Lazer: Madde ve ışık ş etkileşiminin ş bir sonucu



Benzer belgeler
Light Amplification by Stimulated Emission of

Fizik Nedir? Proje nedir nasıl hazırlanmalıdır? Spektroskopi ve Lazer hakkında kısa bilgi. Rıza Demirbilek Yıldız Teknik Üniversitesi, Fizik Bölümü

ALETLİ ANALİZ YÖNTEMLERİ

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

İÇİNDEKİLER -BÖLÜM / 1- -BÖLÜM / 2- -BÖLÜM / 3- GİRİŞ... 1 ÖZEL GÖRELİLİK KUANTUM FİZİĞİ ÖNSÖZ... iii ŞEKİLLERİN LİSTESİ...

LAZER CĐHAZI : (1 ) lazer ortamı (2) maddeye verilen enerji (ışık), (3) ayna, (4) yarı geçirgen ayna, (5) dışarı çıkan lazer ışını

Lazer ile şekil verme. Prof. Dr. Akgün ALSARAN

ALETLİ ANALİZ YÖNTEMLERİ

R RAMAN SPEKTROSKOPİSİ CAN EROL

Nanomalzemelerin Karakterizasyonu. Yapısal Karakterizasyon Kimyasal Karakterizasyon

Raman Spektroskopisi

Laboratuvar Tekniği. Adnan Menderes Üniversitesi Tarımsal Biyoteknoloji Bölümü TBY 118 Muavviz Ayvaz (Yrd. Doç. Dr.) 9. Hafta (11.04.

h 7.1 p dalgaboyuna sahip bir dalga karakteri de taşır. De Broglie nin varsayımı fotonlar için,

S P E K T R O S K O P İ

SU Lise Yaz Okulu 2. Ders, biraz (baya) fizik. Dalgalar Elektromanyetik Dalgalar Kuantum mekaniği Tayf Karacisim ışıması

12. SINIF KONU ANLATIMLI

ELEKTRONLAR ve ATOMLAR

Kuantum Fiziğinin Gelişimi (Quantum Physics) 1900 den 1930 a

Lazerin Endüstriyel Uygulamalarında İş Sağlığı ve Güvenliği

Bugün için Okuma: Bölüm 1.5 (3. Baskıda 1.3), Bölüm 1.6 (3. Baskıda 1.4 )

Bölüm 8: Atomun Elektron Yapısı

Modern Fiziğin Teknolojideki Uygulamaları

... ANADOLU L SES E T M YILI I. DÖNEM 10. SINIF K MYA DERS 1. YAZILI SINAVI SINIFI: Ö RENC NO: Ö RENC N N ADI VE SOYADI:

BÖLÜM 7. ENSTRÜMENTAL ANALİZ YÖNTEMLERİ Doç.Dr. Ebru Şenel

RÖNTGEN FİZİĞİ 6. X-Işınlarının madde ile etkileşimi. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

Ultraviyole-Görünür Bölge Absorpsiyon Spektroskopisi

Optik Özellikler. Elektromanyetik radyasyon

FİZİK 4. Ders 6: Atom Enerjisinin Kuantalanması

Geçen Süre/Yarı ömür. İlk madde miktarı. Kalan madde miktarı

ENSTRÜMENTAL ANALİZ YÖNTEMLERİ

LAZER İLE MESAFE ÖLÇÜMÜ MERAL ALTIN ŞİRİN BARİK

12. SINIF KONU ANLATIMLI

X IŞINLARININ ELDE EDİLİŞİ

Harici Fotoelektrik etki ve Planck sabiti deney seti

UBT Foton Algılayıcıları Ara Sınav Cevap Anahtarı Tarih: 22 Nisan 2015 Süre: 90 dk. İsim:

Fourier Transform Infrared Spectroscopy (FTIR) Spektroskopi Nedir?

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

EĞİTİM-ÖĞRETİM YILI 12 SINIF FİZİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

BÖLÜM 1: Matematiğe Genel Bakış 1. BÖLÜM:2 Fizik ve Ölçme 13. BÖLÜM 3: Bir Boyutta Hareket 20. BÖLÜM 4: Düzlemde Hareket 35

MONTE CARLO. Prof. Dr. Niyazi MERİÇ. Ankara Üniversitesi Nükleer Bilimler Enstitüsü Enstitü Müdürü

NÜKLEER REAKSİYONLAR II

Optik Yükselteç (OA) Nedir?

TOBB Ekonomi ve Teknoloji Üniversitesi. chem.libretexts.org

Uzaktan Algılama Teknolojileri

Önerilen süre dakika (22 puan) dakika (16 puan) dakika (38 puan) 4. 9 dakika (24 puan) Toplam (100 puan) Ġsim

SPEKTROSKOPİ ENSTRÜMANTAL ANALİZ. Elektromanyetik radyasyon (ışıma)

Bölüm 3. Işık ve Tayf

İbrahim Küçükkara Alper Kiraz. Kuantum Optiği, Elektromanyetik Etkili Saydamlık ve Tek Foton Üretimi

SCHRÖDİNGER: Elektronun yeri (yörüngesi ve orbitali) birer dalga fonksiyonu olan n, l, m l olarak ifade edilen kuantum sayıları ile belirlenir.

Ahenk (Koherans, uyum)

Uzaktan Algılama Teknolojileri

Gamma Bozunumu

Elektrik. Manyetik alan içerisinde manyetik moment Manyetik Alan. Prensip: İhtiyacınız Olanlar:

AYDINLATMA SİSTEMLERİ. İbrahim Kolancı Enerji Yöneticisi

MIT Açık Ders Malzemeleri Fizikokimya II 2008 Bahar

Modern Fiziğin Teknolojideki Uygulamaları

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu

H a t ı r l a t m a : Şimdiye dek bilmeniz gerekenler: 1. Maxwell denklemleri, elektromanyetik dalgalar ve ışık

Isı transferi (taşınımı)

İçerik. Ürün no.: MLD500-T1L Güvenlik tek ışın fotoelektrik sensör verici

Elektromanyetik Dalgalar. Test 1 in Çözümleri. 4. Gözlemci kaynağa yaklaştığına göre; c bağıntısını yazabiliriz. f g

RADYASYON VE RADYASYONDAN KORUNMA

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

X-IŞINI FLORESANS SPEKTROSKOPİSİ. X-ışınları spektrometresi ile numunelerin yarı kantitatif olarak içeriğinin belirlenmesi.

FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI EĞİTİM-ÖĞRETİM YILI DERS KATALOĞU (YÜKSEK LİSANS)

Nötronlar kinetik enerjilerine göre aşağıdaki gibi sınıflandırılırlar

5.111 Ders Özeti #5. Ödev: Problem seti #2 (Oturum # 8 e kadar)

Enstrümantal Analiz, Elektromagnetik Işının Özellikleri

Maddenin Yapısına Giriş Ders-2 DOÇ. DR. ZEYNEP GÜVEN ÖZDEMİR EKİM 2017

İş Güvenliği, Çevre Ve Sağlık

FİZ4001 KATIHAL FİZİĞİ-I

Bölüm 5. Tıbbi Görüntüleme Yöntemlerinin Temel İlkeleri. Prof. Dr. Bahadır BOYACIOĞLU

tayf kara cisim ışınımına

Uzaktan Algılama Teknolojileri

KMB405 Kimya Mühendisliği Laboratuvarı I IŞINIMLA ISI İLETİMİ. Bursa Teknik Üniversitesi DBMMF Kimya Mühendisliği Bölümü 1

X-Işınları. Gelen X-ışınları. Geçen X-ışınları. Numan Akdoğan.

Bohr Atom Modeli. ( I eylemsizlik momen ) Her iki tarafı mv ye bölelim.

Continuous Spectrum continued

Bahar Yarıyılı Bölüm Ankara A. OZANSOY

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

2 MALZEME ÖZELLİKLERİ

Prof. Dr. H. SELÇUK VAROL OPTOELEKTRON"K & F"BER OPT"K

Uzaktan Algılama Teknolojileri

ELEKTROMANYETİK İ ALANLAR. Prof. Dr. M. Tunaya KALKAN İÜ Cerrahpaşa Tıp Fakültesi

RADYASYON ÖLÇÜM YÖNTEMLERİ DERS. Prof. Dr. Haluk YÜCEL RADYASYON DEDEKSİYON VERİMİ, ÖLÜ ZAMAN, PULS YIĞILMASI ÖZELLİKLERİ

ATOMUN YAPISI ATOMUN ÖZELLİKLERİ

8.04 Kuantum Fiziği Ders V ( ) 2. = dk φ k

TS ISO /Haziran 2007

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

2. Işık Dalgalarında Kutuplanma:

ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ OTOMOTİV MÜHENDİSLİĞİ BÖLÜMÜ

SPEKTROSKOPİ. Spektroskopi ile İlgili Terimler

Dalton atom modelinde henüz keşfedilmedikleri için atomun temel tanecikleri olan proton nötron ve elektrondan bahsedilmez.

DistanceMaster One. Laser 650 nm SPEED SHUTTER

Final İçin sorular HAZIRLAYAN : HÜMEYRA UZUN. Yrd.Doç.Dr.Cengiz OKAY

ATOMUN YAPISI VE PERİYODİK ÖZELLİKLER

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

X-IŞINI OLUŞUMU (HATIRLATMA)

Elektromanyetik Dalgalar. Test 1 in Çözümleri

Transkript:

Lazer: Madde ve ışık ş etkileşiminin ş bir sonucu Işık Madde Işık Zorlamalı salınım Lazer Lazer türleri Lazer ışığının özellikleri Lazerlerin uygulamaları Lazer ışığının tehlikeleri ve korunma

Işık Madde Işık Elastik saçılma, h < E E ışık ş > r Atom h E h Rayleigh-Saçılması, 1871 W Rayleigh Saçılması ~1/ 4 Saçılma fonksiyonu ( ) 2 [ n 2 ( ) 2 1] [1 4 N cos 2 ( )] Gün batımı sırasındaki kırmızılık Gökyüzünün mavi görünmesi Polarizasyon ölçümü

Işık Madde Işık Elastik olmayan saçılma, h > E E Raman Saçılması: (C. V. Raman) E = h - h h h h E Raman saçılma çizgileri ile uyarım ışığı arasındaki frekanslar: Raman olayı: Molekül Saçılan titreşimleri ışığın sıvılarda için: < 3000 ve gazlarda cm -1 Katılarda titreşimler, örgü dönmeler titreşimleri ve için: bunların 100 cm üst -1 üste 1000 binmelerine cm -1 göre Gazlarda dönmeler için: <100 cm -1 Katılarda Raman örgü spektroskopisi: titreşimleri, kuantalanmış malzemelerin uyarılmaları (maddenin) (Polariton, yapısını Magnon, incelemek Plasmon) için önemli Landau bir teknik. seviylerindeki elektronlar Raman tarafından spektroskopisi module olması. ve kızılaltı spektroskopisi birbirini tamamlarlar

Işık Madde Işık Rezonans soğurma, ğ h = E E h Oyalanma süresi Yaşam süresi: E h

Işık Madde Işık Floresans, h > E h E h h E h

Işık Madde Işık Fotoelektrik olay, h >> E E salıverilen Elektron h E

Işık Madde Işık Compton-Saçılması, h >> E E Salıverilen Elektron h h E Göreceli enerji ve momentum korunumu dikkate alındığında h 2 1 (1 cos ) mc

Işık Madde Işık Zorlamalı ışık salması, h = E yada h > E E h + ters dolum (örn. Bir rezonatörde) E h 12 1,2,..

Lazer tarihinden bazı önemli gelişmeler 1917 Einstein in zorlamalı emisyonu teorik olarak açıklaması. 1928 R Ladenberg et al. Gas deşarjında zorlamalı salınımın deneysel gözlemlenmesi 1951 Maserin C.H. Townes tarafından geliştirilmesi Maser lazer ile aynı temel düşünceye dayanıyor; ancak sadece mikrodalga bölgesinde çalışıyor. 1958 C.H. Townesand A.L. Schawlow tarafından maser prensibinin optik frekanslarada uygulanabilirliğinin önerilmesi. 1960 T.H. Maiman Hughes Laboratuvarda atmalı yakut lazeri gerçekleştirdiklerini bildirdiler. 1961 İlk sürekli dalga lazeri rapor edildi (Helium Neon lazeri). 1962 İlk yarı iletken lazeri (R Hall) 1964 Nicolay Basov, Charlie Townesand A leksandrprokhorov Lazer ve maser prensibini açıkladıkları için Nobel Ödülü aldılar. 1976 J M J Madey et al. Serbest Elektron lazeri 1981 Art Schalowand Nicolaas Bloembergen lazer spektroskopisini gelişimine katkılarından dolayı Nobel ödülü aldılar 1997 Steven Chu, Claude Cohen-Tannoudji ve William D. Phillips atomları lazer ile soğutup tuzaklama yöntemini geliştirdikleri için Nobel Ödülü aldılar.

Zorlamalı ışık salması (emisyon) Atomlar kendiliğinde soğurma yapamazlar. Işık alanı + Temel durum (temel enerji seviyesi) Soğurma: uyarılmış durum (uyarılmış enerji seviyesi). Uyarılmış bir durumda bulunan atomlar kendiliğinden ışık salabilirler. Uyarılmış durum uyarılmış durum + ışık alanı Temel e durum u (: Emission) temel e durum u (:Emission) I2 h h h 2h I1 Soğurma ğ (Absorpsiyon) kendiliğinden zorlamalı Işık salması (Emisyon) Einstein-Katsayıları: B 12 A 21 B 21 http://www.physics.otago.ac.nz/physics100/simulations/gamelan/java/laser/index.html

Lazer Lazer Işığı S1 S2 E x L=10 cm, R=95% için L Rezonator uzunluğu L 0,1m 10 3,344 10 s 8 c 2,99 10 m / s L 0,33ns t 6, 6ns 0 c (1 R) (1 0,95) 0,33ns

Lazer E Lazer içindeki foton sayısı hesap eşitlikleri E 2 W N 2 İlk başta lazer eylemini gerçekleştiren fotonlar (rezonatör ekseni boyunca) dikkate alınırsa E 1 N 1 dn dt N Wn 1 zorlamalı Emisyon N 2 Wn W N 2 Kayıplar n t 0 Soğurma kendiliğinden Emisyon E E 2 E 1 N W : kendiliğindenğ W : zorlamalı 2 N 1 n : Dikkate alınan foton sayısı W: Geçiş olasılığı N 1 : Temel durumda bulunan atomların sayısı N 2 : Uyarılmış durumda bulunan atomların sayısı t 0 : Lazer içerisinde bulunan bir fotonun yaşam süresi

Lazer W V 1 D( ) V: Lazer ortamının hacmi : Uyarılmış seviyenin yaşam süresi D( )d : +d frekans aralığının birim hacminde 2 bulunan olası duran dalgalar l D( ( ) 8 3 c Örnek Hesaplama: yakut lazeri için verilen şu verilere göre W yi hesaplayınız V= 62,8 cm 3, = 4,32 10 14 Hz, =2,49 10 11 Hz c= 2,9979 10 10 cm/s, = 3,0 ms W = 1,224 10-12 s -1 Haken Kendiliğinden salınımın lazer olayına katkısı yok. Lazer şartı için n den bağımsız olan W N 2 terimi ihmal edilebilir. Bir sistemin lazer etkinliği gösterebilmesi için fotonların üretilme debisi 0 dan büyük olmalıdır: dn dt W ( N N 1) n n 2 t 0 0 n 0 şartı ise şunu verir:

Lazer şartı N 2 N 1 8 V 2 3 c t 0 t 0 L (1 R) c Lazer içerisindeki fotonların yaşam süresi t 0 mümkün olduğunca uzun olmalı Lazer ortamının hacminin mümkün olduğunca küçük olması gerekir. Yapı ile ilgili kriterler Emisyonun yaşam süresi mümkün olduğunca kısa olmalı Mümkün olduğunca yüksek enerji seviyelerin büyük dolum imkanı N 2 -N 1 Frekans de mümkün olduğunca ğ küçük ük olmalı. l Lazer malzemesi ile ilgili kriterler Bunlara ek olarak daha başka faktörler de bir lazerin yapılmasında rol oynarlar. örneğin.: pompa kaynağı, güç kaynağı, boyutlar Hesaplama örneği: L = 1cm L = 10 cm L = 100 cm Farklı rezonatör uzunlukları ve R = 99%, 3,336 10-9 s, 3,336 10-8 s, 3,336 10-7 s, yansıma yeğinlikleri ğ için t 0 ın R = 90%, 3,336 10-10 s, 3,336 10-9 s, 3,336 10-8 s, hesaplanması R = 10%. 3,706 10-11 s, 3,706 6 10-10 s, 3,706 10-9 s, Haken / Wolf

Lazer türleri, enerji şemasına göre İki seviyeli lazer sistemi Üç seviyeli lazer sistemi Üç seviyeli lazer sistemi 3 32 2 21 1 2 1 10 0 Pompa Pompa Pompe Pompa Işımasız geçiş Işımasız geçiş Lazer-geçişi Lazer-geçişi geçişi Işımasız geçiş Lazer-geçişi Işımasız geçiş

Lazer türleri, lazer malzemesine göre (aktif ortam) Atomlardaki elektronik geçişleri i Katıhal lazerleri (z.b. Rubin,Nd-YAG, ) Gaz lazerleri (z.b.argon-ion, Krypton, He-Ne,...) 4 F 1 4 F 2 2 E 4 A 2

Lazer türleri, lazer malzemesine göre (aktif ortam) Moleküllerdeki ki elektronik geçişler Excimer Lazer (HeN, XeBr, XeCl, ) Kimyasal Lazer (F+H 2 HF * +H, etc.) Renk malzemesi lazerleri (z.b. Rodamin 6G, Stilbene, Pyridin,...)

Lazer türleri, lazer malzemesine göre (aktif ortam) Moleküllerdeki ki titreşimler i ( Örneğin CO 2 ) Yarı iletkenlerdeki elektronik geçişler Serbest elektron lazerleri Röntgen lazeri Fiber lazerleri Disk lazerleri

Lazer türleri, lazer malzemesine göre (aktif ortam)

Lazer ışığı özellikleri Tek renklilik (monokromatiklik) (zamansal Koherentlil), l =c t =c/ Işın özelliği (uzaysal Koherentlik) yüksek yeğinlik çok kısa salmalar (pulslar) üretebilme imkanı

Lazer uygulamaları (Malzeme işleme) Kesme Yüzey işleme Kaynak yapma yazma / işaretleme

Lazer uygulamaları (Malzeme işleme / otomasyon) Robotların konumlarının kontrolü Paslanmış bir metal milin kontrolü Bir aralıktan açılma alanının ölçülmesi Parlak yüzeylerde bile kararlı ölçüm Bir iş makinasındaki titreşimleri ölçme Hareketli ölçüm cisimlerinde kısa ölçüm süresi

Lazer uygulamaları (Günlük hayatta)

Lazer uygulamaları (Tıpta)

Lazer uygulamaları (Tıpta) 1) Deri ve plastik cerrahi 2) Göz 3) Sindirim sistemi 4) Kadın hastalıkları 5) Üroloji 6) Kardiyoloji 7) Diş hekimliği 8) Beyin cerrahisi 9) K.B.B. 10)Ortopedi.

Lazer uygulamaları (çekirdek birleşimi girişimleri)

Lazer ışığının tehlikeleri ve korunma

İnsan vücuduna etkkileri açısından lazerlerin sınıflandırılması Sınıf 1 Sözkonusu lazer ışığı yeğinliği öngörülebilen şartların altında. Zararsızdır. Sınıf 1M Sözkonusu lazer ışığı 302,5 nm- 4 000 nm spektral aralığındadır. Lazer ışığı eğer başka optik araçlar (mercek, teleskop, büyüteç) aracılığı ile sahip olduğuğu genişlikten daha fazla daraltılmazsa göz için zararsızdır. Sınıf 2 Sözkonusu lazer ışığı 400 nm ile 700 nm spektral bölgesindedir. Kısa süreli etki için ( 0,25s) göze zararlı değil. Bu dalgaboyu dışındaki ek ışık kısımları 1. sınıf şartlarındadır.

İnsan vücuduna etkkileri açısından lazerlerin sınıflandırılması Sınıf 3A Sözkonusu lazer ışını optik araçlarla (büyüteç mercek, teleskop) daraltıldığında göz için tehlikelidir. Eğer optik araçlarla ışın genişliği daraltılmazsa göz için tehlikeli değildir! Herhangi bir optik araç ile ışın daraltılması yoksa görünür bölge için ( 400 nm - 700 nm) kısa süreli etkilerde ( 0,25s), ve diğer spektral bölgeler için daha uzun etkiler için de tehlikeli değildir. Sınıf 3B Sözkonusu lazer ışını göz için ve genellikle deri için de tehlikelidir. Doğrudan 3B sınıfı lazer ışığına bakmak tehlikelidir. Ancak bir dağıtıcı bir yansıtıcıdan en az 13 cm uzakta ve 10s den daha kısa bir süre bakılması ve eğer aynı zamanda hiç bir doğrultulmuş ışın kısmı olmaması durumundan ışına bakılabilinir Sınıf 4 Sözkonusu lazer ışını göz için çok tehlikeli ve deri için tehlikelidir. Dağıtkan olarak saçılan ışık da tehlikelidir. Bu tür lazerlerin ışıkları yangın ve patlama nedeni olabilirler.

Lazeler ve Işın yolları için kurallar Lazer bölgelerinin genellik sözkonusu tüm odanın (Laboratuarın) lazer ışınları için işaretlenmeli, lazerlelrin çalışması durumunda laboratuara girişler sınırlandırılmalıdır. Laboratuarda hemen ulaşılabilir yerlerde acil durum anahtarları olmalıdır. Işın yolları genellikle göz hizasında olmamalıdır! (oturma durumu da dikkate alınmalı) Mümkün olduğunca ışın yollar saydam olmayan borularla çevrelenmelidir. Optik araçların yerleştirilmesinde olası yansımalar dikkate alınmalı düşük yeğinlikli lazer ışını ile test ilgili düzenek (deney düzeneği ) test edilmelidir. Dağınık yansımalar dahi bazen yüksek doğrultulu ışınlara sahip olabilir ve 4. sınıf lazerleri durumunda zaralı olabilirler. Optik araçların kullanılmayan kısımları siyahlaştırılmalıdır. Optik araçlar serbest şekilde (tutucusuz ve kapaksız) hiç bir zaman ışın yollarında bırakılmamalıdır. Işın yakalayıcı ve perdelemeler kullanılmalıdır. Ustaca seçimlerle ışın yolu takip edilebilir durumda ve güvenli olacaktır. Yeni çalışmaya başlayanlar tecrübeli çalışanlar tarafından bilgilendirilmelidir. Aynı şekilde misafirle tehlikeler hakkında bilgilendirilmelidir.

Araştırma ş laboratuarlarında dikkat edilmesi gerekenler Herkes kendi bölgesindeki güvenlikten sorumludur. Her eylem öncesinden etkileri hakkında iyice düşünülmelidir! Lazerlerden korunma ve ayar gözlükleri kullanılmalıdır. Ortamın aydınlatılması yapılmalıdır. Laboratuar içinde Yollar serbest bırakılmalı ve çalışma ş yerleri her zaman toplanmış ş bırakılmalıdır. Optik araçlar yerleştirilir veya düzeneklerden kaldırılırken önceseinde lazer ışığı boloke edilmelidir. Eğer birden fazla kişi aynı deney düzeneğinde çalışıyorsa lazer ışını uyarıdan sonra serbest bırakılmalıdır! Eğilme durumunda gözler kapatılmalıdır ve ışık kaynağına bakılmayacak şekilde yüz çevrilmelidir.. Saatler, takılar ve kemer başlıkları yansımlara yansımalara neden olurlar Bakım ve onarım araçları kullanılırken l k dikkat edilmelidir. lidi Onlardan da yansımalar olabilir.

Bir HeNe lazer tüpü ve devre kartinin altinda güç kaynağı ğ Bilim ve Teknik Mayıs 2010

Physics World May 2010

Artist t Hiro Yamagata linked science with art at his Photon 999 exhibition, where multiple l laser systems immersed the viewers in a moving-light show. Physics World May 2010

New kinds of lasers with different wavelengths, ever shorter pulse lengths, ever higher powers, ever narrower spectral widths and ever better stability have all made possible new kinds of experiments William D Phillips is a physicist at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, US. He shared the 1997 Nobel Prize for Physics with Claude Cohen-Tannoudji and Steven Chu for cooling and trapping atoms with laser light Physics World May 2010