UZAK MESAFELERDE GELİŞEN UZUN PERİYODLU SİSMİK DALGALAR

Benzer belgeler
PRELIMINARY REPORT. 19/09/2012 KAHRAMANMARAŞ PAZARCIK EARTHQUAKE (SOUTHEAST TURKEY) Ml=5.1.

Elazığ ve Çevresindeki Sismik Aktivitelerin Deprem Parametreleri İlişkisinin İncelenmesi

19 Mayıs 2011 M w 6.0 Simav-Kütahya Depreminin Kaynak Parametreleri ve Coulomb Gerilim Değişimleri

DEPREM TEHLİKE HARİTALARININ HAZIRLANMASI VE AZALIM İLİŞKİLERİ

NETWORK DESIGN AND OPTIMIZATION FOR DEFORMATION MONITORING ON TUZLA FAULT-IZMIR AND ITS VICINITY

BURSA ŞEHRİ YEREL TASARIM SPEKTRUMUNUN OLASILIKSAL SİSMİK TEHLİKE ANALİZİ İLE ELDE EDİLMESİ

( ) ARASI KONUSUNU TÜRK TARİHİNDEN ALAN TİYATROLAR

TÜRKİYE DE ÇEŞİTLİ TAŞ OCAĞI PATLATMA ALANLARININ SPEKTRUM ÖZELLİKLERİ SPECTRUM CHARACTERISTICS OF SEVERAL QUARRY BLAST AREAS IN TURKEY

LİTERATÜRÜNE KATKILARI: MARMARA DEPREMİ NİN ETKİSİ. Zehra TAŞKIN HACETTEPE ÜNİVERSİTESİ BİLGİ VE BELGE YÖNETİMİ BÖLÜMÜ

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY

by Karin Şeşetyan BS. In C.E., Boğaziçi University, 1994

BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY

Senaryo Depremlerin Zemin Hareketi

EGE DENİZİ DEPREMİ

HELLENİK VE KIBRIS YAYI DEPREMLERİNİN KAYNAK PARAMETRELERİ VE TARİHSEL DEPREMLERLE İLİŞKİLİ TSUNAMİ SİMÜLASYONLARI

1

MÜREFTE-ŞARKÖY DEPREMİ: GANOS FAYI'NIN 9 AĞUSTOS 1912 DEPREMİNDE ATIMI, KIRIK UZUNLUĞU, BÜYÜKLÜĞÜ, KARAKTERİ VE AYNI YÖREDE OLAN TARİHSEL DEPREMLER

PATLATMA KAYNAKLI YER SARSINTILARININ DEPREM VERİLERİNDEN AYRILMASI

1. Giriş. 2. Model Parametreleri

ANALYSIS OF PREPAREDNESS AND RESPONSE TO EARTHQUAKE RISK OF BEŞĐKTAŞ DISTRICT USING GIS

MARMARA BÖLGESİNİN KUVVETLİ YER HAREKETİ AZALIM İLİŞKİSİ MODELİ STRONG GROUND MOTION ATTENUATION RELATIONSHIP MODEL FOR MARMARA REGION

21 TEMMUZ 2017 KOS ADASI - GÖKOVA KÖRFEZİ DEPREMİ İVME KAYITLARI VE ÖZELLİKLERİ

MARMARA DENİZİNDE TARİHSEL DEPREMLER: YERLERİ, BÜYÜKLÜKLERİ, ETKİ ALANLARI VE GÜNCEL KIRILMA OLASILIKLARI

GÜNEY MARMARA BÖLGESİ NDE TARİHSEL VE ALETSEL DÖNEMLERDE OLUŞAN DEPREMLERİN SİSMOLOJİK VE JEOLOJİK İNCELEMESİ GİRİŞ

From the Sabiha Gokçen Airport to the Zubeydehanim Ogretmenevi, there are two means of transportation.

Argumentative Essay Nasıl Yazılır?

Grade 8 / SBS PRACTICE TEST Test Number 9 SBS PRACTICE TEST 9

Konforun Üç Bilinmeyenli Denklemi 2016

BASIC ISSUES IN EARTHQUAKE ENGINEERING. Earthquake Resistant Design. Haluk Sucuoğlu


DETERMINATION OF VELOCITY FIELD AND STRAIN ACCUMULATION OF DENSIFICATION NETWORK IN MARMARA REGION

21 TEMMUZ 2017 KOS ADASI - GÖKOVA KÖRFEZİ DEPREMİ İVME KAYITLARI VE ÖZELLİKLERİ

12 HAZİRAN 2017 (15:28 TSİ), Mw=6.2 İZMİR KARABURUN (EGE DENİZİ) DEPREMİ SİSMOLOJİK ÖN DEĞERLENDİRME RAPORU

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

BANDIRMA KÖRFEZİ, GEMLİK KÖRFEZİ VE İZMİT KÖRFEZİ SIĞ SİSMİK GÖRÜNTÜLERİ

DOĞU KARADENİZ BÖLGESİNDE SON YILLARDA YAPILAN PATLATMALARLA OLUŞAN DEPREMLERİN AYIRT EDİLMESİ

İZMİT KÖRFEZİ GÜNEYDOĞU KIYI ÖTESİNİN YÜKSEK ÇÖZÜNÜRLÜKLÜ SİSMİK VE SIĞ SONDAJ ÇALIŞMALARI İLE ARAŞTIRILMASI

TÜRKİYE NİN FARKLI BÖLGELERİ İÇİN SİSMİK HAZARD PARAMETRELERİ ARASINDAKİ İLİŞKİLER

Prof.Dr. Ali Osman ÖNCEL

Araziye Çıkmadan Önce Mutlaka Bizi Arayınız!

Teşekkür. BOĞAZİÇİ UNIVERSITY KANDİLLİ OBSERVATORY and EARTHQUAKE RESEARCH INSTITUTE GEOMAGNETISM LABORATORY

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl. Lisans Jeoloji İstanbul Teknik Üniversitesi Y. Lisans Jeoloji İstanbul Teknik Üniversitesi 1972

THE DESIGN AND USE OF CONTINUOUS GNSS REFERENCE NETWORKS. by Özgür Avcı B.S., Istanbul Technical University, 2003

1 MAYIS BİNGÖL DEPREMİNDE MEYDANA GELEN YIĞMA YAPI HASARLARI

MOZAİK SANATI ANTAKYA VE ZEUGMA MOZAİKLERİNİN RESİM ANALİZLERİ MEHMET ŞAHİN. YÜKSEK LİSANS TEZİ Resim Ana Sanat Dalı Danışman: Doç.

DALGA ŞEKLİ TERS ÇÖZÜMÜNDEN 3 KASIM 2002 DENALİ DEPREMİNİN KAYNAK MEKANİZMA ÖZELLİKLERİNİN BELİRLENMESİ VE DEPREME İLİŞKİN COULOMB GERİLME

DOĞALGAZ BÖLGE REGÜLATÖRLERİNİN DEPREM SONRASI OTOMATİK KAPATILMA SİSTEMİ

8. KIYI MÜHEND SL SEMPOZYUMU

! Accounts(for(the(storage(of(previous(information(in(mind.((! Background(knowledge(became(popular(with(topOdown( models.(

İZMİR VE ÇEVRESİNİN ÜST-KABUK HIZ YAPISININ BELİRLENMESİ. Araştırma Görevlisi, Jeofizik Müh. Bölümü, Dokuz Eylül Üniversitesi, İzmir 2

TÜRKİYE VE ÇEVRESİNDEKİ DEPREMLERİN ( ) BÖLGESEL MOMENT TENSOR KATALOĞU

HAZIRLAYANLAR: K. ALBAYRAK, E. CİĞEROĞLU, M. İ. GÖKLER

Bu sayı Dr. M. Orhan Uyar anısına çıkarılmıştır.

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl. Lisans Jeoloji İstanbul Teknik Üniversitesi Y. Lisans Jeoloji İstanbul Teknik Üniversitesi 1972

KUZEY ANADOLU FAY HATTI MARMARA BÖLÜMÜ İÇİN FAY BAZLI DÜZLEMSEL SİSMİK KAYNAK MODELİ İLE SİSMİK TEHLİKE ANALİZİ

Hizan (Bitlis) depremi (Mw=4.2) bilgi notu

19 MAYIS 2011 KÜTAHYA-SİMAV DEPREMİNİN (Mw=5.8) DALGA ŞEKLİ TERS ÇÖZÜM YÖNTEMİYLE İNCELENMESİ

DÜZENLEME KURULU. Prof. Dr. Mehmet Özkul (Pamukkale Üniversitesi)

TÜRKÇE ÖRNEK-1 KARAALİ KÖYÜ NÜN MONOGRAFYASI ÖZET

3 ARALIK 2015 KİĞI-BİNGÖL DEPREMİ (Mw=5.3), ARTÇI DEPREM AKTİVİTESİ VE BÖLGENİN TEKTONİĞİ İLE İLİŞKİSİ

Unlike analytical solutions, numerical methods have an error range. In addition to this

2007 EĞİRDİR DEPREMLERİNİN SİSMOLOJİK YÖNTEMLERLE ARAŞTIRILMASI

MEVCUT PALEOSİSMOLOJİK VERİLER IŞIĞINDA KUZEY ANADOLU FAY ZONU NUN DÜNÜ VE BUGÜNÜ

Burcu Özdemir 2. Özet ve zincirleme etkileri. ç, tarihi. dokuyu göz önüne alan optimum. Anahtar Kelime

H. Serdar Küyük 1 R. Talha Kuyuk 2 Eray Yıldırım 3 Yusuf Sümer 4 Sakarya University ENGINEERING SCIENCES Kocaeli University 2

OLASILIK VE İSTATİSTİK YÖNTEMLER İLE MERSİN İLİNİN SİSMİK TEHLİKESİNİN TAHMİNİ

YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ FARKLI YER HAREKETLERİ ETKİSİNDEKİ SİSMİK DAVRANIŞININ İNCELENMESİ

EN BÜYÜK OLASILIK YÖNTEMİ KULLANILARAK BATI ANADOLU NUN FARKLI BÖLGELERİNDE ALETSEL DÖNEM İÇİN DEPREM TEHLİKE ANALİZİ

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES

Turkish Vessel Monitoring System. Turkish VMS

ŞUBAT 2017 AYVACIK DEPREM SİLSİLESİ GERİ PLAN DEPREMSELLİK ANALİZİ

1

T.C. BAŞBAKANLIK AFET VE ACİL DURUM YÖNETİMİ BAŞKANLIĞI DEPREM DAİRESİ BAŞKANLIĞI AYLIK DEPREM RAPORU

Kastamonu ve Yakın Çevresi İçin Deprem Olasılığı Tahminleri


HASAR VE CAN KAYBININ OLDUĞU DEPREMLERİN İSTATİSTİKİ DEĞERLENDİRMESİ ( )

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl

İZMİT HAVZASI İÇİN 2B DALGA YAYILIMI SİMÜLASYONU İLE SİSMİK TEHLİKE DEĞERLENDİRMESİ

Kuzey Anadolu Fayı nın Marmara Denizi içindeki devamı

Metamorphism and Metamorphic Rocks

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER

YAPI SAĞLIĞI İZLEME SİSTEMLERİ İLE BİR HASTANE BİNASININ DEPREM DAVRANIŞININ BELİRLENMESİ

Turkish and Kurdish influences in the Arabic Dialects of Anatolia. Otto Jastrow (Tallinn)

(e-posta:

ÖZGEÇMİŞ VE ESERLER LİSTESİ

SAKARYA ÜNİVERSİTESİ DEPREM KAYIT İSTASYONUNUNA AİT SÜREYE BAĞLI BÜYÜKLÜK HESABI

SİSMİK KESİTLERDE BURULMA FAYLARIN TANIMLANMASI RECOGNITION OF WRENCH FAULTS ON SEISMIC SECTIONS

ALANYA HALK EĞİTİMİ MERKEZİ BAĞIMSIZ YAŞAM İÇİN YENİ YAKLAŞIMLAR ADLI GRUNDTVIG PROJEMİZ İN DÖNEM SONU BİLGİLENDİRME TOPLANTISI

AVRUPA VE ORTADOĞU İÇİN HESAPLANAN YER HAREKETİ TAHMİN DENKLEMLERİNİN TÜRKİYE İLE UYUMLULUĞUNUN İRDELENMESİ

GEOTEKNİK DEPREM MÜHENDİSLİĞİ

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl

KUZEY ANADOLU FAY ININ BOLU-ILGAZ BÖLÜMÜ IÇİN GELİŞTİRİLMİŞ SİSMİK KAYNAK MODELLERİ

T.C. SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ISPARTA İLİ KİRAZ İHRACATININ ANALİZİ

SBR331 Egzersiz Biyomekaniği

Geophysical Engineer.

Deprem Tehlikesi. İhtimaller Hesabına Dayalı İstanbul ve Çevresindeki

BBC English in Daily Life

HÜRRİYET GAZETESİ: DÖNEMİNİN YAYIN POLİTİKASI

DEPREM ERKEN UYARI SİSTEMLERİNDE KİNEMATİK GNSS TEKNOLOJİSİNİN KULLANIMI: GÖKÇEADA DEPREMİ (2014, Mw: 6.9) ÖRNEĞİ

ÖNEMLİ PREPOSİTİONAL PHRASES

Transkript:

UZAK MESAFELERDE GELİŞEN UZUN PERİYODLU SİSMİK DALGALAR Esra Kalkan Ertan 1 ve Ali Pınar 2 Ümit Dikmen 2 1 Araştırma Görevlisi, Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Jeofizik ABD 2 Profesör, Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Deprem Müh. ABD E-mail: esra.kalkan@boun.edu.tr ÖZET: Uzun periyodlu sismik dalgalar ikiye ayrılmaktadır. Birinci tip dalgalar uzak kaynaklı depremlerde meydana gelirken, ikinci tip ise yakın alanlarda meydana gelen depremler sonucu oluşmaktadır. (Koketsu and Miyake, 2008) Uzun periyodlu sismik dalgalar özellikle sediman bölgelerde etkisini arttırmakta ve yıkıcı sonuçlara sebebiyet vermektedir. Bu dalgaların ne kadar yıkıcı olabileceğine dair literatürde bir çok örnek vardır. 1985 yılında meydana gelen Michoacan Depremi nin (Mw=8.0) merkezinden 400 km uzakta bulunan Mexico City de yarattığı yıkım bu tip dalgaların etkisine verilebilecek en çarpıcı örnektir (Celebi et al, 1987). Bu çalışmanın amacı da özellikle Marmara Bölgesi nde etkili olacak uzun periyodlu sismik dalgaların tespiti, kaynak ve yol arasındaki ilişkilerin oluşturulmasına yöneliktir. 24 Mayıs 2014 te (Mw=6.9) Gökçeada da meydana gelen depremde uzun periyodlu dalgalar uzak kaynak tipinde oluşmuşken, 6 Şubat 2017 de Çanakkale de başlayan deprem etkinliği sırasında da İstanbul daki istasyonlarda yakın alan tipi uzun periyodlu dalgalar gözlemlenmiştir. Eldeki verilerden ve ileride oluşabilecek depremlerden yola çıkarak Marmara Bölgesi ve özellikle İstanbul için uzun periyodlu dalgaların oluşum haritası çıkarmak ve yaratabileceği etkileri hesaplamak da çalışmanın ileriki amaçlarındandır. ANAHTAR KELİMELER : Uzun Periyodlu Sismik Dalgalar, Yakın Alan, Uzak Kaynak, Marmara Bölgesi, İstanbul LONG PERIOD SEISMIC WAVES DEVELOPED AT LOCAL DISTANCES ABSTRACT: Long period seismic waves has two types. One of them is caused from far-source earthquakes and the other one is caused from near field type earthquakes. (Koketsu and Miyake, 2008) Long period seismic waves can be really destructive, these kind of waves amplify their effects especially in sediman areas,. There are many examples in literature how they can be destructive. A devastating example is Mexico City, which is located 400 km away from the 1985 Michoacan Earthquake (Mw=8.0) (Celebi et al, 1987).. This study s aim is to detect the long period seismic waves which will effect Marmara Region and generate relationship according to path and source. On May 24,2014 Mw=6.9 Gökçeada earthquake was occurred and after this event, there were far source long period ground waves observed. On the other hand we observed near field type long period seismic waves at İstanbul stations from Çanakkale earthquakes which were started on February 6, 2017. For future works, the study aim is to make a long period ground waves map for Marmara Region especially for İstanbul, and calculate their effect. KEYWORDS: Long period sesimic waves, near field, far source, Marmara Region, İstanbul

1.INTRODUCTION Long period ground motion is highly important issue nowadays because of the number of high period structures increases such as high rise buildings, suspension bridges, oil storage tanks, off shore oil drilling platforms etc. According to Koketsu and Miyake (2008) there are two types of long period ground motions. One of them is caused from large subduction zone earthquakes and moderate to large crustal earthquakes which they call it as far source long period ground motions. These kind of waves tends to amplify in distant sedimentary basins with the help of the path effect. The second type of long period ground motion waves is near fault long period ground motion. Their generation is caused from the source effect of forward rupture directivity. Long period ground motions consist mostly surface waves with longer duration in far source and shorter duration in near fault. These two types of waves have a devastating effect on metropolitan areas especially located in or near the sedimentary basins because they attenuate slowly with distance and site effects amplify these motions in distant sedimentary basins. There are many examples of how they can be devastating, such as 1985 Mihoacan earthquake (Mw=8.0, Beck and Hall, 1986) and Tokachi-oki earthquake(mw=8.3, Koketsu, 2005). Since they have hazardous effect on metropolitan areas, their early warning has a huge importance topic for urban areas. Especially high rise buildings such as skyscrapers have high periods and tend to resonate with these kind of waves and shake for minutes. Even they do not crumble, people who live in these structures can be trapped in elevators and get panic. To prevent chaos shutting the vital systems such as throttle or stopping the elevator in the nearest floor, early warning system should be adapted and developed. In these study we have a very good example for these kind of waves and their early warning applications. On 24 May 2014 Mw 6.9 North Aegean Earthquake was occurred and long period ground motions can be clearly observed. Location of the earthquake is 300 km away from İstanbul metropolitan area. The duration of earthquake was about 86 seconds and the early warning logarithms solved this earthquake in 36 seconds and there are 50 seconds to give early warning signals for İstanbul and Marmara region. 2. GEOLOGICAL SETTING OF MARMARA The Marmara Sea is located in a transition region where the dextral strike slip regime of the NAF to the east meets the extension regime of the Aegean Sea to the west and splits into two main branches as northern NAF and southern NAF (Gürbüz et al., 2000) and about 230 km long and 70 km wide marine basin with a shallow shelf to the south (Ambraseys, 2002). There are three main basins in Marmara Sea, Tekirdağ, Central and Çınarcık in the northern Marmara Sea. They are seperated by topographic highs, the Western and Central highs. Tekirdağ and Çınarcık basins have high local seismicity because of their depths and bathymetric gradients (Smith et al. 1995; Okay et al. 2000). Bayrakçı et al. (2013) studied for the first time 3-D view of the basement topography beneath the Marmara sea and suggested that the presence of clear basement depression reaching down 6 km depth below the sea level beneath three deep basins. The basement depth of beneath the North İmralı observed about 4 km and the North İmralı and the Çınarcık Basins are seperated by an E-W high rises up yo 3 km and local depth of the pre-kinematic basement is about 5 km. The Central High rises up to 3 km depth below sea level at between Central and Çınarcık basins. There is a link between Tekirdağ and Central basins which is forming a large 60 km long basement depression reaches up to 6 km below the sea floor. Western High bathymetric data shows that low velocities down to 6 km depth below the sea level and also there is no evidence for basement high (Bayrakci et al, 2013).

2. 24 MAY 2014 NORTH AEGEAN SEA EARTHQAUKE MW=6.9 On May 24, 2014, a magnitude Mw= 6.9 earthquake was occurred in Northern Aegean Sea. Its location was on the western part of the North Anatolian Fault Zone and has a depth 20 km in the sea between the Aegean islands of Gökçeada, Turkey. The main shock had a right lateral strike slip faulting with strike 70 o from north. The epicenter of the earthquake was 300 km away from İstanbul metropolitan area but its effect on high rise buildings was obvious (Figure 1). Many buildings shaked for about 10 minutes because of generation of the long period ground motion in distant sedimentary basins. Waves resonated with buildings natural period. The tallest building in İstanbul is SAPPHIRE, (it has 62 story) and health structural monitoring operation is coordinated by Erdal Şafak. The records of this systems also gives clear generation of long period ground waves (Figure 2) By looking at the Gökçeada station records long period ground motion waves can be clearly seen (Figure 3). Figure 1. Distance between the location of the earthquake and Istanbul Figure 2. NAE Records from Sapphire Building by Erdal Şafak

Figure 3. Acceleration,Velocity and Displacement Records of NAE from Gökçeada Station

Figure 4. Pseudo Velocity Spectrums of Gökçeada Stations By looking at the Pseudo Velocity spectrums of Gökçeada Station, characteristic long period seismic waves can be observed (Figure 4).

REFERENCES Ambraseys, N. (2002). The seismic activity of the Marmara Sea region over the last 2000 years. Bulletin of the Seismological Society of America, 92(1), 1-18. Bayrakci, G., Laigle, M., Bécel, A., Hirn, A., Taymaz, T., Yolsal-Cevikbilen, S., & Team, S. (2013). 3-D sediment-basement tomography of the Northern Marmara trough by a dense OBS network at the nodes of a grid of controlled source profiles along the North Anatolian fault. Geophysical Journal International, 194(3), 1335-1357. Beck, J. L., & Hall, J. F. (1986). Factors contributing to the catastrophe in Mexico City during the earthquake of September 19, 1985. Geophysical Research Letters, 13(6), 593-596. Celebi, M., Prince, J., Dietel, C., Onate, M., & Chavez, G. (1987). The culprit in Mexico City amplification of motions. Earthquake spectra, 3(2), 315-328. Gurbuz, C., Aktar, M., Eyidogan, H., Cisternas, A., Haessler, H., Barka, A., Kuleli, S. (2000). The seismotectonics of the Marmara region (Turkey): results from a microseismic experiment. Tectonophysics, 316(1), 1-17. Koketsu, K., Hatayama, K., Furumura, T., Ikegami, Y., & Akiyama, S. (2005). Damaging long-period ground motions from the 2003 M w 8.3 Tokachi-oki, Japan earthquake. Seismological Research Letters, 76(1), 67-73. Koketsu, K., & Miyake, H. (2008). A seismological overview of long-period ground motion. Journal of Seismology, 2(12), 133-143. Okay, A. I., Kaşlılar-Özcan, A., Imren, C., Boztepe-Güney, A., Demirbağ, E., & Kuşçu, İ. (2000). Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics, 321(2), 189-218. Smith, A. D., Taymaz, T., Oktay, F., Yüce, H., Alpar, B., Başaran, H.,Şimşek, M. (1995). High-resolution seismic profiling in the Sea of Marmara (northwest Turkey): Late Quaternary sedimentation and sea-level changes. Geological Society of America Bulletin, 107(8), 923-936.