MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ"

Transkript

1 MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ DİJİTAL SAYICILAR VE TAKOMETRELER Hazırlayan : Mustafa KARATAŞ Sınıf / No: 3 / Proje Sorumlusu: 2002/2003 1

2 İÇİNDEKİLER DİJİTAL SAYICILAR VE TAKOMETRELER 1. GENEL TANIM 1.1. Dijital ve Analog Kavramı 1.2. Devre Elemanları Pasif Devre Elemanları Aktif Devre Elemanları 2. MANTIK DEVRELERİ 2.1. Ve Kapısı 2.2. Ve Değil Kapısı 2.3. Veya Kapısı 2.4. Veya Değil Kapısı 2.5. Özel Veya Kapısı 2.6. Özel Veya Değil Kapısı 2.7. Değil Kapısı 3. FLİP-FLOP LAR 3.1. R-S (reset-set) tipi Flip-Flop 3.2. Tetiklemeli R-S Tipi Flip-Flop 3.3. D (data) tipi Flip Flop 3.4. T (toggle) tipi Flip Flop 3.5. J - K tipi Flip Flop 3.6. Master - Slave tipi Flip Flop 4. SAYICILAR 4.1. Asenkron Sayıcılar 4.2. Senkron Sayıcılar 5. TAKOMETRELER 5.1. Takometre Nedir ve Kullanım Alanları 5.2. Değişik Takometre Devreleri 6. YAPILAN PROJE 6.1. Amaç 6.2. Devre Şeması 6.3. Kullanılan Elemanlar 6.4. Devrenin Çalışması 2

3 KAYNAKÇA 1- GENEL TANIM 1-1- Dijital ve Analog Kavramı Son 70 yıl içerisinde, analog (örneksel) ve dijital (sayısal) kavramları, elektronik ile ilgili kaynaklarda yer almaktadır. 70 yılöncesi, ilk ticari hesap makinesinden söz edilmeye başlanmıştı. Ancak hesap makinesi 20. yüzyılın buluşu değildir de ünlü düşünür Leibnitz, ilk mekanik hesap makinesini tasarladı ve uyguladı. Leibnitz günümüzde çok kullanılan ikili sayı sistemini o zamanlarda bulmuş ve bununla hesaplama kurallarını açıklamıştı. İlk çalışır durumdaki dijital elektro-mekanik hesaplayıcı, Alman bilgini K. Zuse tarafından 1930 yılında gerçekleştirilmişti. İlk büyük elektronik hesap makinesi ise, 1946 yılında ABD nin Philedelpia eyaletindeki Pensilvanya üniversitesinden mühendis P. Eckert ve mühendis W. Mauchly tarafından yapıldı. Bu Makine iki tane 10 haneli sayının çarpılma süresi 1/350 saniye olacak kadar yüksek çalışma hızına sahip ve elektron tüpünden oluşturulduğu için çok yüksek yapım maliyeti nedeniyle büyük ilgi uyandırmıştı. Zamanla elektron tüplerinin yerini sırasıyla transistörler ve tümleşik devreler aldı. Hesap makineleri küçüldüler. Saat kadar küçük hesap makineleri yapıldı aynı sisteme dayalı olarak, bilgisayarla yapıldı. Bunlarda küçüldüler ve her iş yerine hatta her eve kadar girdiler. Dijital sözcüğü o kadar çok kullanılmaktadır ki, neredeyse bir dijital istilasından söz edebiliriz. Bunu en iyi olarak, piyasadaki ölçü aletlerinde görmekteyiz. Gerilim, direnç ve akım ölçme kademeleri olan dijital multimetre, çeşitli frekans kademeleri olan dijital frekans metre gibi ölçü aletleri analog ölçü aletlerinin yerini almış bulunuyor. Dijital Dijital sözcüğü Latince digitus=parmak sözcüğünden türetilmiştir ve parmakla sayılabilir ya da kısaca Sayısal demektir. Dijital tekniğinde işaretler, sayılar ya da sayı dizileriyle gösterilirler. Bu işaretler, elektriksel ya da manyetik konumlarda sıfır ile bir işaret elemanını içeren ikili kodlamalarda darbe dizileriyle gerçekleştirilirler. Tıpkı, mors kodlamasında, tüm harf ve sayıların kısa ve uzun işaretlerle gösterilmesi gibidir. Dijital tekniğinde, karakteristik bir özellik, işaret değişiminin sıçramalı bir şekilde ara değerler olmaksızın, tam bir sayı adımı şeklinde olmasıdır:aynen parmakla 3

4 sayı saymada, uzatılmış parmakların sayısını, örneğin ikiden üçe sıçramalı olarak yükseltmeye benzemektedir. Müzik aletlerinin içinden en çok kullanılan piyano bizim için çok iyi örnek olabilir. Aralardaki siyah tuşları göz ardı edersek, piyano gerçek bir dijital alettir. Kademeli olarak düzenlenmiş ses tonlarına aittir, ara tonlar yoktur. Dijital düzenlemenin en büyük yararı, işaret iletimindeki parazit güvenliği, verilen değerlerin hatasız okunur olması ve kullanılan elemanların (tümleşik devreler ve transistörler) güç kayıplarının az olmasıdır. Tümleşik devreler ve transistörler yalnızca anahtar olarak kullanılırlar. Ya tümüyle iletimde ya da tümüyle kesimdedirler. İletimdeyken işaret yüksek kesimdeyken ise alçak konumdadır. Bu tür bir çalışma, elemanların değerlerinin kolayca seçilmesine ve toleranslarına da bir uyum getirmektedir. Dijital tekniğinde alçak ve yüksek konumlar için 0 ve 1 işaretleri kullanılır. Bazı yabancı kaynaklarda 0 yerine L(low) ve 1 yerine H(high) harfleri de kullanılmaktadır. 0 şaseye göre işaret yok anlamına gelmektedir. 1 şaseye göre tam gerilim anlamına gelmektedir. Analog Analog sözcüğü yunancada benzer anlamına gelmektedir. Türkçe karşılığı ise örneksel benzetimli anlamına gelmektedir. Bunu şöyle açıklarız suyun basıncı ve debisi elektronikteki gerilim ve akıma analog (benzer) dir. Bir ölçü aletinin ibresi, uygulanan gerilime benzetimli (analog) olarak sapar. Demek ki analog tekniği bir olayın yerine benzeri bir olay koymaktadır Analog sistemlerde işaret süreklidir, ülçme doğruluğuna göre işaretin istenildiği kadar çok ara değeri alınabilir ve aktif elemanlar(tümleşik devreler ve transistorler) özellikle dorusal (lineer) öz-eğri bölgelerinde kuvvetlendirici olarak çalıştırılırlar. Bu nedenle bu tür devrelere Lineer Devreler adı da verilmektedir Devre Elmanları 1. Pasif Devre Elemanları 2. Aktif Devre Elemanları Bunlarda kendi aralarında gruplara ayrılmaktadır.. 1. Pasif Devre Elemanları: Dirençler Kondansatörler Bobinler 2. Aktif Devre Elemanları: Diyotlar 4

5 Transistörler Entegre devreler Pasif devre elemanları, genel amaçlı elemanlardır. Hemen hemen her elektronik devrede bulunurlar. Bu nedenle, bu elemanların genel yönleriyle tanınmaları, amaca uygun olarak kullanılmaları bakımından yeterlidir. Aktif devre elemanları, ise özel amaçlı elemanlardır. Kullanılacak devrenin özelliğine göre, aktif devre elemanlarının özellikleri ve türleri de değişmektedir Pasif Devre Elemanları Dirençler Direnç Nedir? Direnç kelimesi, genel anlamda, "bir güce karşı olan direnme" olarak tanımlana bilir. Elektrik ve elektronikte direnç, iki ucu arasına gerilim uygulanan bir maddenin akıma karşı gösterdiği direnme özelliğidir. Kısaca; elektrik akımına gösterilen zorluğa DİRENÇ denir. Direnç"R" veya "r" harfi ile gösterilir, birimi ohm ( ) dur. Direnç Sembolleri: Eski Yeni Sabit Dirençler Ayarlı Dirençler Direncin devredeki rolü: Bir "E" gerilim kaynağına "R" direncinden, Şekil 1.1'de gösterilmiş olduğu gibi, bir " I " akımı akar.bu üç değer arasında Ohm kanununa göre şu bağlantı vardır.e=i.rbirimleri: E: Volt I: Amper R: Ohm ( ) Şekil 1.1 Dirençli bir devre Direnç Türleri: Dirençler iki gruba ayrılır: 1. Büyük güçlü dirençler 2. Küçük güçlü dirençler 5

6 Büyük Güçlü Dirençler;: 2W üzerindeki dirençler büyük güçlü direnç grubuna girer. Küçük Güçlü Dirençler; Küçük güçlü dirençlerin sınıflandırılması: 1. Sabit Dirençler 2. Ayarlı Dirençler 3. Termistör (Terminstans) 4. Foto Direnç (Fotorezistans) Gerek büyük güçlü olsun, gerekse de küçük güçlü olsun, bütün dirençlerin belirli bir dayanma gücü vardır. Bir Direncin Harcadığı Güç: 1. U: Dirençteki gerilim düşümü (Volt) 2. R: Direncin değeri (Ohm) 3. I: Geçen akım (Amper) 4. P: Direncin gücü (Watt) Direnç Üzerinde Harcanan Güç Üç Şekilde İfade Edilir: 1. Akım ve gerilim cinsinden: P=U.I 'dır 2. Akım ve dirençcinsinden; (ohm kanununa göre): U=I.R 'dir. Bu "U" değeri P=U.I 'da yerine konulursa: P= I 2 R olur. 3. Gerilim ve dirençcinsinden; (ohm kanununa göre): I=U/R 'dir. Bu "I" değeri, P=U.I 'da yerine konursa, P= U 2 /R olur. Direnç Renk Kodları Şekil 1.2 Metel film direnç renk halkaları Şekil 1.3 Karbon direnç renk halkaları 6

7 Renk A B C D (çarpan) T (tolerans) Siyah ±%1 (F) Kırmızı Kahve ±%2 (G) Truncu k - Sarı k - Yeşil k ±%0.5 (D) Mavi M ±%0.25 (C) Mor M ±%0.10 (B) Gri ±%0.05 Beyaz Altın ±%5 (J) Gümüş ±%10 (K) Tablo 1.1 Direnç renk kodları Direnç üzerindeki renkleri değerlendirirken A, B, C, D ve T sırasına göre gitmeye dikkat etmek gerekmektedir. Bu sıralamaya göre yapılacak hesaplama sonucunda elde edilen direnç değeri Ohm(Ω) olarak bulunacaktır. Metal Film Dirençte: Şekil 1.4 Metal film direnç renk kodları 7

8 Karbon Dirençte: Şekil 1.5 Karbon direnç renk kodları Değeri Üzerinde Yazılı Dirençler: Bazı üreticiler renk kodu yerine direnç değerlerini yazmayı tercih etmektedirler. Bunlardan bir kısmı doğrudan direnç değerini ve toleransını yazdığı gibi, bazıları da harf kodu kullanmaktadır. Direnci gösteren harfler: R=Ohm, K=KiloOhm, M=MegaOhm Tolerans harfleri: F=±%1, G=±%2, J=±%5, K=±%10, M=±%20 Kodlama Üç Şekilde Olmaktadır; Ohm 'a kadar olan dirençler için R harfi kullanılır. Kodlama 3 adımda yapılır: R 'den önce gelen sayı "Ohm" olarak direnci gösterir. R 'den sonra gelen sayı direncin ondalık bölümünü gösterir. En sondaki harf toleransı gösterir. Örneğin: 6R8J = 6.8 ±%5 Ohm R45G = 0.45±%2 Ohm 2-1KOhm 'dan 1MOhm 'a kadar olan dirençler için "K" harfi kullanılır. 8

9 Örneğin: 3K0K = 3±%10 KOhm 2K7M = 2.7±%20 KOhm 3-1MOhm 'dan yukarı dirençlerde de "M" harfi kullanılır. Direnç Standartı: Tablo 1.2 'te görüldüğü gibi, dirençler standart değerlerde üretilir. Tolerans yüzdeleri, "E" seri numarasından anlaşılır. E6 serisi %20 E12 serisi %10 E24 %5 E96 ± Tablo 1.2 Standart dirençler 9

10 Şekil 1.6 VDR Şekil 1.7 NTC Kondansatörler Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Kondansatörün Yapısı: 10

11 Kondansatör şekil 1.8 'de görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin yerleştirilmesi veya hiç bir yalıtkan kullanılmaksızın hava aralığı bırakılması ile oluşturulur. Kondansatörler yalıtkan maddenin cinsine göre adlandırılır. Kondansatörün sembolü: Değişik yapılı kondansatörlere göre, kondansatör sembollerinde bazı küçük değişiklikler vardır. Şekil 1.8 Kondansatör Yapısı Harf Olarak " C " Kondansatörün Çalışma Prensibi: Şekil 1.9 Kondansatör Sembolleri Kondansatörün bir DC kaynağına bağlanması ve şarj edilmesi: Şekil 1.10(a) 'da görüldüğü gibi kondansatör bir DC kaynağına bağlanırsa, devreden Şekil 1.10(b) 'de görüldüğü gibi, geçici olarak ve gittikçe azalan I C gibi bir akım akar. I C akımının değişimini gösteren eğriye kondansatör zaman diyagramı denir. Akımın kesilmesinden sonra kondansatörün plakaları arasında, kaynağın Vk gerilimine eşit bir Vc gerilimi oluşur. Bu olaya, kondansatörün şarj edilmesi, kondansatöre de şarjlı kondansatör denir. "Şarj" kelimesinin Türkçe karşılığı "yükleme" yada "doldurma" dır. 11

12 Şekil 1.10 Kondansatörün DC kaynağına bağlanması a) Bağlantı devresi b) Zaman diyagramı c) Vc gerilim oluşumu Kondansatör Devresinden Akım Nasıl Akmalıdır? Şekil 1.10(a)'daki devrede, S anahtarı kapatıldığında aynı anda kondansatör plakasındaki elektronlar, kaynağın pozitif kutbu tarafından çekilir, kaynağın negatif kutbundan çıkan elektronlar, kondansatöre doğru akmaya başlar. Bu akma işlemi, kondnsatörün plakası daha fazla elektron veremez hale gelinceye kadar devam eder. Bu elektron hareketinden dolayı devreden bir I C akımı geçer. I C akımının yönü elektron hareketinin tersi yönündedir. Devreden geçen I C akımı, bir DC ampermetresi ile gözlenebilir. S anahtarı kapanınca ampermetre ibresi önce büyük bir sapma gösterir. Sonra da, ibre yavaş yavaş sıfıra gelir. Bu durum devreden herhangi bir akım geçmediğini gösterir. I C akımına şarj akımı denir. Devre akımının kesilmesinden sonra yukarıda da belirtildiği gibi kondansatör plakaları arasında V c =V k oluşur. V C gerilimine şarj gerilimi denir. V C geriliminin kontrolü bir DC voltmetre ile de yapılabilir. Voltmetrenin "+" ucu, kondansatörün, kaynağın pozitif kutbuna bağlı olan plakasına, "-" ucu da diğer plakaya dokundurulursa V C değerinin kaç volt olduğu okunabilir. Eğer voltmetrenin uçları yukarıda anlatılanın tersi yönde bağlanırsa voltmetrenin ibresi ters yönde sapar. 12

13 Kondansatörde Yük, Enerji ve Kapasite; Şarj işlemi sonunda kondansatör, Q elektrik yüküyle yüklenmiş olur ve bir E C enerjisi kazanır. Kondansatörün yüklenebilme özelliğine kapasite (sığa) denir. C ile gösterilir. Q, E c, C ve uygulanan V gerilimi arsında şu bağlantı vardır. Q=C V E C =CV 2 /2 Bu eşitlikte, Q: Coulomb (kulomb), V: Volt, C: Farad (F), E c : Joule (Jul) Yukarıdaki bağlantıdan da anlaşıldığı gibi, C kapasitesi ve uygulanan V gerilimi ne kadar büyük ise Q elektrik yükü ve buna bağlı olarak devreden akan I c akımı da o kadar büyük olur. Kondansatörün kapasite formülü: C = ε 0 ε r (A/d) ε 0 : Boşluğun dielektrik katsayısı ( 0= ) ε r : Plakalar arsında kullanılan yalıtkan maddenin izafi dielektrik (yalıtkanlık) sabiti (Tablo 1.6). 1. A: Plaka alanı 2. d: Plakalar arası uzaklık A ve d değerleri metrik sistemde (MKS) ifade edilirse, yani, "A" alanı (m) ve "d" uzaklığı, metre (m 2 ) cinsinden yazılırsa, C' nin değeri farad olarak çıkar. Örneğin: Kare şeklindeki plakasının her bir kenarı 3 cm ve plakalar arası 2 mm olan, hava aralıklı kondansatörün kapasitesini hesaplayalım. A ve d değerleri MKS' de şöyle yazılacaktır: A=0,03*0,03=0,0009m 2 = m 2 d=2mm= m 0 = 8, Hava için r=1 olup, değerler yerlerine konulursa: C=8, , =39, F=3,9 pf olur. 13

14 CİNSİ İzafi Yalıtkanlık Katsayısı (r) CİNSİ İzafi Yalıtkanlık Katsayısı (r) Hava 1 Mika 5-7 Lastik 2-3 Porselen 6-7 Kağıt 2-3 Bakalit 4-6 Seramik 3-7 Cam 4-7 AC Devrede Kondansatör: Tablo 1.3 Bazı yalıtkan maddelerin r sabitleri Yukarıda DC devrede açıklanan akım olayı, AC devrede iki yönlü olarak tekrarlanır. Dolayısıyla da, AC devredeki kondansatör, akım akışına karşı bir engel teşkil etmemektedir. Ancak bir direnç gösterir. Kondansatörün gösterdiği dirence kapasitif reaktans denir. Kapasitif reaktans, X C ile gösterilir. Birimi Ohm(Ω) dur. X C = (1/ωC) = (1/2πfC) Ohm olarak hesaplanır. 1. X C = Kapasitif reaktans ( ) 2. ω= Açısal hız (Omega) 3. f = Frekans (Hz) 4. C = Kapasite (Farad) Yukarıdaki bağlantıdan da anlaşıldığı gibi, kondansatörün Xc kapasitif reaktansı; C kapasitesi ve f frekansı ile ters orantılıdır. Yani kondansatörün kapasitesi ve çalışma frekansı arttıkça kapasitif reaktansı, diğer bir deyimle direnci azalır. 14

15 Şekil 1.11 Kondansatör renk kodları Bobinler Elektronik devrelerde çok kullanılan elemanlardan biri de bobinlerdir. Bobinler alternatif akımın bulunduğu yerlerde kullanılırlar çünkü; alternatif akımla bobinler arasında özel bir durum mevcuttur. Bobin, kondansatör ve A.C. üç silahşörler gibidir. Bobinler bir 'mandren', 'makara', 'karkas' üzerine sarılırlar, hepsi de aynı anlama gelen bu terimler, bobinin sarıldığı; plastik, seramik, sert kağıt gibi maddelerden yapılmış bobine destek olan bir malzemeye verilen isimdir. Tellerin hiç hareket etmemesi istenen yüksek frekanslarda bobin makaralarında çentikler mevcuttur.kimi bobinlerin içinde bir çekirdek vardır, çekirdek çeşitli maddelerden yapılabilir, demir veya demir tozu olan ferit çekirdek olarak kullanılabilir. Bir Bobinin değeri Henry ile ölçülür. Joseph Henry yılında yaşamış olan Amerikalı bir fizikçidir. Bir bobinin değeri; kullanılan tel kalınlığına, tur sayısına, sargı boyuna, mandren çapına bağlıdır. Sarım sayısı N, Makara çapı D cm, bobinin sargısının boyu S cm kadar olan bir bobinde, bobinin değeri, mikrohenry olarak; 15

16 L =K x N x N x D x 10-3 dir. Burada K bir katsayıdır ve D / S oranına karşılık gelir. Bobinlerin pratik olarak yapımında, bu değeri bulmak için bir abak kullanılır. Yaklaşık bir değer olarak K = 100 D / 4 D + 11S olarak bulunabilir. Burada D ve S değerleri cm'dir. Örnek: S sargı uzunluğu 3 cm, D çapı 1 cm olan, 30 turluk bir bobinin değeri nedir? L = 2.7 x 30 x 30 x1 / 1000 L = 2.43 mikro Henry. Yaklaşık değer 2.5 mikroh olarak kabul edilebilir. Bu bir mandren üzerine bitişik sarılan nüvesiz bir bobindir. Eğer bobin yukarıdaki gibi havada sarılı bir bobin olsa bobinin indüktansını şu formülle hasaplardık. L = D x D x N x N/3D+9S+10C L mikrohenry olarak bobinin değeri, D cm olarak bobin çapı, N sarım sayısı, S sarımın cm olarak uzunluğu, C merkezden çevreye doğru sarımın derinliğidir ve tek katlı bobinlerde ihmal edilebilir. Önceki örnekteki bobini 5 cm boyunda havada sararsak değeri ne olur? L= x 900 / = 1.5 Mikro henry yaklaşık değerdir. Bobinler çeşitli şekilde sarılabilirler, spiral, düz, petek sargı bunlardan bazılarıdır. Bir çeşit bobin de toroid lerdir. Toroidlerin veya harhangi ferro (demir tozu) malzemeden yapılmış çekirdekli bobinlerin indüktansında rol oynayan bir parametre de bu malzemenin geçirgenliği denilen bir değerdir. Muhtelif bobinler Bobinler bakır veya gümüş tel veya litz teli denilen ipekle yalıtılmış telden sarılırlar. Bobinlerin seri ve paralel bağlanmalarında, eğer bobinler birbirlerinin endüktif alanları içinde değilse dirençlerde olduğu gibi aynı formüller kullanılır, aksi halde, yani birbirlerini etkiledikleri durumda bu formüller kullanılmaz. Bobinler değerleri sıcaklıkla değişen elemanlardır, bu nedenle çok kararlı devrelerde kullanılmazlar. Endüktif Reaktans" adı verilir. {Endüktif Reaktans } X L = wl 16

17 Aktif Devre Elemanları Diyotlar Diyot Çeşitleri 1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Işık Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap) Diğer Diyotlar 1. Mikrodalga Diyotları 2. Gunn Diyotları 3. Impatt (Avalanş) Diyot 4. Baritt (Schottky) Diyot 5. Ani Toparlanmalı Diyot 6. Pin Diyot 7. Büyük Güçlü Diyotlar Diyodun Temel Yapısı Diyot Nedir? Diyotlar, yalnızca bir yönde akım geçiren devre elemanıdır. Diğer bir deyimle, bir yöndeki dirençleri ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin küçük olduğu yöne "doğru yön",büyük olduğu yöne "ters yön" denir. Diyot sembolü, aşağıda görüldüğü gibi, akım geçiş yönünü gösteren bir ok şeklindedir. Diyot Sembolü: Şekil 1.12 Diyot Ayrıca, diyodun uçları pozitif (+) ve negatif (-) işaretleri ile de belirlenir. "+" ucu anot, "-" uca katot denir. Diyodun anaduna, gerilim kaynağının pozitif (+) kutbu, katoduna kaynağın negatif (-) kutbu gelecek şekilde gerilim uygulandığında diyot iletime geçer. 17

18 Diyodun kullanım alanları: Diyotlardan, elektrik alanında redresör (doğrultucu), elektronikte ise; doğrultucu,detektör, modülatör, limitör, anahtar olarak çeşitli amaçlar için yararlanılmaktadır. Diyotların Gruplandırılması: Diyotlar başlıca üç ana gruba ayrılır: 1. Lamba diyotlar 2. Metal diyotlar 3. Yarı iletken diyotlar Transistörler Transistör nedir? Eklem Transistör yarı iletken malzemeden yapılmış elektronik devre elemanıdır. Her nekadar diyodun yapısına benzesede çalışması ve fonksiyonları diyottan çok farklıdır. Transistör iki eklemli üç bölgeli bir devre elemanı olup iki ana çeşittir. NPN PNP Şekil 1.13 NPN ve PNP tipi transistör Transistör aşağıda belirtildiği gibi değişik şekillerde tanımlanır: 1. Transistörün kolay anlaşılması bakımından tanımı; Transistörün bir sandöviçe benzetilmesidir, yarı iletken sandöviçi. 2. İkinci bir tanımıda şöyle yapılmaktadır; Transistör, iki elektrodu arasındaki direnci, üçüncü elektroda uygulanan gerilim ile değişen bir devre elemanıdır. 3. Transistörün en çok kullanılan tanımı ise şöyledir; Transistör yan yana birleştirilmiş iki PN diyodundan oluşan bir devre elemanıdır. Birleşme sırasına göre NPN veya PNP tipi transistör oluşur. 18

19 Transistörün başlıca çeşitleri şunlardır: Yüzey birleşmeli (Jonksiyon) transistör Nokta temaslı transistör Unijonksiyon transistör Alan etkili transistör Foto transistör Tetrot (dört uçlu) transistör Koaksiyal transistör Transistörün kullanım alanları: Transistör yapısal bakımdan, yükselteç olarak çalışma özelliğine sahip bir devre elemanıdır. Elektroniğin her alanında kullanılmaktadır. Şekil 1.14 Değişik transistör gösterim şekilleri Entegreler Direnç, küçük değerli kondansatör, bobin, diod, transistör gibi elemanlar biraraya getirilip bir yapı içerisinde devreler oluşturulmuştur. İşte bu komplike devrelere Entegre adı verilir.entegreler kullanım yerine göre 19

20 değişik isimler alırlar. Örneğin: Operasyönel entegreler, dijital entegreler,..vs. OPERASYONEL ENTEGRELER: Ses frekans ve sanayi tekniğinde çeşitli amaçlarla kullanılırlar. DİJİTAL ENTEGRELER: Dijital entegreler yapılarında kullanılan elemanlara göre değişik isimler alınır. RTL (Direnç Transistör Lojik ) dijital entegreler. DTL (Diod Transistör Lojik ) dijital entegreler. TTL (Transistör Transistör Lojik ) dijital entegreler. MOS (Metal Oksit Semiconductor ) dijital entegreler. CMOS (Complementery Metal Oksit Semiconductor ) dijital entegreler. Dijital entegrelerde "kapı devreleri" adını verdiğimiz devreler geniş olarak kullanılmaktadır. Kapı devreleri ile mantık ilkelerinin elektrik devrelerine uygulanışı mümkün olmuştur. Dijital elektronikte "0-1" tekniği kullanılır. 0: Gerilim yok (Bu durum L- Low- harfi ile de gösterilir ) 1: Gerilim var (Bu durum H- High -harfi ilede gösterilir ) 2- MANTIK DEVRELERİ Lojik Kapılar : Dijital elektroniğin temelide lojik kapılardır. Tüm dijital devrelerde kullanılırlar. Lojik kapılar 1 ve 0 dan oluşan binary bilgileri işlemede kullanılır. Örneğin istenen binary kodunun alınıp istenmeyenlerin de alınmamasında veya frekans üretiminde veya da gelen binary bilgiye göre işlem yapmada kullanılırlar. Aşağıdaki tablolarda A ve B girişleri Q ise çıkışı temsil etmektedir. Girişine uyulanan kodlara göre çıkıştaki kodlar, tabloda görülmektedir. Şimdide bu kapı çeşitlerini inceleyelim Ve (And) Kapısı : Ve kapısı iki ve ya daha fazla giriş ve bir adette çıkış ucuna sahiptir. Bu giriş uclarına uygulanan 1 ve ya 0 kodlarına göre çıkışta değişiklikler görülür. Ve kapısının tüm girişleri 1 olduğunda çıkış 1, herhangi bir ucu 0 olduğunda ise çıkış 0'dır. Kapı hesaplarındaki formülü Q (Çıkış (C)) = A. B dir. Yanda Ve kapısının sembolü ve iç ayısı görülmektedir. A B Q

21 2-2- Ve Değil (NAND) Kapısı : Değil mantığı tüm kapılarda vardır. Bu kapılar normal kapıların çıkış uclarına değil kapısı eklenerek elde edilirler. Yani Ve kapısının çıkış ucu 1 olduğu durumlarda Ve Değil kapısının çıkışı 0, 0 olduğu durumlarda ise 1'dir. Kapı hesaplarındaki formülü Q (Çıkış (C)) = (A. B)'dir. Üst tırnak işareti, değili (tersi) manasına gelmektedir. formülün sonucu 1 ise 0, 0 ise de 1 'dir. Yanda Ve Değil kapısının sembolü ve iç ayısı görülmektedir. A B Q Veya (Or) Kapısı : Veya kapısı da iki ve ya daha fazla giriş, bir adette çıkış ucuna sahiptir. Giriş uclarından herhangi birisinin 1 olması durumunda çıkış 1, diğer durumlarda da çıkış 0'dır. Yani Ve kapısının tersi mantığında çalışır. Kapı hesaplarındaki formülü Q (Çıkış (C)) = A + B dir. Yanda Veya kapısının sembolü ve iç ayısı görülmektedir. A B Q Veya Değil (NOR) Kapısı : Veya Değil kapısıda yine Veya kapısının çıkış ucuna Değil eklener elde edilmiştir. Veya Değil kapısının çıkış durumları Veya kapısının çıkış durumlarının tam tersidir.kapı hesaplarındaki formülü Q (Çıkış (C)) = (A + B)' dir. Yanda Veya Değil kapısının sembolü ve iç ayısı görülmektedir. A B Q Özel Veya Kapısı : İsminin Özel Veya kapısı olmasına rağmen Veya kapısı ile hiç bir alakası yoktur. Özel Veya kapısının girişleri aynı olduğunda çıkış 1, girişleri farklı olduğunda ise çıkış 0 'dır. Yani girişler 1 0 yada 0 1 iken çıkış 1, girişler 0 0 yada 1 1 iken de çıkış 0 'dır. Hesaplardaki formülü ise Q = A B dir. Yanda Özel Veya kapısının sembolü ve iç yapısı yeralmaktadır. A B Q

22 2-6- Özel Veya Değil Kapısı : Özel Veya Değil kapısıda Özel Veya Kapısının Çıkışına Değil eklenmiş halidir. Giriş ucları aynı iken çıkış 1, giriş ucları farklı iken de çıkış 0 'dır. Hesaplamalardaki formülü Q = (A B)'dir. Yanda Özel Veya Değil kapısının sembolü ve iç yapısı görülmektedir. A B Q Değil Kapısı : Değil Kapısı bir giriş ve birde çıkış ucuna sahiptir. Girişine gelen binary kodu tersleyerek çıkışına iletir. Yani giriş 1 iken çıkış 0, giriş 0 iken çıkış 1'dir. Hesaplamalardaki formülü Q = A'şeklindedir. Yan tarafta Değil kapısının sembolü ve iç yapısı görülmektedir. A Q FLİP - FLOP 'LAR Flip- Flop Tipleri Flip-flop'lar iki çıkışa sahiptirler. Bunlar Q ve Q' dir. Q ve Q' birbirlerinin tersidir. Yani Q = 1 ise Q' = 0, Q = 0 isede Q' = 1 olur. Yalnız aşağıdaki doğruluk tablolarında görüleceği gibi Q ve Q' in aynı olduğu durumlar görülmektedir. Bu durumlar istenmez. Bu nedenlede bu çıkışı veren girişler kullanılmaz. Flip - Flop 'lar clock (saat) palsi ile çalışırlar. Bu palsler sayesinde girişlere göre çıkışlarda değişimler Flip - Flop 'lar lojik kapılardan oluşurlar. Ayrıca Flip - Flop 'lar görülür. Sayıcıların ve Kaydedicilerin temelini oluştururlar R-S (reset-set) tipi Flip-Flop : Sembolü İç Yapısı Doğruluk Tablosu S' R' Q Q' Değişmez Şekil 3.1 RS tipi flip flop sembolü, iç yapısı, doğruluk tablosu Yukarıda R-S tipi flip-flop'un Ve Değil kapıları ile çizilmiş iç yapısı ve doğruluk tablosu görülmektedir. Tablodaki S' ve R' 'nün 1 olduğu durumda Q ve Q' 'in 22

23 değişmediği görülür. Bu, çıkışların bundan önceki konumunu sakladığını belirtir. S' ve R' 'in 0 olduğu durumda ise Çıkışların eşit olduğu görülür. Bu durumda flipfloplarda istenmeyen bir durumdur. Bu durumu sağlayan girişler değerleri kullanılmamalıdır Tetiklemeli R-S (reset-set) tipi Flip - Flop : Sembolü İç Yapısı Uyarım Tablosu Qn Qn + 1 S R X X 0 Şekil 3.2 Tetiklemeli RS tipi flip flop sembolü, iç yapısı, doğruluk tablosu Tetiklemeli R-S tipi flip-flop R-S tipi flip-flop'un önüne iki adet Ve Değil kapısı eklenerek elde edilmiştir. Flip-flop'a clock palsi gelmediği sürece çıkışlar değişmez. Yukarıdaki tabloda tetiklemeli R-S flip-flopun iç yapısı ve uyarım tablosu görülmektedir. Uyarım tablosu flip-floplarla devre tasarımında kullanılır. Tablodaki X 'ler ise etkisiz elemanlardır. Yani 1 veya 0 olması durumda çıkışlar değişmez. Bazı kaynaklarda (X) yerine (d) 'de yazılmaktadır. Bu işaretin yerine 0 veya1 koyulabilir. Ayrıca tablodaki Qn clock palsinden önceki durumu, Qn+1 ise clock palsinden sonraki durumu temsil etmektedir. Tablo FF 'un çıkışının Qn'den Qn+1'e geçmesi için S ve R girişlerinin ne olması gerekir 3-3- D (data) tipi Flip - Flop : Sembolü İç Yapısı Doğruluk Tablosu Uyarım Tablosu D Qn Qn+1 Qn Qn+1 D Şekil 3.3 D tipi flip flop sembolü, iç yapısı, doğruluk tablosu Yukarıdaki D FF 'un iç yapısında da görüldüğü gibi Tetiklemeli R-S FF 'un iki ucu arasına değil kapısı eklenerek D FF elde edilmiştir. Doğruluk tablosunda görüldüğü gibi D FF clock palsi uygulandığında girişindeki bilgiyi aynen çıkışa iletir. D FF besleme olduğu sürece bilgi saklayabilir. clock palsi uygulanmadığı sürece FF 'un girişleri ne olursa olsun çıkış sabittir. Böylece bilgiyi saklamış olur. 23

24 3-4- T (toggle) tipi Flip - Flop : Sembolü İç Yapısı Doğruluk Tablosu T Uyarım Tablosu Qn Qn+1 Qn Qn+1 T Şekil 3.4 T tipi flip flop sembolü, iç yapısı, doğruluk tablosu T tipi FF'de J-K tipi FF'un giriş ucalarının birleşiminden meydana gelmiştir. T FF'a clock palsi uygulandığında girişindeki bilginin değilini çıkışa verir. Yukarıda T tipi FF 'un iç yapısı doğruluk tablosu ve uyarım tablosu görülmektedir J - K tipi Flip - Flop : Sembolü İç Yapısı Uyarım Tablosu Qn Qn+1 J K X X 1 0 X X 0 Şekil 3.5 JK tipi flip flop sembolü, iç yapısı, doğruluk tablosu 3-6- Master - Slave tipi Flip - Flop : Sembolü İç Yapısı Şekil 3.6 MS tipi flip flop sembolü, iç yapısı 24

25 4- SAYICILAR Sayıcılar flip-flop'lardan oluşmaktadırlar. İki gruba ayrılırlar, bunlar Senkron ve Asenkron sayıcılardır. Asenkron sayıcılar Senkron sayıcılara nazarn daha yavaş çalışırlar. Bunun sebebi ise flip flop 'ların birbirlerini tetiklemesidir. Bu da zaman kaybına yol açar. Senkron sayıcılarda ise tüm flip flop 'lar aynı anda tetiklenirler. Bu yüzden Senkron sayıcılar Asenkron sayıcılara göre daha fazla tercih edilirler. Sayıcılar birde yukarı ve aşağı sayıcılar diye ikiye ayrılırlar. Her clock palsinde çıkıştaki binary sayı artan sayıcılara yukarı sayıcı, azalan sayıcılara da aşağı sayıcı. denir Asenkron Sayıcılar : Şimdi 4 bit (4 çıkışlı) asenkron sayıcıyı ele alalım. 4 bit sayıcı için dört adet flip flop kullanacağız. Aşağıda 4 bit asenkron sayıcının çizimi ve çıkış tablosu görülmektedir. Şekil 4.1 Asenkron yukarı sayıcı devre şeması ve lojik analiz tablosu Yukarıda da görüldüğü gibi asenkron sayıcılarda flip flop'lar ard arda yani seri bağlanmıştır. Flip flop 'ların Q çıkışları kendinden sonra gelen flip flop'un clock ucuna bağlanmıştır. Bu durum sayıcıda yavaşlamaya sebep olur. Devrenin altında görülen grafik ise flip flop'ların çıkış grafiğidir. Grafikteki yükselmeler çıkışın 1 olduğunu düşmeler ise çıkışın 0 olduğunu temsil eder. Grafikten de anlaşılacağı gibi A çıkışı clock palsinin, B çıkışı A çıkışının, C çıkışı B çıkışının ve C çıkışı da D çıkışının yarı frekansı kadardır. Aşağı sayıcı yapılmak istenirse devre çizimindeki flip flop'ların Q çıkışından clock uclarına yapılan bağlantılar Q' 'den alınmalıdır. Çıkış tablosuda yandaki tablonun aşağıdan yukarı doğru okunan halidir. 25

26 4-2- Senkron Sayıcılar : Şimdi 4 bit (4 çıkışlı) senkron sayıcıyı ele alalım. 4 bit sayıcı için dört adet flip flop kullanacağız. Aşağıda 4 bit senkron sayıcının çizimi ve çıkış tablosu görülmektedir. Şekil 4.2 Asenkron yukarı sayıcı devre şeması ve lojik analiz tablosu Yukarıdaki devre çizimine bakıldığında senkron sayıcının asenkron sayıcıya göre biraz daha karışık olduğu anlaşılabilir. Yine yukarıda görüldüğü gibi tüm flip flop'ların clock ucları bir birlerine bağlıdır. Yani hepsi aynı anda clock palsi alırlar.bu da devrenin çalışmasına hız kazandırır. Devrenin altında görülen grafik ise flip flop'ların çıkış grafiğidir. Grafikteki yükselmeler çıkışın 1 olduğunu düşmeler ise çıkışın 0 olduğunu temsil eder. Grafikten de anlaşılacağı gibi A çıkışı clock palsinin, B çıkışı A çıkışının, C çıkışı B çıkışının ve C çıkışı da D çıkışının yarı frekansı kadardır. Eğer aşağı sayıcı yapılmak istenirse devredeki Ve kapısının giriş ucları flip flop'ların Q uclarından değilde Q' uclarından alınmalıdır. Tablosu ise yukarıdaki tablonun aşağıdan yukarı doğru okunuşudur. 26

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. BÖLÜM 2 KONDANSATÖRLER Önbilgiler: Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır. Yapısı: Kondansatör şekil 1.6' da görüldüğü gibi, iki iletken plaka arasına yalıtkan bir maddenin

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Doğru ve Alternatif

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA İçindekiler Temel Kavramlar Devre Elemanları Elektrik Devre Kaynakları GERİLİM (v) Pozitif ve negatif yük birbirinden ayrıldığı zaman enerji harcanır. Gerilim,

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap) Diyot Çeºitleri Otomotiv Elektroniði-Diyot lar, Ders sorumlusu Yrd.Doç.Dr.Hilmi KUªÇU Diðer Diyotlar 1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

18. FLİP FLOP LAR (FLIP FLOPS)

18. FLİP FLOP LAR (FLIP FLOPS) 18. FLİP FLOP LAR (FLIP FLOPS) Flip Flop lar iki kararlı elektriksel duruma sahip olan elektronik devrelerdir. Devrenin girişlerine uygulanan işarete göre çıkış bir kararlı durumdan diğer (ikinci) kararlı

Detaylı

Deney 3: Asenkron Sayıcılar

Deney 3: Asenkron Sayıcılar Deney 3: Asenkron Sayıcılar Sayıcılar hakkında genel bilgi sahibi olunması, asenkron sayıcıların kurulması ve incelenmesi Kullanılan Elemanlar 1xLM555 Entegresi, 1x10 kohm direnç, 1x100 kohm direnç, 1x10

Detaylı

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ A. DENEYİN AMACI : Bobin indüktansının deneysel olarak hesaplanması ve basit bobinli devrelerin analizi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı,. Değişik değerlerde dirençler ve bobin kutusu.

Detaylı

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu Direnç Dirençler elektronik devrelerin vazgeçilmez elemanlarıdır. Yaptıkları iş ise devre içinde kullanılan diğer aktif elemanlara uygun gerilimi temin etmektir. Elektronik devreler sabit bir gerilim ile

Detaylı

Deney 2: Flip-Floplar

Deney 2: Flip-Floplar Deney 2: Flip-Floplar Bu deneyde, çeşitli flip-flop devreleri kurulacak ve incelenecektir. Kullanılan Elemanlar 1 x 74HC00 (NAND kapısı) 1 x 74HC73 (JK flip-flop) 1 x 74HC74 (D flip-flop) 4 x 4,7 kohm

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI KONDANSATÖR Kondansatör iki iletken plaka arasına bir yalıtkan malzeme konarak elde edilen ve elektrik enerjisini elektrostatik enerji olarak depolamaya

Detaylı

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER ALTERNATİF AKIM DEVRELERİ A. DEVRE ELEMANLARI VE TEMEL DEVRELER Alternatif akım devrelerinde akımın geçişine karşı üç çeşit direnç (zorluk) gösterilir. Devre elamanları dediğimiz bu dirençler: () R omik

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR

Teorik Bilgi DENEY 7: ASENKRON VE SENKRON SAYICILAR DENEY 7: ASENKRON VE SENKRON SAYICILAR Deneyin Amaçları Asenkron ve senkron sayıcı devre yapılarının öğrenilmesi ve deneysel olarak yapılması Deney Malzemeleri 74LS08 Ve Kapı Entegresi (1 Adet) 74LS76

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİYOTLAR Diyot tek yöne elektrik akımını ileten bir devre elemanıdır. Diyotun

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

9- ANALOG DEVRE ELEMANLARI

9- ANALOG DEVRE ELEMANLARI 9- ANALOG DEVRE ELEMANLARI *ANALOG VE DİJİTAL KAVRAMLARI *Herhangi bir fiziksel olayı ifade eden büyüklüklere işaret denmektedir. *Zaman içerisinde kesintisiz olarak devam eden işaretlere Analog işaret

Detaylı

9. Güç ve Enerji Ölçümü

9. Güç ve Enerji Ölçümü 9. Güç ve Enerji Ölçümü Güç ve Güç Ölçümü: Doğru akım devrelerinde, sürekli halde sadece direnç etkisi mevcuttur. Bu yüzden doğru akım devrelerinde sadece dirence ait olan güçten bahsedilir. Sürekli halde

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK BÖLÜM 5 DİYOT ÇEŞİTLERİ 1) KRİSTAL DİYOT 2) ZENER DİYOT 3) TÜNEL DİYOT 4) IŞIK YAYAN DİYOT (LED) 5) FOTO DİYOT 6) AYARLANABİLİR KAPASİTELİ DİYOT (VARAKTÖR - VARİKAP) DİĞER DİYOTLAR 1) MİKRODALGA DİYOTLARI

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır?

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır? 1- Doğa ve çevreye fazla zarar vermeden devamlı ve kaliteli bir hizmet veya mal üretimi sırasında iş kazalarının meydana gelmemesi ve meslek hastalıklarının oluşmaması için alınan tedbirlerin ve yapılan

Detaylı

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti Elektronik Devreler 1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar Konunun Özeti * Diyotlar yapım tekniğine bağlı olarak; Nokta temaslı diyotlar,

Detaylı

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI BCP103 Öğr.Gör. MEHMET GÖL 1 Ders İçeriği Analog ve sayısal sinyal kavramları ler, çeşitleri, uygulama yerleri, direnç renk kodları Kondansatörler, çalışması, çeşitleri,

Detaylı

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK ELEKTRONİK 1 1. Atomun çekirdeği nelerden oluşur? A) Elektron B) Proton C) Proton +nötron D) Elektron + nötron 2. Elektron hangi yükle yüklüdür?

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. Sümeyye

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ SAYISAL DEVRE UYGULAMALARI Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ İÇİNDEKİLER ŞEKİLLER TABLOSU... vi MALZEME LİSTESİ... viii ENTEGRELER... ix 1. Direnç ve Diyotlarla Yapılan

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

Akımı sınırlamaya yarayan devre elemanlarına direnç denir.

Akımı sınırlamaya yarayan devre elemanlarına direnç denir. Akımı sınırlamaya yarayan devre elemanlarına direnç denir. Gösterimi: Birimi: Ohm Birim Gösterimi: Ω (Omega) Katları: 1 Gigaohm = 1GΩ = 10 9 Ω 1 Megaohm = 1MΩ = 10 6 Ω 1 Kiloohm = 1kΩ = 10 3 Ω 1 ohm =

Detaylı

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır?

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? 1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? a) Yüzde 10 b) Yüzde 5 c) Yüzde 1 d) Yüzde 20 3. Direnç

Detaylı

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. TEMEL BİLGİLER İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. Yalıtkan : Elektrik yüklerinin kolayca taşınamadığı ortamlardır.

Detaylı

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Multivibratörler. Monastable (Tek Kararlı) Multivibratör Multivibratörler Kare dalga veya dikdörtgen dalga meydana getiren devrelere MULTİVİBRATÖR adı verilir. Bu devreler temel olarak pozitif geri beslemeli iki yükselteç devresinden oluşur. Genelde çalışma

Detaylı

SAYICILAR. Tetikleme işaretlerinin Sayma yönüne göre Sayma kodlanmasına göre uygulanışına göre. Şekil 52. Sayıcıların Sınıflandırılması

SAYICILAR. Tetikleme işaretlerinin Sayma yönüne göre Sayma kodlanmasına göre uygulanışına göre. Şekil 52. Sayıcıların Sınıflandırılması 25. Sayıcı Devreleri Giriş darbelerine bağlı olarak belirli bir durum dizisini tekrarlayan lojik devreler, sayıcı olarak adlandırılır. Çok değişik alanlarda kullanılan sayıcı devreleri, FF lerin uygun

Detaylı

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ. DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ. DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ TEMEL BİLGİLER DiRENÇLER DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI Elektrik akımına karşı gösterilen zorluğa direnç

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr 2. HAFTA BLM223 Yrd. Doç Dr. Can Bülent FİDAN hdemirel@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 2. AKIM, GERİLİM E DİRENÇ 2.1. ATOM 2.2. AKIM 2.3. ELEKTRİK YÜKÜ

Detaylı

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori: Deney 3: Diyotlar ve Diyot Uygulamaları Amaç: Diyot elemanını ve çeşitlerini tanımak Diyotun çalışma mantığını kavramak Diyot sağlamlık kontrolü İleri kutuplama, geri kutuplama ve gerilim düşümü. Araç

Detaylı

DENEY 1 DİYOT KARAKTERİSTİKLERİ

DENEY 1 DİYOT KARAKTERİSTİKLERİ DENEY 1 DİYOT KARAKTERİSTİKLERİ 1.1. DENEYİN AMACI Bu deneyde diyotların akım-gerilim karakteristiği incelenecektir. Bir ölçü aleti ile (volt-ohm metre) diyodun ölçülmesi ve kontrol edilmesi (anot ve katot

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

Bir bobinin omik direnci ile endüktif reaktansının birlikte gösterdikleri ortak etkiye empedans denir,

Bir bobinin omik direnci ile endüktif reaktansının birlikte gösterdikleri ortak etkiye empedans denir, 9.KISIM BOBİNLER Dış ısıya dayanıklı yalıtkan malzeme ile izole edilmiş Cu veya Al dan oluşan ve halkalar halinde sarılan elemana bobin denir. Bir bobinin alternatif akımdaki direnci ile doğru akımdaki

Detaylı

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transistörü tanımlayınız. Beyz ucundan geçen akıma göre, emiter-kollektör arasındaki direnci azaltıp çoğaltabilen elektronik devre elemanına transistör

Detaylı

Analog Sayısal Dönüşüm

Analog Sayısal Dönüşüm Analog Sayısal Dönüşüm Gerilim sinyali formundaki analog bir veriyi, iki tabanındaki sayısal bir veriye dönüştürmek için, az önce anlatılan merdiven devresiyle, bir sayıcı (counter) ve bir karşılaştırıcı

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI. 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi.

DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI. 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi. DENEY 4. KONDANSATÖRLERİN SERİ VE PARALEL BAĞLANMASI Amaç: 1) Seri ve paralel bağlı kondansatör gruplarının eşdeğer sığasının belirlenmesi. Kuramsal Bilgi: i. Kondansatörler Kondansatör doğru akım (DC)

Detaylı

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ

7. ÜNİTE AKIM, GERİLİM VE DİRENÇ 7. ÜNİTE AKIM, GERİLİM VE DİRENÇ KONULAR 1. AKIM, GERİLİM VE DİRENÇ 2. AKIM BİRİMİ, ASKATLARI VE KATLARI 3. GERİLİM BİRİMİ ASKATLARI VE KATLARI 4. DİRENÇ BİRİMİ VE KATLARI 7.1. AKIM, GERİLİM VE DİRENÇ

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 1 Deney Adı: Dirençler ve Kondansatörler Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I

ELEKTRONİK DEVRE TASARIM LABORATUARI-I ELEKTRONİK DEVRE TASARIM LABORATUARI-I BİPOLAR JONKSİYON TRANSİSTOR (BJT) YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ YRD.DOÇ.DR. ÖZHAN ÖZKAN BJT: Bipolar Jonksiyon Transistor İki Kutuplu Eklem

Detaylı

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması Deneyin Amacı: Elektrik Elektroniğin temel bileşeni olan direnç ile ilgili temel bilgileri edinme, dirençlerin renk kodlarını öğrenme, devre kurma aracı olarak

Detaylı

DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI

DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI DENEY 6: FLİP-FLOP (BELLEK) DEVRESİ UYGULAMALARI Deneyin Amaçları Flip-floplara aģina olmak. DeğiĢik tipte Flip-Flop devrelerin gerçekleģtirilmesi ve tetikleme biçimlerini kavramak. ArdıĢık mantık devrelerinin

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI:

Detaylı

ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise...

ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise... ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise...olarak polarmalandırılması gerekir. Yukarıdaki boşluğa aşağıdakilerden

Detaylı

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU No Soru Cevap 1-.. kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. 2-, alternatif ve doğru akım devrelerinde kullanılan

Detaylı

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI

ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI DENEY-2 Kapaksız raporlar değerlendirilmeyecektir. ÜÇ FAZLI ASENKRON MOTORDA KAYMANIN BULUNMASI 1. Teorik Bilgi Asenkron Motorların Çalışma Prensibi Asenkron motorların çalışması şu üç prensibe dayanır:

Detaylı

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Yarıiletken devre elemanlarında en çok kullanılan maddeler; 1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1 Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2 Katkı Oluşturma Silisyum ve Germanyumun

Detaylı

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır,

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, YARIİLETKEN MALZEMELER Yarıiletkenler; iletkenlikleri iyi bir iletkenle yalıtkan arasında bulunan özel elementlerdir. Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, Ge Germanyum

Detaylı

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ Hazırlayan Arş. Gör. Ahmet NUR DENEY-1 ÖLÇÜ ALETLERİNİN İNCELENMESİ Kapaksız

Detaylı

ELEKTRİKSEL EYLEYİCİLER

ELEKTRİKSEL EYLEYİCİLER ELEKTRİKSEL EYLEYİCİLER Eyleyiciler (Aktuatörler) Bir cismi hareket ettiren veya kontrol eden mekanik cihazlara denir. Elektrik motorları ve elektrikli sürücüler Hidrolik sürücüler Pinomatik sürücüler

Detaylı

Hazırlayan: Tugay ARSLAN

Hazırlayan: Tugay ARSLAN Hazırlayan: Tugay ARSLAN ELEKTRİKSEL TERİMLER Nikola Tesla Thomas Edison KONULAR VOLTAJ AKIM DİRENÇ GÜÇ KISA DEVRE AÇIK DEVRE AC DC VOLTAJ Gerilim ya da voltaj (elektrik potansiyeli farkı) elektronları

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

TEMEL ELEKTRONĠK DERSĠ

TEMEL ELEKTRONĠK DERSĠ TEMEL ELEKTRONĠK DERSĠ ÖĞRETMEYE YÖNELĠK TEST SORU BANKASI HAZIRLAYAN: Öğr.Gör.Aykut Fatih GÜEN 1 ÜNĠTE 1 TEST SORU BANKASI (TEMEL ELEKTRONĠK) DĠRENÇ SORULARI Aşağıdakilerden hangisi, pasif devre elemanlarının

Detaylı

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Valans Elektronları Atomun en dış kabuğundaki elektronlara valans elektron adı verilir. Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Bir atomun en dış kabuğundaki elektronlar,

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİRENÇLER Direnci elektrik akımına gösterilen zorluk olarak tanımlayabiliriz. Bir iletkenin elektrik

Detaylı

Bölüm 7 Ardışıl Lojik Devreler

Bölüm 7 Ardışıl Lojik Devreler Bölüm 7 Ardışıl Lojik Devreler DENEY 7- Flip-Floplar DENEYİN AMACI. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop türlerinin

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası

Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası Yrd. Doç. Dr. Fatih KELEŞ Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası 2 Mühendislik alanında belli uzmanlıklar

Detaylı

21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ

21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ 21. ÜNİTE FREKANS-GÜÇ KATSAYISI VE DEVİR SAYISININ ÖLÇÜLMESİ KONULAR 1. Frekansın Ölçülmesi 2. Güç Katsayısının Ölçülmesi 3. Devir Sayının Ölçülmesi 21.1.Frekansın Ölçülmesi 21.1.1. Frekansın Tanımı Frekans,

Detaylı

RİZE ÜNİVERSİTESİ MYO Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı

RİZE ÜNİVERSİTESİ MYO Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı RİZE ÜNİERSİESİ MYO Bilgisayar eknolojileri Bölümü Bilgisayar Programcılığı *** BİLP 07 EMEL ELEKRONİK İZE SNA *** Not: Kalem, silgi vs. alışverişi kesinlikle yasaktır. Kurala uymayanların sınav kağıdı,

Detaylı

Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş:

Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş: Etrafımızda oluşan değişmeleri iş, bu işi oluşturan yetenekleri de enerji olarak tanımlarız. Örneğin bir elektrik motorunun dönmesi ile bir iş yapılır ve bu işi yaparken de motor bir enerji kullanır. Mekanikte

Detaylı

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı DOĞRU AKIM 1.1. Doğru Akım Kavramları 1.1.1. Doğru Akımın Tanımı Zamanla yönü ve şiddeti değişmeyen akıma doğru akım denir. İngilizce Direct Current kelimelerinin kısaltılması DC ile gösterilir. 1.1.2.

Detaylı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 2 Deney Adı: Ohm-Kirchoff Kanunları ve Bobin-Direnç-Kondansatör Malzeme Listesi:

Detaylı

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM 108 Elektrik Devreleri I Laboratuarı Deneyin Adı: Kırchoff un Akımlar Ve Gerilimler Yasası Devre Elemanlarının Akım-Gerilim

Detaylı

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı DOĞRU AKIM 1.1. Doğru Akım Kavramları 1.1.1. Doğru Akımın Tanımı Zamanla yönü ve şiddeti değişmeyen akıma doğru akım denir. İngilizce Direct Current kelimelerinin kısaltılması DC ile gösterilir. 1.1.2.

Detaylı

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot ElektronikI Laboratuvarı 1. Deney Raporu AdıSoyadı: İmza: Grup No: 1 Diyot Diyot,Silisyum ve Germanyum gibi yarıiletken malzemelerden yapılmış olan aktif devre elemanıdır. İki adet bağlantı ucu vardır.

Detaylı

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulma

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulma DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulma Deneyin Amacı: Elektrik Elektroniğin temel bileşeni olan direnç ile ilgili temel bigileri edinme, dirençlerin renk kodlarını öğrenme ve dirençlerin breadboard

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ Elektrik ve Elektronik Ölçmeler Laboratuvarı Deney Adı: Sensörler. Deney 5: Sensörler. Deneyin Amacı: A.

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ Elektrik ve Elektronik Ölçmeler Laboratuvarı Deney Adı: Sensörler. Deney 5: Sensörler. Deneyin Amacı: A. Deneyin Amacı: Deney 5: Sensörler Sensör kavramının anlaşılması, kullanım alanlarının ve kullanım yerine göre çeşitlerinin öğrenilmesi. Çeşitli sensör tipleri için çalışma mantığı anlaşılıp sağlamlık testi

Detaylı

DENEY 5 RS FLİP-FLOP DENEYLERİ

DENEY 5 RS FLİP-FLOP DENEYLERİ Adı Soyadı: No: Grup: DENEY 5 RS FLİP-FLOP DENEYLERİ ÖN BİLGİ : Sayısal bilgiyi ( "0" veya "1" ) depolamada ve işlemede kullanılan temel devrelerden biri de F-F lardır. Genel olarak dört tipi vardır: 1-

Detaylı

TRANSİSTÖRLERİN KUTUPLANMASI

TRANSİSTÖRLERİN KUTUPLANMASI DNY NO: 7 TANSİSTÖLİN KUTUPLANMAS ipolar transistörlerin dc eşdeğer modellerini incelemek, transistörlerin kutuplama şekillerini göstermek ve pratik olarak transistörlü devrelerde ölçüm yapmak. - KUAMSAL

Detaylı

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır

BÖLÜM 9 (COUNTERS) SAYICILAR SAYISAL ELEKTRONİK. Bu bölümde aşağıdaki konular anlatılacaktır SYISL ELETRONİ ÖLÜM 9 (OUNTERS) SYIILR u bölümde aşağıdaki konular anlatılacaktır Sayıcılarda Mod kavramı senkron sayıcılar senkron yukarı sayıcı (Up counter) senkron aşağı sayıcı (Down counter) senkron

Detaylı

Şekil 1: Diyot sembol ve görünüşleri

Şekil 1: Diyot sembol ve görünüşleri DİYOTLAR ve DİYOTUN AKIM-GERİLİM KARAKTERİSTİĞİ Diyotlar; bir yarısı N-tipi, diğer yarısı P-tipi yarıiletkenden oluşan kristal elemanlardır ve tek yönlü akım geçiren yarıiletken devre elemanlarıdır. N

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU. Deney No: 3 FF Devreleri

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU. Deney No: 3 FF Devreleri TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL DEVRE TASARIMI LABORATUVARI DENEY RAPORU Deney No: 3 FF Devreleri Yrd. Doç Dr. Ünal KURT Yrd. Doç. Dr. Hatice VURAL Arş. Gör. Ayşe AYDIN YURDUSEV

Detaylı

Deney 6: Ring (Halka) ve Johnson Sayıcılar

Deney 6: Ring (Halka) ve Johnson Sayıcılar Deney 6: Ring (Halka) ve Johnson Sayıcılar Kullanılan Elemanlar xlm Entegresi, x0 kohm direnç, x00 kohm direnç, x0 µf elektrolitik kondansatör, x00 nf kondansatör, x 7HC7 (D flip-flop), x 0 ohm, x Led

Detaylı

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ Deneyin Amacı: DENEY-1:DİYOT Elektronik devre elemanı olan diyotun teorik ve pratik olarak tanıtılması, diyot

Detaylı

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 326-04 İNÖNÜ ÜNİERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜH. BÖL. 26 ELEKTRİK MAKİNALARI LABORATUARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY 26-04. AMAÇ: Üç-faz sincap kafesli asenkron

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

(BJT) NPN PNP

(BJT) NPN PNP Elektronik Devreler 1. Transistörler 1.1 Giriş 1.2 Bipolar Jonksiyon Transistörler (BJT) 1.2.1 Bipolar Jonksiyon Transistörün Çalışması 1.2.2 NPN Transistörün Yükselteç Olarak Çalışması 1.2.3 PNP Transistörün

Detaylı