DC DC DÖNÜŞTÜRÜCÜLER
|
|
|
- Gülbahar Büyük
- 8 yıl önce
- İzleme sayısı:
Transkript
1 1. DENEYİN AMACI KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) DC DC DÖNÜŞTÜRÜCÜLER DC-DC gerilim azaltan dönüştürücü (buck converter) ve DC-DC gerilim artıran dönüştürücü (boost converter) devrelerinin davranışlarını incelemek. Bu deneyde gerilim azaltan ve gerilim artıran dönüştürücü devrelerinin kalıcı durum davranışları gözlenecektir. Darbe genişliğinin çıkış gerilimine etkisi ile birlikte yük değişiminin devre üzerindeki sonuçları ve anahtarlama frekansının dönüştürücünün verimine etkisi incelenecektir. Anahtarlama elemanı olarak kullanılan mosfet ve diyotun anahtarlama karakteristikleri de gerektiği takdirde tekrar bu devreler üzerinde incelenebilir. 2. TEORİ 2.1. Giriş DC-DC dönüştürücüler endüstride oldukça yaygın olarak kullanılmaktadır. Zaman zaman doğrudan, ayarlanabilir gerilimli bir güç kaynağı uygulaması, herhangi bir uygulamada gerekli olan herhangi bir DC gerilim seviyesinin elde edilmesi, ya da empedansları uyumsuz olan ardışık 2 katın birbirine uydurulması vb. sebepler için kullanılırlar. Piyasada 1W seviyesinden birkaç yüz watt seviyesine kadar olan khz seviyesinde frekanslarda anahtarlama yapan DC-DC dönüştürücüler bulunmaktadır Gerilim Azaltan Dönüştürücünün Kalıcı Durum Devre Analizi Şekil 5.1 de tipik tek transistorlü bir gerilim azaltan dönüştürücü devre şeması görünmektedir. Görüldüğü üzere devrede biri kontrollü(mosfet) diğeri ise kontrolsüz (diyot) olan iki adet anahtar bulunmaktadır. MOSFET in kapı-kaynak terminaline sabit frekansta, ayarlanabilir darbe genişliğine sahip, yine şekil 5.2 de görülen PWM sinyali uygulanmaktadır. Bu sinyalin DTS süresince (yani darbenin uygulandığı sürede) transistör, geriye kalan (1-D)TS ile gösterilen süresinde de diyot iletimde olacaktır. Bu durum devrenin 2 ayrı modda çalışarak lineer olmayan bir yapı göstermesine sebep olur. Şimdi devrenin bu 2 ayrı modunu inceleyerek gerilim azaltan dönüştürücünün giriş ile çıkış gerilimi arasındaki ilişkiyi bulabiliriz.
2 Şekil 5.3.a da dönüştürücünün, transistörün iletimde diyotun kesimde olduğu mod 1 deki durumu gösterilmiştir. Transistör iletimde olduğu için kısa devre olarak, diyot ise kesim durumunda olduğu için açık devre olarak gösterilmiştir. Şekilde de görüldüğü gibi mod 1 de indüktör, doğrudan çıkış ile giriş arasına bağlanmıştır. Bu durumda bu modda indüktörün uçları arasındaki gerilim giriş gerilim ile çıkış gerilimi arasındaki fark kadardır. VL=Vg-V Şekil 5.3b deki mod 2 durumunda bakarsak bu kez transistorün kesimde diyotun iletimde olduğunu görürüz. Bu durumda indüktör üzerinde, çıkış gerilimine eşit ve ters polariteli bir gerilim gözlemleriz. VL=-V Bu durumda indüktör geriliminin dalga şekli şekil 5.4 te gösterildiği gibi olacaktır. 2
3 Artık bobinin her iki modda da hangi gerilim değerlerini aldığını biliyoruz. Bu durumda giriş ve çıkış arasında bir bağıntı bulabiliriz. Kalıcı duruma ulaşmış, dengedeki bir sistemde, bir anahtarlama periyodu süresinde indüktörün akımındaki net değişim sıfırdır. Bu indüktör volt-saniye dengesi olarak bilinir. Buna göre aşağıdaki ifadeyi yazabiliriz. Burada TS ifadesi bir anahtarlama periyodunu ifade etmektedir ve yukarıda da söylediğimiz gibi bir anahtarlama periyodunda akım değişimi sıfırdır. En sondaki eşitliğin sol tarafı bir anahtarlama periyodunun başı ve sonundaki akım değerlerinin birbirinden çıkarılmasını yani bir anahtarlama periyodu boyunca akımdaki değişimini ifade etmektedir. Dolayısıyla sıfıra eşittir ve bu şekilde eşitliğin sol tarafının da sıfıra eşit olmasını gerektiren aşağıdaki denklemi elde ederiz. Bu denklem açıkça şekil 5.4 te gösterilen indüktör gerilimi dalga şeklinin altında kalan I ve II ile gösterilmiş alanlar toplamının sıfır olduğunu ifade etmektedir. Buna göre; Görüldüğü gibi giriş gerilim ile çıkış gerilim arasındaki ilişkiyi indüktör volt-saniye dengesi prensibini kullanarak bulduk. Burada D darbe genişliği(duty cycle) değeri olup 0 ile 1 arasında değişmektedir. Yalnız bu ifadenin, bir takım yaklaşımlar ve varsayımlar yapılarak elde ettiğimiz bir sonuç olduğunun farkında olunmalıdır. Bu varsayımlar devrenin ideal olduğuna dair 3
4 olan varsayımlardır. Örneğin her iki moddada, indüktör gerilimi denklemini yazarken transistör ve diyot üzerindeki gerilim düşümünü hesaba katmayarak bunların sıfır olduğunu varsaydık. Ayrıca mod 2 de transistör kesimde olduğu için girişteki kaynak devreyi beslememekte yani çıkış devresi akımını dolayısıyla enerjisini kendi içinde çevirmektedir. Yük, bu modda kaynaktan enerji almadığı için enerjisini kapasitör ve indüktörde depolanan enerjiden almaktadır. Bu sebeple enerjisi azalan bu elemanların akım ve gerilimlerinde azalmalar olacaktır. Daha sonra devre tekrar mod 1 e dönünce kaynak devreye bağlanacak ve transistör üzerinden yüke enerji aktarmaya başlayacaktır. Dolayısıyla kapasitör ve indüktörün de enerjisi artacak ve sırasıyla gerilim ve akımları da artacaktır. Yani biz her iki modun denklemini de yazarken çıkış gerilimini V gibi sabit bir değer olarak aldık. Oysa çıkış gerilimi, kapasitörün az önce bahsettiğimiz enerji alış verişleri sebebiyle V+v(t) şeklinde V+ΔV ile V- ΔV arasında salınan bir değerdir. Dolayısıyla biz V değerini alarak bu ΔV salınımının V ortalama değerine göre çok küçük ve ihmal edilebilir olduğunu varsaydık. Son olarak, önemli olan bir başka parametremiz de indüktör akımıdır. Çünkü devreden de görüldüğü gibi yük akımının sürekliliği indüktör sayesinde sağlanmaktadır. Kapasitör ve yükün çektiği akımların toplamı bize bobinin akımını verecektir. Bobin de devrede sürekli olarak enerji alışverişinde bulunan bir eleman olduğu için akımında değişimler olacaktır. Bu salınımların seviyeleri bobinin her modda maruz kaldığı gerilimler bilindiği takdirde hesaplanabilir. Burada di L(t) bize bobin akımının eğiminin ifadesini vermektedir. Yani bobin akımı dt V g V V mod 1 de eğimiyle DTS süresince artarken mod 2 de eğimiyle L L azalmaktadır. Bu değişim şekil 4 te gösterilmiştir. 4
5 2.3. Gerilim Artıran Dönüştürücünün Kalıcı Durum Devre Analizi Şekil 5.6 da tek transistörlü tipik bir gerilim artıran dönüştürücünün (boost converter) devre şeması görülmektedir. Bu devre de gerilim azaltan dönüştürücü devresi gibi anahtar olarak bir mosfet bir de diyot bulundurmaktadır. Mosfet yine aynı şekilde, sabit frekanslı bir PWM sinyali ile sürülmektedir. Bu devre de diyotun ve transistorün iletimine göre 2 moddan oluşmaktadır. Şekil 5.7 de bu modlar gösterilmektedir. Devreyi, gerilim azaltan dönüştürücüde yaptığımız gibi bobin gerilimi üzerinden modelleyerek, giriş gerilimi ile çıkış gerilimi arasında ilişkiyi elde edebiliriz. Transistorün iletimde diyotun kesimde olduğu mod 1 de bobin, transistör üzerinden doğrudan toprağa bağlanmış durumdadır. Dolayısıyla üzerinde giriş gerilimi olduğu gibi görünecektir. V L = V g Mod 2 de transistör kesimdedir ve devre diyot üzerinden çıkışa enerji aktarmaktadır. Bu durumda bobin gerilimi giriş gerilimi ile çıkış gerilimi arasındaki farka eşit olacaktır. 5
6 V L = V g V Buna göre bobinin terminalleri arasındaki gerilim şekil 5.8 de gösterildiği gibi olacaktır. Gerilim artıran dönüştürücüye de indüktör volt-saniye dengesi prensibini uygulayarak giriş-çıkış gerilimi ifadesini bulabiliriz. Bir önceki kısımda açıkladığımız T şekliyle volt-saniye dengesi için s V L (t)dt = 0 durumu sağlanmalıdır. Bu da aynı 0 şekilde indüktör gerilim dalga şeklinin altında kalan alanlar toplamıdır. Bobin akımının eğimini yine benzer şekilde gerilimlerden hesaplayabiliriz. Buna göre mod 1 de bobin akımı V g eğimiyle artacak ve mod 2 de V g V eğimiyle L L azalacaktır. Bu durum şekil 8 de gösterilmiştir. 6
7 3. Deneyin Yapılışı 3.1. DC DC Gerilim Azaltan Dönüştürücü Darbe Genişliği Etkisi 7
8 Şekil 5.10 da görülen devreyi kurunuz. Yük olarak bağlayacağınız reostayı 10 ohm a ayarlayınız. Bağlantıları kontrol ettikten sonra devreye enerji veriniz. Osiloskoptan bakıp duty cycle potunu kullanarak darbe genişliğini 0.5 e ayarlayınız. Yine aynı şekilde switching frequency potunu kullanarak anahtarlama frekansını 20kHz e ayarlayınız. Yükü bağladıktan sonra dönüştürücünün girişine bağladığınız güç kaynağını açarak giriş gerilimini 15V a ayarlayınız. Darbe genişliğini 0.1 den 0.9 a kadar 0.1 lik adımlarla değiştirerek her adımda çıkış geriliminin ortalama değerinin ölçünüz. D=0.1 D=0.5 ve D=0.9 değerleri için indüktör akımını ve çıkış geriliminin üzerindeki dalgalanmayı osiloskopta gözlemleyerek dalga şekillerinin çiziniz. (Not : İndüktör akımı ölçüm kartının akım kısmından, çıkış geriliminin üzerindeki dalgalanmalar ise, osiloskobun AC modundan görülebilir.) Anahtarlama Frekansı Etkisi Devreyi değiştirmeksizin darbe genişliğini 0.5 e ayarlayın. Yük gerilimi dalgalanmasının tepe-tepe değerini ölçünüz. Bobin akımının dalga şeklini çiziniz. Aynı işlemleri, 40kHz,60kHz, 80kHz ve 100 khz için tekrarlayınız Yük Etkisi Anahtarlama frekansını 100kHz e, darbe genişliğini de 0.5 e ayarlayın. Yük olarak bağladığınız reostanın direncini devre süreksiz akım moduna geçene kadar yavaş yavaş artırın. Çıkış geriliminin değerini ölçerek, mosfet (akaç-kaynak gerilimi) ve diyot gerilimleriyle birlikte dalga şekillerini çiziniz. 8
9 (Not: Mosfet in akaç(drain) terminali de kaynak(source) terminalide toprakta olmadığı için bu elemanın gerilimini osiloskopta gözlerken daha dikkatli olunuz. Yanlış toprak kullanımı sigortaları attırabilir) Verim Anahtarlama frekansını 40kHz e darbe genişliğini 0.5 e ayarlayınız. Yük direncini tekrar 10 ohm a getiriniz. Giriş akımı ile, çıkış akım ve geriliminin ortalama değerlerinin ölçerek ortalama giriş ve çıkış güçlerinin hesaplayınız. Bu değerleri kullanarak dönüştürücünün bu frekanstaki verimini hesaplayınız. Aynı işlemleri 60kHz, 80kHz, 100kHz için tekrarlayınız. Şekil 5.12: 25kHz frekansta D=0.5 değerinde darbe genişliği dalga şekilleri. Şekil 5.13: 25 khz frekansta bobin uçları arasındaki gerilim 9
10 (a) (b) Şekil 5.14: D=0.5 için a) çıkış gerilimi ve b) üzerindeki dalgalanma (a) (b) Şekil 5.15: D=0.75 için bobin üzerindeki a) gerilim ve b) darbe genişliği-yük gerilimi dalga şekilleri 10
11 3.2 DC-DC Gerilim Artıran Dönüştürücü Darbe Genişliği Etkisi Şekil 5.16 da görülen devreyi kurunuz. Yük olarak bağlayacağınız reostanın direncini 50 ohm a ayarlayınız. Giriş gerilimini 10 V a ayarlayınız. Bağlantıları kontrol ederek devreye enerji veriniz. Anahtarlama frekansını 50kHz e ayarlayınız. Darbe genişliğini minimumdan 0.7 e kadar 0.1likadımlarla artırınız. Her adımda yük geriliminin ortalama değerini kayıt ediniz. İndüktör akımını ve 11
12 çıkış gerilim üzerindeki dalgalanmayı osiloskopta gözlemleyerek dalga şekillerini çiziniz Anahtarlama Frekansı Etkisi Darbe genişliğini 0.5 e, anahtarlama frekansını 100kHz e ayarlayınız. Yükün 50 ohmda olduğuna emin olunuz. Çıkış bobin akımının dalga şeklini çiziniz. Aynı işlemi 40kHz, 60kHz ve 80kHz için tekrarlayınız Yük Etkisi Darbe genişliğini 0.4 e, anahtarlama frekansını 100kHz e ayarlayınız.devre süreksiz akım moduna geçene kadar yükü artırınız. Mosfet ve diyotun terminalleri arasındaki gerilimi çiziniz. Yük geriliminin ortalama değerini ölçünüz. (Not: Gerilim artıran dönüştürücüde diyot terminallerinden hiçbiri toprakta olmadığı için diyot gerilimi ölçümünde dikkatli olunuz. Differential probe ya da osiloskobun 2 kanalını birden kullanınız) Verim Anahtarlama frekansını 100kHz e, darbe genişliğini 0.5 e ayarlayınız. Yük direncini, yük akımı 0.4 A olacak şekilde ayarlayınız. Giriş akımını ve çıkış gerilimini ölçerek, dönüştürücünün bu frekanstaki verimini hesaplayınız. Aynı basamakları 40 khz, 60 khz ve 80 khz için tekrarlayınız. (a) (b) Şekil 5.18: D=0.6 için a) darbe genişliği ve yük gerilimi b) bobin gerilimi dalga şekli. 12
13 4. Sonuçlar Deney de her bir darbe genişliği için ölçtüğünüz gerilim değerlerini darbe genişliği- yük gerilimi şeklinde grafiğe dökünüz. Her bir darbe genişliği değeri için yük gerilimini teorik olarak hesaplayınız. Teorik değerler ölçünlenlerle uyuşuyor mu. Uyuşmuyorsa neden? Açıklayınız. Deney de her bir frekans değeri için gözlemlediğiniz dalga şekillerini ölçekli kağıda çizerek raporunuza ekleyiniz. Anahtarlama frekansının bobin akımı üzerindeki etkisini kısaca açıklayınız. Deney teki dalga şekillerini ölçekli kağıda çizerek raporunuza ekleyiniz. Deney te her bir frekans için elde ettiğiniz verim değerlerinin grafiğini çiziniz. Anahtarlama frekansının, devrenin verimine yaptığı etkiyi nedenleriyle açıklayınız. Deney de gerilim artıran dönüştürücü için yaptığınız ölçümleri grafik haline getirerek deney raporuna ekleyiniz. Her bir darbe genişliği için yük geriliminin değerini teorik olarak hesaplayınız. Teorik ve pratik değerler uyuşuyor mu? Uyuşmuyorsa neden? Açıklayınız Bobin akımının dalga şeklini ölçekli kağıda çizerek raporunuza ekleyiniz. Deney de her bir frekans için elde ettiğiniz dalga şekillerini ölçekli kağıda çizerek raporunuza ekleyiniz. Deney te elde ettiğiniz diyot ve mosfet gerilim dalga şekillerini ölçekli kağıda çiziniz. 0.4 darbe genişliğine göre elde etmeniz gereken yük gerilimini teorik olarak hesaplayınız. Deneyde ölçtüğünüz değerle uyuşuyor mu? Açıklayınız. Deney te elde ettiğiniz verim sonuçlarını tablo haline getirerek grafiğini çiziniz. Sonuçları yorumlayınız. 13
BÖLÜM 5. Gerilim Azaltan Dönü türücünün Kal Durum Devre Analizi
BÖÜM 5 DC-DC DÖNÜTÜRÜCÜER A. Deneyin Amac DC-DC erilim azaltan dönütürücü (buck converter) ve DC-DC erilim artran dönütürücü (boost converter) devrelerinin davranlar incelemek. Bu deneyde erilim azaltan
TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR 1. DENEYİN
TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR 1. DENEYİN
Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı
DENEY NO : 7 DENEY ADI : DOĞRULTUCULAR Amaç 1. Yarım dalga ve tam dalga doğrultucu oluşturmak 2. Dalgacıkları azaltmak için kondansatör filtrelerinin kullanımını incelemek. 3. Dalgacıkları azaltmak için
BÖLÜM 2 DİYOTLU DOĞRULTUCULAR
BÖLÜM 2 DİYOTLU DOĞRULTUCULAR A. DENEYİN AMACI: Tek faz ve 3 faz diyotlu doğrultucuların çalışmasını ve davranışlarını incelemek. Bu deneyde tek faz ve 3 faz olmak üzere tüm yarım ve tam dalga doğrultucuları,
DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ
Numara : Adı Soyadı : Grup Numarası : DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Amaç: Teorik Bilgi: Ġstenenler: Aşağıda şemaları verilmiş olan 3 farklı devreyi kurarak,
TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR
TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR Teorik Bilgi Deney de sabit çıkış gerilimi üretebilen diyotlu doğrultucuları inceledik. Eğer endüstriyel uygulama sabit değil de ayarlanabilir bir gerilime
DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ
9.1. DENEYİN AMAÇLARI DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ RC devresinde kondansatörün şarj ve deşarj eğrilerini elde etmek Zaman sabiti kavramını öğrenmek Seri RC devresinin geçici cevaplarını incelemek
1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.
DENEY 1: RC DEVRESİ GEÇİCİ HAL DURUMU Deneyin Amaçları RC devresini geçici hal durumunu incelemek Kondansatörün geçici hal eğrilerini (şarj ve deşarj) elde etmek, Zaman sabitini kavramını gerçek devrede
TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR
FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY NO:1 TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR 1.1 Giriş Diyod ve tristör gibi
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ
ÖLÇME VE DEVRE LABORATUVARI DENEY: 6. --Thevenin Eşdeğer Devresi--
ÖLÇME VE DEVRE LABORATUVARI DENEY: 6 --Thevenin Eşdeğer Devresi-- DENEYİN AMACI Deneyin amacı iki terminal arasındaki gerilim ve akım ölçümlerini yaparak, Thevenin eşdeğer devresini elde etmektir. GEREKLİ
SCHMITT TETİKLEME DEVRESİ
Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. SCHMITT TETİKLEME DEVRESİ.Ön Bilgiler. Schmitt Tetikleme Devreleri Schmitt tetikleme devresi iki konumlu bir devredir.
T.C. KOCAELİ ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ
T.C. KOCAELİ ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ DC-DC BOOST CONVERTER DEVRESİ AHMET KALKAN 110206028 Prof. Dr. Nurettin ABUT KOCAELİ-2014 1. ÖZET Bu çalışmada bir yükseltici tip DA ayarlayıcısı
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri) 1. DENEYİN AMACI ÜÇ FAZ EVİRİCİ 3 Faz eviricilerin çalışma
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 3 Deney Adı: Seri ve Paralel RLC Devreleri Öğretim Üyesi: Yard. Doç. Dr. Erhan AKDOĞAN
ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ
ELM 33 ELEKTRONİK II LABORATUAR DENEY ÖYÜ DENEY 2 Ortak Emitörlü Transistörlü Kuvvetlendiricinin rekans Cevabı. AMAÇ Bu deneyin amacı, ortak emitörlü (Common Emitter: CE) kuvvetlendiricinin tasarımını,
AC DEVRELERDE BOBİNLER
AC DEVRELERDE BOBİNLER 4.1 Amaçlar Sabit Frekanslı AC Devrelerde Bobin Bobinin voltaj ve akımının ölçülmesi Voltaj ve akım arasındaki faz farkının bulunması Gücün hesaplanması Voltaj, akım ve güç eğrilerinin
Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım kaynakları incelenecektir.
DENEY 7 AKIM KAYNAKLARI VE AKTİF YÜKLER DENEY 1 DİYOT KARAKTERİSTİKLERİ 7.1 DENEYİN AMACI Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım
DENEY 3. Maksimum Güç Transferi
ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2024 Elektrik Devreleri Laboratuarı II 2013-2014 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı
DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ
DENEY 5 TEMEL İŞLEMSEL YÜKSELTEÇ (OPAMP) DEVRELERİ 5.1. DENEYİN AMAÇLARI İşlemsel yükselteçler hakkında teorik bilgi edinmek Eviren ve evirmeyen yükselteç devrelerinin uygulamasını yapmak 5.2. TEORİK BİLGİ
Deney 2: FARK YÜKSELTEÇ
Deney : FARK YÜKSELTEÇ Fark Yükselteç (Differential Amplifier: Dif-Amp) Fark Yükselteçler, çıkışı iki giriş işaretinin cebirsel farkıyla orantılı olan amplifikatörlerdir. O halde bu tip bir amplifikatörün
ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI
ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Giriş Temel güç kuvvetlendiricisi yapılarından olan B sınıfı ve AB sınıfı kuvvetlendiricilerin çalışma mantığını kavrayarak, bu kuvvetlendiricileri verim
Deneyle İlgili Ön Bilgi:
DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise
DENEY-3. FET li Yükselticiler
DENEY-3 FET li Yükselticiler Deneyin Amacı: Bir alan etkili transistor ün (FET-Field Effect Transistor) kutuplanması ve AF lı bir kuvvetlendirici olarak incelenmesi. (Ayrıca azaltıcı tip (Depletian type)
OHM KANUNU DENEY 1 OHM KANUNU 1.1. DENEYİN AMACI
DENEY 1 OHM KANUNU 1.1. DENEYİN AMACI Bu deneyde, Ohm kanunu işlenecektir. Seri ve paralel devrelere ohm kanunu uygulanıp, teorik sonuçlarla deney sonuçlarını karşılaştıracağız ve doğrulamasını yapacağız.
Çukurova Üniversitesi Biyomedikal Mühendisliği
Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#8 Alan Etkili Transistör (FET) Karakteristikleri Arş. Gör. Mustafa İSTANBULLU Doç. Dr. Mutlu AVCI ADANA,
DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP
DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik,
ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.
BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V
Amaç: Tristörü iletime sokmak için gerekli tetikleme sinyalini üretmenin temel yöntemi olan dirençli tetikleme incelenecektir.
GÜÇ ELEKTRONİĞİ LABORATUVARI DENEYLERİ DENEY 01 DİRENÇLİ TETİKLEME Amaç: Tristörü iletime sokmak için gerekli tetikleme sinyalini üretmenin temel yöntemi olan dirençli tetikleme incelenecektir. Gerekli
Şekil 1. R dirençli basit bir devre
DENEY 2. OHM KANUNU Amaç: incelenmesi. Elektrik devrelerinde gerilim, akım ve direnç arasındaki ilişkinin Ohm kanunu ile Kuramsal Bilgi: Bir iletkenden geçen elektrik akımına karşı, iletken maddenin içyapısına
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ
Şekil 5-1 Frekans modülasyonunun gösterimi
FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim
DENEY 10: SERİ RLC DEVRESİNİN ANALİZİ VE REZONANS
A. DENEYİN AMACI : Seri RLC devresinin AC analizini yapmak ve bu devrede rezonans durumunu incelemek. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı, 2. Sinyal üreteci, 3. Değişik değerlerde dirençler
EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular
EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 3 Seçme Sorular ve Çözümleri
V R1 V R2 V R3 V R4. Hesaplanan Ölçülen
DENEY NO : 1 DENEYİN ADI : Kirchhoff Akım/Gerilim Yasaları ve Düğüm Gerilimleri Yöntemi DENEYİN AMACI : Kirchhoff akım/gerilim yasalarının ve düğüm gerilimleri yöntemi ile hesaplanan devre akım ve gerilimlerinin
ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ
TC SKRY ÜNERSTES TEKNOLOJ FKÜLTES ELEKTRK-ELEKTRONK MÜHENDSLĞ ELM22 ELEKTRONK-II DERS LBORTUR FÖYÜ DENEY YPTIRN: DENEYN DI: DENEY NO: DENEY YPNIN DI ve SOYDI: SINIFI: OKUL NO: DENEY GRUP NO: DENEY TRH
T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I
T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I DENEY 2: DİYOT KARAKTERİSTİKLERİ VE AC-DC DOĞRULTUCU UYGULAMALARI Ad Soyad
BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi
DENEY 5: BJT NİN KARAKTERİSTİK EĞRİLERİ 5.1. Deneyin Amacı BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi 5.2. Kullanılacak Aletler ve Malzemeler 1) BC237C BJT transistör 2)
DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı
DENEY 3: DOĞRULTUCU DEVRELER 3.1. Deneyin Amacı Yarım ve tam dalga doğrultucunun çalışma prensibinin öğrenilmesi ve doğrultucu çıkışındaki dalgalanmayı azaltmak için kullanılan kondansatörün etkisinin
EEM 307 Güç Elektroniği
DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Elektrik-Elektronik Mühendisliği Bölümü Yaz Okulu GENEL SINAV SORULARI VE ÇÖZÜMLERİ EEM 307 Güç Elektroniği Tarih: 30/07/2018 Saat: 18:30-19:45 Yer: Merkezi Derslikler
Deney 1: Transistörlü Yükselteç
Deneyin Amacı: Deney 1: Transistörlü Yükselteç Transistör eşdeğer modelleri ve bağlantı şekillerinin öğrenilmesi. Transistörün AC analizi yapılarak yükselteç olarak kullanılması. A.ÖNBİLGİ Transistörün
DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri
DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.
Güç Elektroniği Ders notları Prof. Dr. Çetin ELMAS
KAYNAKLAR 1. Hart, D. W.,1997, Introduction to Power Electronics, Prentice Hall International Inc, USA. 2. Mohan, N., Undeland, T. M., Robbins, W.P.,1995, Power Electronics: Converters, Application and
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı
dirençli Gerekli Donanım: AC güç kaynağı Osiloskop
DENEY 01 DİRENÇLİ TETİKLEME Amaç: Tristörü iletime sokmak için gerekli tetikleme sinyalini üretmenin temel yöntemi olan dirençli tetikleme incelenecektir. Gerekli Donanım: AC güç kaynağı Osiloskop Kademeli
AFYON KOCATEPE ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ GÜÇ ELEKTRONİĞİ LABORATUVAR DENEY # 1
Önbilgi: AFYON KOCATEPE ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ Yarıiletken elemanlar, 1947 yılında transistorun icat edilmesinin ardından günümüze kadar geliserek gelen bir teknolojinin ürünleridir. Kuvvetlendirici
BÖLÜM 2 DİYOTLU DOĞRULTUCULAR
BÖLÜM 2 DİYOTLU DOĞRULTUCULAR A. DENEYİN AMACI: Tek faz diyotlu doğrultucuların çalışmasını ve davranışını incelemek. Bu deneyde tek faz yarım dalga doğrultucuları, omik ve indüktif yükler altında incelenecektir.
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ Amaç: Bu deneyde, uygulamada kullanılan yükselteçlerin %90 ı olan ortak emetörlü yükselteç
DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ
DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ Amaç: İşlemsel yükselteç uygulamaları Kullanılan Cihazlar ve Devre Elemanları: 1. Dirençler: 1k, 10k, 100k 2. 1 adet osiloskop 3. 1 adet 15V luk simetrik
DENEY 3. Maksimum Güç Transferi
ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM2104 Elektrik Devreleri Laboratuarı II 2014-2015 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI
DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L
Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI
Öğr. Gör. Oğuzhan ÇAKIR 377 42 03, KTÜ, 2010 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI 1. Deneyin
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı
DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)
DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN) A. DENEYİN AMACI : Bu deneyin amacı, pasif elemanların (direnç, bobin ve sığaç) AC tepkilerini incelemek ve pasif elemanlar üzerindeki faz farkını
Enerji Sistemleri Mühendisliği Bölümü
YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-II RL, RC ve RLC DEVRELERİNİN AC ANALİZİ Puanlandırma Sistemi: Hazırlık Soruları:
ELEKTRONİK-I DERSİ LABORATUVARI DENEY 2: Zener ve LED Diyot Deneyleri
DENEYİN AMACI ELEKTRONİK-I DERSİ LABORATUVARI DENEY 2: Zener ve LED Diyot Deneyleri Zener ve LED Diyotların karakteristiklerini anlamak. Zener ve LED Diyotların tiplerinin kendine özgü özelliklerini tanımak.
Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ
BÖLÜM I İNDÜKTANS VE KAPASİTANS Bu bölümde, tek bir bağımsız kaynak kullanılarak indüktör ve kapasitörlerin tek başına davranışları incelenecektir. İndüktörler, manyetik alanla ilişkin olaylar üzerine
ÜÇ-FAZ SENKRON JENERATÖRÜN GERİLİM REGÜLASYONU DENEY 324-05
ĐNÖNÜ ÜNĐERSĐTESĐ MÜHENDĐSĐK FAKÜTESĐ EEKTRĐK-EEKTRONĐK MÜH. BÖ. ÜÇ-FAZ SENKRON JENERATÖRÜN GERİİM REGÜASYONU DENEY 4-05. AMAÇ: Rezistif, kapasitif, ve indüktif yüklemenin -faz senkron jeneratörün gerilim
DC/DC DÖNÜSTÜRÜCÜLER
DC/DC DÖNÜSTÜRÜCÜLER DC-DC dönüştürücüler, özellikle son dönemlerde güç elektroniği ve endüstriyel elektronik uygulamalarında çok yoğun olarak kullanılmaya baslayan güç devreleridir. DC-DC dönüştürücülerin
DERS BİLGİ FORMU. Okul Eğitimi Süresi
DERS BİLGİ FORMU DERSİN ADI BÖLÜM PROGRAM DÖNEMİ DERSİN DİLİ DERS KATEGORİSİ ÖN ŞARTLAR SÜRE VE DAĞILIMI KREDİ DERSİN AMACI ÖĞRENME ÇIKTILARI VE DERSİN İÇERİĞİ VE DAĞILIMI (MODÜLLER VE HAFTALARA GÖRE DAĞILIMI)
ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi
ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi I. Amaç Bu deneyin amacı; BJT giriş çıkış karakteristikleri öğrenerek, doğrusal (lineer) transistör modellerinde kullanılan parametreler
Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.
Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf
Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta
E sınıfı DC kıyıcılar; E sınıfı DC kıyıcılar, çift yönlü (4 bölgeli) DC kıyıcılar olarak bilinmekte olup iki adet C veya iki adet D sınıfı DC kıyıcının birleşiminden oluşmuşlardır. Bu tür kıyıcılar, iki
Deney 1: Saat darbesi üretici devresi
Deney 1: Saat darbesi üretici devresi Bu deneyde, bir 555 zamanlayıcı entegresi(ic) kullanılacak ve verilen bir frekansta saat darbelerini üretmek için gerekli bağlantılar yapılacaktır. Devre iki ek direnç
Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.
3. Bölüm Güç Elektroniğinde Temel Kavramlar ve Devre Türleri Doç. Dr. Ersan KABALC AEK-207 GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ Güç Elektroniğine Giriş Güç elektroniği elektrik mühendisliğinde enerji ve
6. TRANSİSTÖRÜN İNCELENMESİ
6. TRANSİSTÖRÜN İNCELENMESİ 6.1. TEORİK BİLGİ 6.1.1. JONKSİYON TRANSİSTÖRÜN POLARMALANDIRILMASI Şekil 1. Jonksiyon Transistörün Polarmalandırılması Şekil 1 de Emiter-Beyz jonksiyonu doğru yönde polarmalandırılır.
REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc
KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik
DENEY 2: AC Devrelerde R, L,C elemanlarının dirençlerinin frekans ile ilişkileri ve RC Devrelerin İncelenmesi
ilişkileri ve RC Devrelerin 1. Alternatif Akım Devrelerinde Çeşitli Dirençlerin Frekansla Olan İlişkisi 1.1. Deneyin Amacı: AA. da R,L ve C elemanlarının frekansa bağlı olarak değişimini incelemek. 1.2.
DOĞRU AKIM DA RC DEVRE ANALİZİ
DENEYİN AMAÇLARI DOĞRU AKIM DA RC DEVRE ANALİZİ RC devresinde kondansatörün şarj ve deşarj eğrilerini elde etmek Zaman sabiti kavramını öğrenmek Seri RC devresinin geçici cevaplarını incelemek Deney Malzemeleri:
ANALOG HABERLEŞME (GM)
ANALOG HABERLEŞME (GM) Taşıyıcı sinyalin sinüsoidal olduğu haberleşme sistemidir. Sinüs işareti formül olarak; V. sin(2 F ) ya da i I. sin(2 F ) dır. Formülde; - Zamana bağlı değişen ani gerilim (Volt)
Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.
Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır. Uygulama -1: Dirençlerin Seri Bağlanması Uygulama -2: Dirençlerin Paralel Bağlanması Uygulama -3: Dirençlerin Karma Bağlanması Uygulama
DENEY 3 DİYOT DOĞRULTUCU DEVRELERİ
DENEY 3 DİYOT DOĞRULTUCU DEVRELERİ 31 DENEYİN AMACI Bu deneyde elektronik dc güç kaynaklarının ilk aşaması olan diyot doğrultucu devreleri test edilecektir Deneyin amacı; doğrultucu devrelerin (yarım ve
Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi
DENEY NO :5 DENEYİN ADI :İşlemsel Kuvvetlendirici - OPAMP Karakteristikleri DENEYİN AMACI :İşlemsel kuvvetlendiricilerin performansını etkileyen belli başlı karakteristik özelliklerin ölçümlerini yapmak.
Çukurova Üniversitesi Biyomedikal Mühendisliği
Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#8 I-V ve V-I Dönüştürücüler Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 8 I-V ve
DENEY 3: RC Devrelerin İncelenmesi ve Lissajous Örüntüleri
1. Seri RC Devresinde Akım ve Gerilim Ölçme 1.1. Deneyin Amacı: a.) Seri RC devresinin özelliklerinin incelenmesi b.) AC devre ölçümlerinin ve hesaplamalarının yapılması 1.2. Teorik Bilgi: Kondansatörler
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ 1. Amaç: Bu deney, diyotların gerilim-akım eğrisinin elde edilmesi, diyotların temel kullanım
Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü
HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev
DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ
DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ 9.1. Deneyin Amacı Bir JFET transistörün karakteristik eğrilerinin çıkarılıp, çalışmasının pratik ve teorik olarak öğrenilmesi 9.2. Kullanılacak Malzemeler ve Aletler
DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ
DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ 1. Temel Teori (Şönt Uyarmalı Motor) DC şönt motorlar hızdaki iyi kararlılıkları dolayısıyla yaygın kullanılan motorlardır. Bu motor tipi seri
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü
HAZIRLIK ÇALIŞMALARI 1. Alternatif akım (AC) ve doğru akım nedir örnek vererek kısaca tanımını yapınız. 2. Alternatif akımda aynı frekansa sahip iki sinyal arasındaki faz farkı grafik üzerinde (osiloskopta)
DENEY TARİHİ RAPOR TESLİM TARİHİ NOT
DENEY 2 OHM-KIRCHOFF KANUNLARI VE BOBİN-DİRENÇ-KONDANSATÖR Malzeme Listesi: 1 adet 47Ω, 1 adet 100Ω, 1 adet 1,5KΩ ve 1 adet 6.8KΩ Dirençler 1 adet 100mH Bobin 1 adet 220nF Kondansatör Deneyde Kullanılacak
DENEY 7 Pasif Elektronik Filtreler: Direnç-Kondansatör (RC) ve Direnç-Bobin (RL) Devreleri
DENEY 7 Pasif Elektronik Filtreler: Direnç-Kondansatör (RC) ve Direnç-Bobin (RL) Devreleri 1. Amaç Bu deneyin amacı; alternatif akım devrelerinde, direnç-kondansatör birleşimi ile oluşturulan RC filtre
EEME210 ELEKTRONİK LABORATUARI
Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEME210 ELEKTRONİK LABORATUARI DENEY 02: ZENER DİYOT ve AKIM GERİLİM KARAKTERİSTİĞİ 2014-2015 BAHAR Grup Kodu: Deney Tarihi:
ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER
ELEKTRİK ELEKTROİK MÜHEDİSLİĞİ FİZİK LABORATUVAR DEEY TRASFORMATÖRLER . Amaç: Bu deneyde:. Transformatörler yüksüz durumdayken giriş ve çıkış gerilimleri gözlenecek,. Transformatörler yüklü durumdayken
Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki
DARBE GENİŞLİK MÖDÜLATÖRLERİ (PWM) (3.DENEY) DENEY NO : 3 DENEY ADI : Darbe Genişlik Modülatörleri (PWM) DENEYİN AMACI : µa741 kullanarak bir darbe genişlik modülatörünün gerçekleştirilmesi.lm555 in karakteristiklerinin
T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I
T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I DENEY 6: DİYOT KARAKTERİSTİKLERİ VE AC-DC DOĞRULTUCU UYGULAMALARI Ad Soyad
Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)
2.1. eneyin amacı: Temel yarıiletken elemanlardan BJT ve FET in tanımlanması, test edilmesi ve temel karakteristiklerinin incelenmesi. 2.2. Teorik bilgiler: 2.2.1. BJT nin özelliklerinin tanımlanması:
DENEY 4. Rezonans Devreleri
ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2104 Elektrik Devreleri Laboratuarı II 2012-2013 Bahar DENEY 4 Rezonans Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı
DENEY 5. Pasif Filtreler
ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM24 Elektrik Devreleri Laboratuarı II 2425 Bahar DENEY 5 Pasif Filtreler Deneyi Yapanın Değerlendirme Adı Soyadı : Ön
DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ
Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi
DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ Deneyin Amacı
DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ 8.1. Deneyin Amacı Ortak emiter bağlı yükseltecin yüklü, yüksüz kazancını tespit etmek ve ortak emiter yükseltecin küçük sinyal modelini çıkartmak. 8.2. Kullanılacak Malzemeler
Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir.
DENEY 5 - ALAN ETKİLİ TRANSİSTOR(FET- Field Effect Transistor) 5.1. DENEYİN AMACI Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir. 5.2. TEORİK BİLGİ Alan etkili
Bölüm 14 Temel Opamp Karakteristikleri Deneyleri
Bölüm 14 Temel Opamp Karakteristikleri Deneyleri 14.1 DENEYİN AMACI (1) Temel OPAMP karakteristiklerini anlamak. (2) OPAMP ın ofset gerilimini ayarlama yöntemini anlamak. 14.2 GENEL BİLGİLER 14.2.1 Yeni
Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör
YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNA FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK LABORATUARI (LAB I) DENEY 2 Deney Adı: Ohm-Kirchoff Kanunları ve Bobin-Direnç-Kondansatör Malzeme Listesi:
DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI
DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere
EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi
EEM 0 DENEY 0 SABİT FEKANSTA DEVEEİ 0. Amaçlar Sabit frekansta devrelerinin incelenmesi. Seri devresi Paralel devresi 0. Devre Elemanları Ve Kullanılan Malzemeler Bu deneyde kullanılan devre elemanları
DENEY 2 DİYOT DEVRELERİ
DENEY 2 DİYOT DEVRELERİ 2.1. DENEYİN AMACI Bu deneyde çıkış gerilim dalga formunda değişiklik oluşturan kırpıcı (clipping) ve kenetleme (clamping) devrelerinin nasıl çalıştığı öğrenilecek ve kavranacaktır.
ELEKTRONİK DEVRELER LABORATUARI I DENEY 3
T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI I DENEY 3 TRANSİSTÖRLÜ KUVVETLENDİRİCİLERİN TASARIMI VE TEST EDİLMESİ 2: AÇIKLAMALAR
