kırılma Işık Hızı... 5 Uygulama Prensipleri... 6 FREKANS... 6 Pencere Dalga boyu... 6 Fiber Optik Kablolarda Kayıplar... 6 Sonuç ve Eğilimler... 8 Lazerin Çalışma Mantığı... 8 Veri aktarma yöntemleri... 9 V = Ac [ 1 + M cos m t ] cos c t Ac : Taşıyıcı sinyalin genliği V = A cos [M cos m t ] cos c t + M f F m (t) ] A : Taşıyıcı sinyalin genliği V = A cos ( c t + M f sin m t) A : Taşıyıcı sinyalin genliği fo Lazerle Veri Aktarımının Kullanım Alanları : Lazerle Sayısal Verinin Yollanması Kaynaklar:

LCD (Liquid Crystal Display )

LCD (Liquid Crystal Display ) LCD (Liquid Crystal Display ) Hafif olmaları,az yer kaplamaları gibi avantajları yüzünden günlük hayatta birçok cihazda tercih edilen Standart LCD paneller +5 V ile çalışır ve genellikle 14 konnektor lü

Detaylı

Mikroişlemciler Ara Sınav---Sınav Süresi 90 Dk.

Mikroişlemciler Ara Sınav---Sınav Süresi 90 Dk. HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Mikroişlemciler Ara Sınav---Sınav Süresi 90 Dk. 15 Nisan 2014 1) (10p) Mikroişlemcilerle Mikrodenetleyiceleri yapısal olarak ve işlevsel olarak karşılaştırarak

Detaylı

ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU

ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU ROBOT KOL BİTİRME PROJESİ DÖNEM İÇİ RAPORU İSMAİL KAHRAMAN-ŞEYMA ÖZTÜRK 200713151027 200513152008 Robot Kol Mekanizması: Şekildeki robot-insan benzetmesinden yola çıkarak, bel kısmı tekerlekli ve sağa-sola-ileri-geri

Detaylı

W SAYAC SAYAC SAYAC. SAYAC=10110110 ise, d=0 W 01001001

W SAYAC SAYAC SAYAC. SAYAC=10110110 ise, d=0 W 01001001 MOVLW k Move Literal to W k sabit değerini W saklayıcısına yükler. MOVLW h'1a' W 1A. Hexadecimal 1A sayısı W registerine yüklenir. MOVF f,d Move f f saklayıcısının içeriğini W veya f'e yükler. MOVF SAYAC,0

Detaylı

Hacettepe Robot Topluluğu

Hacettepe Robot Topluluğu Hacettepe Robot Topluluğu Makaleler PIC ile LED Yakıp Söndüren Devre PIC ile LED Yakıp Söndüren Devre Canol Gökel - 13 Ekim 2006 Giriş Merhaba arkadaşlar, bu makalemizde PIC'e yeni başlayanlar için basit

Detaylı

PIC 16F84 VE TEK BUTONLA BĐR LED KONTROLÜ

PIC 16F84 VE TEK BUTONLA BĐR LED KONTROLÜ DERSĐN ADI : MĐKROĐŞLEMCĐLER II DENEY ADI : PIC 16F84 VE ĐKĐ BUTONLA BĐR LED KONTROLÜ PIC 16F84 VE TEK BUTONLA BĐR LED KONTROLÜ PIC 16F84 VE VAVĐYEN ANAHTAR ĐLE BĐR LED KONTROLÜ ÖĞRENCĐ ĐSMĐ : ALĐ METĐN

Detaylı

PIC TABANLI, 4 BASAMAKLI VE SER

PIC TABANLI, 4 BASAMAKLI VE SER PIC TABANLI, 4 BASAMAKLI VE SERİ BAĞLANTILI 7 SEGMENT LED PROJESİ Prof. Dr. Doğan İbrahim Yakın Doğu Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Lefkoşa E-mail: dogan@neu.edu.tr,

Detaylı

1. PORTB ye bağlı 8 adet LED i ikili sayı sisteminde yukarı saydıracak programı

1. PORTB ye bağlı 8 adet LED i ikili sayı sisteminde yukarı saydıracak programı 1. PORTB ye bağlı 8 adet LED i ikili sayı sisteminde yukarı saydıracak programı yazınız. SAYAC1 EQU 0X20 devam movlw B'00000000' call DELAY incf PORTB,f ;Akü ye 0' sabit değerini yaz. ;Aküdeki değer PORTB

Detaylı

KOMUT AÇIKLAMALARI VE ÖRNEKLERİ

KOMUT AÇIKLAMALARI VE ÖRNEKLERİ KOMUT AÇIKLAMALARI VE ÖRNEKLERİ Komut açıklamalarında kullanılan harflerin anlamları: F : File(dosya), kaynak ve bilgi alınan yeri ifade eder. D : Destination (hedef), işlem sonucunun kaydedileceği yer.

Detaylı

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu Step Motor Step motor fırçasız elektrik motorlarıdır. Step motorlar ile tam bir tur dönmeyi yüksek sayıda adımlara bölebilmek mümkündür (200 adım). Step motorları sürmek için, sürekli gerilim uygulamak

Detaylı

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak # PIC enerjilendiğinde PORTB nin 0. biti 1 olacak - LIST=16F84 - PORTB yi temizle - BANK1 e geç - PORTB nin uçlarını çıkış olarak yönlendir - BANK 0 a geç - PORT B nin 0. bitini 1 yap - SON ;pic tanıtması

Detaylı

FİBER OPTİK. Işıkla Bilgi İletiminin Tarihçesi

FİBER OPTİK. Işıkla Bilgi İletiminin Tarihçesi Işıkla Bilgi İletiminin Tarihçesi FİBER OPTİK Bilgi iletişiminin tarihi oldukça eskiye dayanır. İlk çağlar da insanlar ateş yakarak iletmek istedikleri bilgiyi bir tepeden bir başka tepeye aktardılar.

Detaylı

LCD (Liquid Crystal Display)

LCD (Liquid Crystal Display) LCD (Liquid Crystal Display) LCD ekranlar bize birçok harfi, sayıları, sembolleri hatta Güney Asya ülkelerin kullandıkları Kana alfabesindeki karakterleri de görüntüleme imkanını verirler. LCD lerde hane

Detaylı

PIC MİKROKONTROLÖR TABANLI MİNİ-KLAVYE TASARIMI

PIC MİKROKONTROLÖR TABANLI MİNİ-KLAVYE TASARIMI PIC MİKROKONTROLÖR TABANLI MİNİ-KLAVYE TASARIMI Prof. Dr. Doğan İbrahim Yakın Doğu Üniversitesi, Bilgisayar Mühendisliği Bölümü, Lefkoşa, KKTC E-mail: dogan@neu.edu.tr, Tel: (90) 392 2236464 ÖZET Bilgisayarlara

Detaylı

Kızılötesi. Doğrudan alınan güneşışığı %47 kızılötesi, %46 görünür ışık ve %7 morötesi ışınımdan oluşur.

Kızılötesi. Doğrudan alınan güneşışığı %47 kızılötesi, %46 görünür ışık ve %7 morötesi ışınımdan oluşur. Kızılötesi Kızılötesi (IR: Infrared), nispeten daha düşük seviyeli bir enerji olup duvar veya diğer nesnelerden geçemez. Radyo frekanslarıyla değil ışık darbeleriyle çalışır. Bu nedenle veri iletiminin

Detaylı

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri Sanayi fabrika otomasyonunda proximity (yaklasım) sensorler kullanılır. Porximity sensorler profesyonel yapıda cevre sartlarından

Detaylı

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları 2 1 Kodlama ve modülasyon yöntemleri İletim ortamının özelliğine

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ Elektrik ve Elektronik Ölçmeler Laboratuvarı Deney Adı: Sensörler. Deney 5: Sensörler. Deneyin Amacı: A.

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ Elektrik ve Elektronik Ölçmeler Laboratuvarı Deney Adı: Sensörler. Deney 5: Sensörler. Deneyin Amacı: A. Deneyin Amacı: Deney 5: Sensörler Sensör kavramının anlaşılması, kullanım alanlarının ve kullanım yerine göre çeşitlerinin öğrenilmesi. Çeşitli sensör tipleri için çalışma mantığı anlaşılıp sağlamlık testi

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 5. Analog veri iletimi

Data Communications. Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü. 5. Analog veri iletimi Veri İletişimi Data Communications Suat ÖZDEMİR Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü 5. Analog veri iletimi Sayısal analog çevirme http://ceng.gazi.edu.tr/~ozdemir/ 2 Sayısal analog çevirme

Detaylı

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ Üretim merkezlerinde üretilen elektrik enerjisini dağıtım merkezlerine oradan da kullanıcılara güvenli bir şekilde ulaştırmak için EİH (Enerji İletim Hattı) ve

Detaylı

IŞIĞA YÖNELEN PANEL. Muhammet Emre Irmak. Mustafa Kemal Üniversitesi Mühendislik Fakültesi. Elektrik-Elektronik Mühendisliği Bölümü

IŞIĞA YÖNELEN PANEL. Muhammet Emre Irmak. Mustafa Kemal Üniversitesi Mühendislik Fakültesi. Elektrik-Elektronik Mühendisliği Bölümü IŞIĞA YÖNELEN PANEL Muhammet Emre Irmak Mustafa Kemal Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü e-posta: memreirmak@gmail.com ÖZET Işığa yönelen panel projesinin amacı,

Detaylı

8086 nın Bacak Bağlantısı ve İşlevleri. 8086, 16-bit veri yoluna (data bus) 8088 ise 8- bit veri yoluna sahip16-bit mikroişlemcilerdir.

8086 nın Bacak Bağlantısı ve İşlevleri. 8086, 16-bit veri yoluna (data bus) 8088 ise 8- bit veri yoluna sahip16-bit mikroişlemcilerdir. Bölüm 9: 8086 nın Bacak Bağlantısı ve İşlevleri 8086 & 8088 her iki işlemci 40-pin dual in-line (DIP) paketinde üretilmişlerdir. 8086, 16-bit veri yoluna (data bus) 8088 ise 8- bit veri yoluna sahip16-bit

Detaylı

Program Kodları. void main() { trisb=0; portb=0; while(1) { portb.b5=1; delay_ms(1000); portb.b5=0; delay_ms(1000); } }

Program Kodları. void main() { trisb=0; portb=0; while(1) { portb.b5=1; delay_ms(1000); portb.b5=0; delay_ms(1000); } } Temrin1: PIC in PORTB çıkışlarından RB5 e bağlı LED i devamlı olarak 2 sn. aralıklarla yakıp söndüren programı yapınız. En başta PORTB yi temizlemeyi unutmayınız. Devre Şeması: İşlem Basamakları 1. Devreyi

Detaylı

UYGULAMA 05_01 MİKRODENETLEYİCİLER 5.HAFTA UYGULAMA_05_01 UYGULAMA_05_01. Doç.Dr. SERDAR KÜÇÜK

UYGULAMA 05_01 MİKRODENETLEYİCİLER 5.HAFTA UYGULAMA_05_01 UYGULAMA_05_01. Doç.Dr. SERDAR KÜÇÜK UYGULAMA 05_01 MİKRODENETLEYİCİLER 5.HAFTA Doç.Dr. SERDAR KÜÇÜK PORTB den aldığı 8 bitlik giriş bilgisini PORTD ye bağlı LED lere aktaran MPASM (Microchip Pic Assembly) Doç. Dr. Serdar Küçük SK-2011 2

Detaylı

Antenler, Türleri ve Kullanım Yerleri

Antenler, Türleri ve Kullanım Yerleri Antenler, Türleri ve Kullanım Yerleri Sunum İçeriği... Antenin tanımı Günlük hayata faydaları Kullanım yerleri Anten türleri Antenlerin iç yapısı Antenin tanımı ve kullanım amacı Anten: Elektromanyetik

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ 9 Mekanik ve Elektromanyetik Dalga Hareketi TEKNOLOJİNİN BİLİMSEL İLKELERİ Adem ÇALIŞKAN Mekanik dalgalar Temelde taneciklerin boyuna titreşimlerinden kaynaklanırlar. Yayılmaları için mutlaka bir ortama

Detaylı

BSF STATUS,5 ;bank1 e geçiş CLRF TRISB ;TRISB=00000000 BCF STATUS,5 ;bank0 a geçiş

BSF STATUS,5 ;bank1 e geçiş CLRF TRISB ;TRISB=00000000 BCF STATUS,5 ;bank0 a geçiş +5V ĠġĠN ADI: PORTB DEKĠ LEDLERĠN ĠSTENĠLENĠ YAKMAK/SÖNDÜRMEK GND C F C F X R 5 U OSC/CLKIN RA0 OSC/CLKOUT RA RA RA RA/T0CKI PICFA RB RB RB RB RB RB 0 R R R R5 R R R R D D D D D5 D D D INCLUDE CONFIG P=FA

Detaylı

16F84 ü tanıt, PORTB çıkış MOVLW h FF MOWF PORTB

16F84 ü tanıt, PORTB çıkış MOVLW h FF MOWF PORTB MİKROİŞLEMCİLER VE MİKRODENETLEYİCİLER 1 - DERS NOTLARI (Kısım 3) Doç. Dr. Hakan Ündil Program Örneği 9 : Gecikme altprogramı kullanarak Port B ye bağlı tüm LED leri yakıp söndüren bir program için akış

Detaylı

Arduino Uno ile Hc-Sr04 ve Lcd Ekran Kullanarak Mesafe Ölçmek

Arduino Uno ile Hc-Sr04 ve Lcd Ekran Kullanarak Mesafe Ölçmek Arduino Uno ile Hc-Sr04 ve Lcd Ekran Kullanarak Mesafe Ölçmek 1 Adet Arduino Uno 1 Adet Hc-Sr04 Ultrasonik mesafe sensörü 1 Adet 16 2 Lcd Ekran 1 Adet Breadbord 1 Adet Potansiyometre 2 Ader led Yeteri

Detaylı

Bölüm 14 FSK Demodülatörleri

Bölüm 14 FSK Demodülatörleri Bölüm 14 FSK Demodülatörleri 14.1 AMAÇ 1. Faz kilitlemeli çevrim(pll) kullanarak frekans kaydırmalı anahtarlama detektörünün gerçekleştirilmesi.. OP AMP kullanarak bir gerilim karşılaştırıcının nasıl tasarlanacağının

Detaylı

Assembler program yazımında direkt olarak çizgi ile gösterilmemesine rağmen ekranınız ya da kağıdınız 4 ayrı sütunmuş gibi düşünülür.

Assembler program yazımında direkt olarak çizgi ile gösterilmemesine rağmen ekranınız ya da kağıdınız 4 ayrı sütunmuş gibi düşünülür. BÖLÜM 4 4. PIC PROGRAMLAMA Herhangi bir dilde program yazarken, öncelikle kullanılacak dil ve bu dilin editörünü kullanabilmek önemlidir. Biz bu işlem için Mplab programını kullanacağız. Bu sebeple aslında

Detaylı

B.Ç. / E.B. MİKROİŞLEMCİLER

B.Ç. / E.B. MİKROİŞLEMCİLER 1 MİKROİŞLEMCİLER RESET Girişi ve DEVRESİ Program herhangi bir nedenle kilitlenirse ya da program yeniden (baştan) çalıştırılmak istenirse dışarıdan PIC i reset yapmak gerekir. Aslında PIC in içinde besleme

Detaylı

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır.

HABERLEŞMENIN AMACI. Haberleşme sistemleri istenilen haberleşme türüne göre tasarlanır. 2 HABERLEŞMENIN AMACI Herhangi bir biçimdeki bilginin zaman ve uzay içinde, KAYNAK adı verilen bir noktadan KULLANICI olarak adlandırılan bir başka noktaya aktarılmasıdır. Haberleşme sistemleri istenilen

Detaylı

FİBER OPTİK. Işıkla Bilgi İletiminin Tarihçesi

FİBER OPTİK. Işıkla Bilgi İletiminin Tarihçesi FİBER OPTİK Işıkla Bilgi İletiminin Tarihçesi Bilgi iletiģiminin tarihi oldukça eskiye dayanır. Ġlk çağlar da insanlar ateģ yakarak iletmek istedikleri bilgiyi bir tepeden bir baģka tepeye aktardılar.

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ MİKROİŞLEMCİLİ SİSTEM LABORATUARI MİKROİŞLEMCİLİ A/D DÖNÜŞTÜRÜCÜ

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ MİKROİŞLEMCİLİ SİSTEM LABORATUARI MİKROİŞLEMCİLİ A/D DÖNÜŞTÜRÜCÜ İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ MİKROİŞLEMCİLİ SİSTEM LABORATUARI MİKROİŞLEMCİLİ A/D DÖNÜŞTÜRÜCÜ 1. Giriş Analog işaretler analog donanım kullanılarak işlenebilir. Ama analog

Detaylı

Elektromanyetik Dalga Teorisi Ders-3

Elektromanyetik Dalga Teorisi Ders-3 Elektromanyetik Dalga Teorisi Ders-3 Faz ve Grup Hızı Güç ve Enerji Düzlem Dalgaların Düzlem Sınırlara Dik Gelişi Düzlem Dalgaların Düzlem Sınırlara Eğik Gelişi Dik Kutuplama Paralel Kutuplama Faz ve Grup

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

PIC Mikrodenetleyiciler. Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1

PIC Mikrodenetleyiciler. Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1 PIC Mikrodenetleyiciler PIC MCU= CPU + I/O pinleri+ Bellek(RAM/ROM) Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1 PIC Mikro denetleyici Programlama Assembly programlama dili, çoğu zaman özel alanlarda geliştirilen

Detaylı

10. SINIF KONU ANLATIMLI. 3. ÜNİTE: DALGALAR 3. Konu SES DALGALARI ETKİNLİK ve TEST ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 3. ÜNİTE: DALGALAR 3. Konu SES DALGALARI ETKİNLİK ve TEST ÇÖZÜMLERİ 10. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGALAR 3. Konu SES DALGALARI ETKİNLİK ve TEST ÇÖZÜMLERİ 2 Ünite 3 Dalgalar 3. Ünite 3. Konu (Ses Dalgaları) A nın Çözümleri 1. Sesin yüksekliği, sesin frekansına bağlıdır.

Detaylı

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları Sinyaller Sinyallerin zaman düzleminde gösterimi Sinyallerin

Detaylı

EET349 Analog Haberleşme Güz Dönemi. Yrd. Doç. Dr. Furkan Akar

EET349 Analog Haberleşme Güz Dönemi. Yrd. Doç. Dr. Furkan Akar EET349 Analog Haberleşme 2015-2016 Güz Dönemi Yrd. Doç. Dr. Furkan Akar 1 Notlandırma Ara Sınav : %40 Final : %60 Kaynaklar Introduction to Analog and Digital Communications Simon Haykin, Michael Moher

Detaylı

KONFİGÜRASYON BİTLERİ

KONFİGÜRASYON BİTLERİ MİKROİŞLEMCİLER VE MİKRODENETLEYİCİLER 1 - DERS NOTLARI (Kısım 2) Doç. Dr. Hakan Ündil INCLUDE Dosyalar Assembly programlarını yazarken kullanılacak register adreslerini (EQU) komutu ile tanımlamak hem

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Optik Sensörler Üzerine düşen ışığa bağlı olarak üstünden geçen akımı değiştiren elemanlara optik eleman denir. Optik transdüserler ışık miktarındaki değişmeleri elektriksel

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ MİKRODENETLEYİCİ-4 Ankara 2007 Milli Eğitim Bakanlığı tarafından geliştirilen

Detaylı

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak

# PIC enerjilendiğinde PORTB nin 0. biti 1 olacak #PIC enerjilendiğinde PORTA içeriğinin tersini PORTB de karşılık gelen biti 0 olacak # PIC enerjilendiğinde PORTB nin 0. biti 1 olacak - başla - LIST=16F84 - PORTB yi temizle - BANK1 e geç - PORTB nin uçlarını çıkış olarak yönlendir - BANK 0 a geç - PORT B nin 0. bitini 1 yap - SON ;pic

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI DENİZCİLİK MİKRODENETLEYİCİ 2

T.C. MİLLÎ EĞİTİM BAKANLIĞI DENİZCİLİK MİKRODENETLEYİCİ 2 T.C. MİLLÎ EĞİTİM BAKANLIĞI DENİZCİLİK MİKRODENETLEYİCİ 2 ANKARA 2013 Bu modül, mesleki ve teknik eğitim okul/kurumlarında uygulanan Çerçeve Öğretim Programlarında yer alan yeterlikleri kazandırmaya yönelik

Detaylı

1. IŞIK BİLGİSİ ve YANSIMA

1. IŞIK BİLGİSİ ve YANSIMA 1. IŞIK BİLGİSİ ve YANSIMA Işığın Yayılması Bir ışık kaynağından çıkarak doğrular boyunca yayılan ince ışık demetine ışık ışını denir. Işık ışınları doğrusal çizgilerle ifade edilir. Bir ışık kaynağından

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

KABLOSUZ İLETİŞİM

KABLOSUZ İLETİŞİM KABLOSUZ İLETİŞİM 805540 MODÜLASYON TEKNİKLERİ FREKANS MODÜLASYONU İçerik 3 Açı modülasyonu Frekans Modülasyonu Faz Modülasyonu Frekans Modülasyonu Açı Modülasyonu 4 Açı modülasyonu Frekans Modülasyonu

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

Y-0048. Fiber Optik Haberleşme Eğitim Seti Fiber Optic Communication Training Set

Y-0048. Fiber Optik Haberleşme Eğitim Seti Fiber Optic Communication Training Set Genel Özellikler General Specifications temel fiber optik modülasyon ve demodülasyon uygulamaların yapılabilmesi amacıyla tasarlanmış Ana Ünite ve 9 adet Uygulama Modülünden oluşmaktadır. Ana ünite üzerinde

Detaylı

CEVAP ANAHTARI: 1.TEST: 1.B 2.E 3.C 4.D 5.E 6.C 7.C 8.E 9.D 10.B 11.A 12.C 13.C 2.TEST: 1.E 2.E 3.D 4.A 5.C 6.D 7.E 8.E 9.D 10.D 11.E 12.E 13.D 3.TEST: 1. E 2.D 3E. 4.D 5.C 6.A 7.C 8.C 9.B 10.D 11.B 12.D

Detaylı

Mikroislemci Kontrollu Prototip Trafik Lambalari ve Geri Sayici

Mikroislemci Kontrollu Prototip Trafik Lambalari ve Geri Sayici Mikroislemci Kontrollu Prototip Trafik Lambalari ve Geri Sayici Mahmut KISACIK ve Doç.Dr. Hasan KÖMÜRCÜGIL Bilgisayar Mühendisligi Bölümü, Dogu Akdeniz Üniversitesi Gazimagusa-Kuzey Kibris Türk Cumhuriyeti

Detaylı

8 Ledli Havada Kayan Yazı

8 Ledli Havada Kayan Yazı 8 Ledli Havada Kayan Yazı Hazırlayan Eyüp Özkan Devre Şemasının ISIS Çizimi Devre şemasından görüldüğü gibi PIC16F84A mikro denetleyicisinin Port B çıkışlarına 8 adet LED ve dirençler bağlı. 4MHz lik kristal

Detaylı

Hyper Terminal programı çalıştırıp Uygun COM portu ve iletişim parametrelerinin ayarları yapılıp bekletilmelidir.

Hyper Terminal programı çalıştırıp Uygun COM portu ve iletişim parametrelerinin ayarları yapılıp bekletilmelidir. DENEY 1: PIC 16F84 DEN BİLGİSAYARA VERİ GÖNDERME Bu uygulamada verici kısım PIC16F84, alıcı kısım ise bilgisayardır. Asenkron iletişim kurallarına göre her iki tarafta aynı parametreler kullanılacaktır.

Detaylı

SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bi

SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bi SES FĠZĠĞĠ SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bir ortama ihtiyaç duymazlar ve boşlukta da

Detaylı

ELEKTRONLAR ve ATOMLAR

ELEKTRONLAR ve ATOMLAR BÖLÜM 3 ELEKTRONLAR ve ATOMLAR 1 Kapsam 1.0 Radyasyon Enerjisinin Doğası ve Karakteristiği 2.0 Fotoelektrik Etki 3.0 ER: Dalga Özelliği 4.0 Dalgaboyu, Frekans, Hız ve Genlik 5.0 Elektromanyetik Spektrum

Detaylı

idea rsbasic KOMUTLARI

idea rsbasic KOMUTLARI idea KOMUTLARI İÇİNDEKİLER 2.1 Etiketler (Labels)... 4 2.2 Yorumlar (Comments)... 5 2.3 Semboller (Symbols)... 6 2.4 backward (geri)... 7 2.5 debug (hata ayıkla/izle)... 8 2.6 dec (azalt)... 9 2.7 do..

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Deney No: 7 Mühendislik Fakültesi Elektrik-Elektronik Müh. Bölümü Mikrodalga ve İletişim Lab. OPTİK FİBERLERDE ÖLÇMELER

KARADENİZ TEKNİK ÜNİVERSİTESİ Deney No: 7 Mühendislik Fakültesi Elektrik-Elektronik Müh. Bölümü Mikrodalga ve İletişim Lab. OPTİK FİBERLERDE ÖLÇMELER KARADENİZ TEKNİK ÜNİVERSİTESİ Deney No: 7 Mühendislik Fakültesi Elektrik-Elektronik Müh. Bölümü Mikrodalga ve İletişim Lab. TEMEL BİLGİLER: OPTİK FİBERLERDE ÖLÇMELER İnformasyon taşıyıcısı olarak ışık,

Detaylı

Ağ Teknolojileri. Ağ Temelleri. Bir ağ kurmak için

Ağ Teknolojileri. Ağ Temelleri. Bir ağ kurmak için Ağ Teknolojileri Ağ Temelleri Bir ağdan söz edebilmek için en az 2 bilgisayarın birbirlerine uygun bir iletişim ortamıyla bağlanması gerekmektedir. Üst sınır yok! Dünyadaki en büyük bilgisayar ağı İnternet

Detaylı

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends Rectangular waveguide Waveguide to coax adapter Waveguide bends E-tee 1 Dalga Kılavuzları, elektromanyetik enerjiyi kılavuzlayan yapılardır. Dalga kılavuzları elektromanyetik enerjinin mümkün olan en az

Detaylı

3.2 PIC16F84 Yazılımı PIC Assembly Assembler Nedir?

3.2 PIC16F84 Yazılımı PIC Assembly Assembler Nedir? 3.2 PIC16F84 Yazılımı 3.2.1 PIC Assembly 3.2.1.1 Assembler Nedir? Assembler,bir text editöründe assembly dili kurallarına göre yazılmış olan komutları pıc in anlayabileceği heksadesimal kodlara çeviren

Detaylı

PIC UYGULAMALARI. Öğr.Gör.Bülent Çobanoğlu

PIC UYGULAMALARI. Öğr.Gör.Bülent Çobanoğlu PIC UYGULAMALARI STEP MOTOR UYGULAMLARI Step motor Adım motorları (Step Motors), girişlerine uygulanan lojik sinyallere karşılık analog dönme hareketi yapan fırçasız, sabit mıknatıs kutuplu DC motorlardır.

Detaylı

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları Antenler Yayılım modları Bakış doğrultusunda yayılım Bakış

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

DC motorların sürülmesi ve sürücü devreleri

DC motorların sürülmesi ve sürücü devreleri DC motorların sürülmesi ve sürücü devreleri Armatür (endüvi) gerilimini değiştirerek devri ayarlamak mümkündür. Endüvi akımını değiştirerek torku (döndürme momentini) ayarlamak mümkündür. Endüviye uygulanan

Detaylı

Ünite. Dalgalar. 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları

Ünite. Dalgalar. 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları 7 Ünite Dalgalar 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları SES DALGALARI 3 Test 1 Çözümleri 3. 1. Verilen üç özellik ses dalgalarına aittir. Ay'da hava, yani maddesel bir ortam olmadığından sesi

Detaylı

Hacettepe Robot Topluluğu

Hacettepe Robot Topluluğu Hacettepe Robot Topluluğu PIC Assembly Dersleri 4. Ders: Kesme Đşlemleri ve Timer Bileşeninin Kullanımı HUNRobotX - PIC Assembly Dersleri 4. Ders: Kesme Đşlemleri ve Timer Bileşeninin Kullanımı Yazan:

Detaylı

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 2 Prof. Dr. Kıvanç Kamburoğlu 1800 lü yıllarda değişik ülkelerdeki fizikçiler elektrik ve manyetik kuvvetler üzerine detaylı çalışmalar yaptılar Bu çalışmalardan çıkan en önemli sonuç;

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Cobra3 lü Akuple Sarkaçlar

Cobra3 lü Akuple Sarkaçlar Dinamik Mekanik Öğrenebilecekleriniz... Spiral yay Yer çekimi sarkacı Yay sabiti Burulma titreşimi Tork Vuruş Açısal sürat Açısal ivme Karakteristik frekans Kural: Belirli bir karakteristik frekansa sahip

Detaylı

Bölüm 13 FSK Modülatörleri.

Bölüm 13 FSK Modülatörleri. Bölüm 13 FSK Modülatörleri. 13.1 AMAÇ 1. Frekans Kaydırmalı Anahtarlama (FSK) modülasyonunun çalışma prensibinin anlaşılması.. FSK işaretlerinin ölçülmesi. 3. LM5 kullanarak bir FSK modülatörünün gerçekleştirilmesi.

Detaylı

KABLOSUZ SERĐ HABERLEŞME UYGULAMALARI VE RF KONTROL

KABLOSUZ SERĐ HABERLEŞME UYGULAMALARI VE RF KONTROL KABLOSUZ SERĐ HABERLEŞME UYGULAMALARI VE RF KONTROL Kablosuz iletişlim uygulamaları elektroniğin yaygın olarak kullanılan uygulamalarındandır. Bu uygulamalar yardımıyla iki nokta arasında bilginin kablosuz

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3. DENEY AÇI MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman DİKMEN

Detaylı

ANALOG HABERLEŞME Alper

ANALOG HABERLEŞME Alper 0 BÖLÜM 1 ANALOG HABERLEŞME GİRİŞ KONULARI 1 Temel Kavramlar 1.1 Haberleşme Anlamlı bir bilginin değiş tokuş edilmesine haberleşme denir. (Exchanging Information). Günümüzde internet haberleşmesinin ve

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

Bunu engellemek için belli noktalarda optik sinyali kuvvetlendirmek gereklidir. Bu amaçla kullanılabilecek yöntemler aşağıda belirtilmiştir:

Bunu engellemek için belli noktalarda optik sinyali kuvvetlendirmek gereklidir. Bu amaçla kullanılabilecek yöntemler aşağıda belirtilmiştir: Çok yüksek bandgenişliğine sahip olmaları, Fiber Optik kabloları günümüzde, transmisyon omurga ağlarında vazgeçilmez hale getirmiştir. Bununla beraber, yüksek trafik taşıyabilme kapasitesini tüm ağ boyunca

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

DERS 7 PIC 16F84 PROGRAMLAMA İÇERİK. PIC 16F84 örnek programlar Dallanma komutları Sonsuz döngü

DERS 7 PIC 16F84 PROGRAMLAMA İÇERİK. PIC 16F84 örnek programlar Dallanma komutları Sonsuz döngü DERS 7 PIC 16F84 PROGRAMLAMA İÇERİK PIC 16F84 örnek programlar Dallanma komutları Sonsuz döngü Ders 7, Slayt 2 1 PROGRAM 1 RAM bellekte 0x0C ve 0x0D hücrelerinde tutulan iki 8-bit sayının toplamını hesaplayıp

Detaylı

BÖLÜM 1 ALT PROGRAMLAR 1.1.ALTPROGRAM NEDİR?

BÖLÜM 1 ALT PROGRAMLAR 1.1.ALTPROGRAM NEDİR? 0 BÖLÜM 1 ALT PROGRAMLAR 1.1.ALTPROGRAM NEDİR? Programlamada döngü kadar etkili bir diğer kullanım şekli de alt programlardır. Bu sistemde işlemin birkaç yerinde lazım olan bir program parçasını tekrar

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Çizgi İzleyen Robot Yapımı

Çizgi İzleyen Robot Yapımı Çizgi İzleyen Robot Yapımı Elektronik Elektronik tasarım için yapılması gerek en önemli şey kullanılacak malzemelerin doğru seçilmesidir. Robotun elektronik aksamı 4 maddeden oluşur. Bunlar; 1. Sensörler

Detaylı

1. LİNEER PCM KODLAMA

1. LİNEER PCM KODLAMA 1. LİNEER PCM KODLAMA 1.1 Amaçlar 4/12 bitlik lineer PCM kodlayıcısı ve kod çözücüsünü incelemek. Kuantalama hatasını incelemek. Kodlama kullanarak ses iletimini gerçekleştirmek. 1.2 Ön Hazırlık 1. Kuantalama

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) 1. DENEYİN AMACI ÜÇ FAZ EVİRİCİ 3 Faz eviricilerin çalışma

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ

T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ T.C. MİLLÎ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ENDÜSTRİYEL OTOMASYON TEKNOLOJİLERİ MİKRODENETLEYİCİ-3 ANKARA 2007 Milli Eğitim Bakanlığı tarafından geliştirilen

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Optokuplör Optokuplör kelime anlamı olarak optik kuplaj anlamına gelir. Kuplaj bir sistem içindeki iki katın birbirinden ayrılması ama aralarındaki sinyal iletişiminin

Detaylı

Deney 32 de osiloskop AC ve DC gerilimleri ölçmek için kullanıldı. Osiloskop ayni zamanda dolaylı olarak frekansı ölçmek içinde kullanılabilir.

Deney 32 de osiloskop AC ve DC gerilimleri ölçmek için kullanıldı. Osiloskop ayni zamanda dolaylı olarak frekansı ölçmek içinde kullanılabilir. DENEY 35: FREKANS VE FAZ ÖLÇÜMÜ DENEYĐN AMACI: 1. Osiloskop kullanarak AC dalga formunun seklini belirlemek. 2. Çift taramalı osiloskop ile bir endüktanstın akım-gerilim arasındaki faz açısını ölmek. TEMEL

Detaylı

Centronic SensorControl SC431-II

Centronic SensorControl SC431-II Centronic SensorControl SC431-II tr Montaj ve İşletme Talimatı Işık Sensörlü Kablosuz Aşağıdaki kişilere yönelik önemli bilgiler: Montaj elemanı / Elektrik teknisyeni / Kullanıcı Lütfen ilgili kişilere

Detaylı

ANALOG İLETİŞİM. 3. Kanal ayrımı sağlar. Yani modülasyon sayesinde aynı iletim hattında birden çok bilgi yollama olanağı sağlar.

ANALOG İLETİŞİM. 3. Kanal ayrımı sağlar. Yani modülasyon sayesinde aynı iletim hattında birden çok bilgi yollama olanağı sağlar. ANALOG İLETİŞİM Modülasyon: Çeşitli kaynaklar tarafından üretilen temel bant sinyalleri kanalda doğrudan iletim için uygun değildir. Bu nedenle, gönderileek bilgi işareti, iletim kanalına uygun bir biçime

Detaylı

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU

YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU YÜZÜNCÜ YIL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG ELEKTRONİK DENEY RAPORU DENEY NO : DENEYİN ADI : YAPILIŞ TARİHİ: GRUP ÜYELERİ : 1. 2. 3. DERSİN SORUMLU ÖĞRETİM ÜYESİ: Yrd. Doç.

Detaylı

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü

Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühendisliği Bölümü Sakarya Üniversitesi Bilgisayar ve Bilişim Bilimleri Fakültesi Bilgisayar Mühisliği Bölümü KABLOSUZ AĞ TEKNOLOJİLERİ VE UYGULAMALARI LABORATUAR FÖYÜ Sayısal Haberleşme Uygulamaları Deney No:1 Konu: Örnekleme

Detaylı

Kablosuz Ağlar (WLAN)

Kablosuz Ağlar (WLAN) Kablosuz Ağlar (WLAN) Kablosuz LAN Kablosuz iletişim teknolojisi, en basit tanımıyla, noktadan noktaya veya bir ağ yapısı şeklinde bağlantı sağlayan bir teknolojidir. Bu açıdan bakıldığında kablosuz iletişim

Detaylı

PIC MIKRODENETLEYICILER-3: GECĠKME ve KESME PROGRAMLARI

PIC MIKRODENETLEYICILER-3: GECĠKME ve KESME PROGRAMLARI P I C 1 6 F 8 4 / P I C 1 6 F 8 7 7 K O M U T S E T İ PIC MIKRODENETLEYICILER-3: GECĠKME ve KESME PROGRAMLARI Hazırlayan:Öğr.Gör.Bülent ÇOBANOĞLU 1 Gecikme Programları Örnek 1: Tek bir döngü ile yaklaģık

Detaylı