İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu



Benzer belgeler
Akımı sınırlamaya yarayan devre elemanlarına direnç denir.

Bir bobinin omik direnci ile endüktif reaktansının birlikte gösterdikleri ortak etkiye empedans denir,

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

ELK101 - ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

TEMEL ELEKTRONĠK DERSĠ

ÜNİTE 3 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

Şekil Sönümün Tesiri

Analog Elektronik. Öğr.Gör. Emre ÖZER

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

ELEKTRONİK DEVRE ELEMANLARI

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

Temel Kavramlar Doðru Akým (DA, DC, Direct Current) Dinamo, akümülâtör, pil, güneþ pili gibi düzenekler tarafýndan

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN.

DENEY 1 DİYOT KARAKTERİSTİKLERİ

DİRENÇLER DĠRENÇLER. 1. Çalışması:

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR )

Alternatif Akım Devreleri

TEMEL ELEKTRONİK. Kondansatör, DC akımı geçirmeyip, AC akımı geçiren devre elemanıdır.

ÜNİTE 5 TEST SORU BANKASI (TEMEL ELEKTRONİK)

ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise...

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları

LEDler (Light Emitting Diodes-Işık Yayan Diyotlar)

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ DEVRE ANALİZİ 1 LAB. DENEY FÖYÜ. DENEY-1: TEMEL BİLGİLER ve KIRCHOFF YASALARI

Geçmiş yıllardaki vize sorularından örnekler

Temel Elektronik. Yarı İletkenli Elektronik Devre Elemanları

DENEY 1: DİYOT KARAKTERİSTİKLERİ

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

6. TRANSİSTÖRÜN İNCELENMESİ

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

<<<< Geri ELEKTRİK AKIMI

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Proje Adı : IŞIĞA DÖNEN KAFA PROJESİ

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulma

DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. DC Motor Hız Kontrolü Proje No: 1

Modern Fiziğin Teknolojideki Uygulamaları

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-2 Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER

Dirençler üzerlerinden geçen akıma zorluk gösteren devre elemanlarıdır. Devre uygulamalarında dirençler, akım sınırlayıcı, gerilim düşürücü, devre

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI

A- TEMEL KAVRAMLAR 1- Elektrik Akımı: 2- Gerilim:

FM VERİCİ YAPIMI VE ÇALIŞMA PRENSİBİNİN ÖĞRENİLMESİ

Doğru Akım Devreleri

T.C. MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

TEMEL ELEKTRONİK VE ÖLÇME -1 DERSİ 1.SINAV ÇALIŞMA NOTU

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

RİZE ÜNİVERSİTESİ MYO Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör

1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. Proje Adı Proje No

Elektriksel devrelerde kullanılan direnç. Tablo 1. Bir direncin kesit görünüşü: Şekil 1

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

EEME 210 ELEKTRONİK LABORATUARI

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

Yarım Dalga Doğrultma

DİRENÇ NEDİR? MELEK SATILMIŞ 190 GAMZE ÖZTEKİN 12

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

EEME210 ELEKTRONİK LABORATUARI

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

YILDIZ TEKNİK ÜNİVERSİTESİ MAKİNE FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ. IŞIĞA DÖNEN KAFA Proje No:2

T.C. ERCĠYES ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MEKATRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ TEMEL ELEKTRĠK DEVRE LABORATUARI

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

Şekil 1: Diyot sembol ve görünüşleri

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır?

DENEY-2 DEVRE KURMA. Şekil 1. DC Güç Kaynağı

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ

Transkript:

Direnç Dirençler elektronik devrelerin vazgeçilmez elemanlarıdır. Yaptıkları iş ise devre içinde kullanılan diğer aktif elemanlara uygun gerilimi temin etmektir. Elektronik devreler sabit bir gerilim ile çalışır ancak devrede kullanılan elemanların hepsi farklı gerilimlere ihtiyaç duyarlar. İşte bu anda dirençler devreye girer. Tüm devre içinde her eleman için farklı gerilimler kullanmak yerine uygun dirençler kullanılarak her elemana gereken gerilim dirençler üzerinde düşürülerek temin edilir. Dirençler yapımında kullanılan malzemeye göre ikiye ayrılır. Karbon dirençler ve Telli dirençler. Yine bu iki tip kendi arasında ikiye ayrılır. Bunlar sabit dirençler ve ayarlı dirençlerdir. Bunun yanında bazı özel dirençler de vardır (Foto direnç, Termistör). Dirençlerin değerleri OHM ile ölçülür ve sembolü de Ω şeklinde gösterilir. Direncin değeri büyüdükce Kiloohm (KΩ) veya Megaohm (MΩ) olarak ölçülmeye başlanır. Bir direncin değerinin ne olduğu üzerine doğrudan yazılabileceği gibi en çok kullanılan yöntem olan renk kodları ile üzerine kodlanabilirde. Doğrudan değeri üzerine yazılmış bir direncin değerini okumak çok kolaydır ancak renk kodları ile kodlanmış bir direnci okumak için renk kodlarının anlamlarını bilmek gerekir. Genellikle dirençler üzerinde 4 veya 5 adet renk bandı bulunur. Bu renkler direnç üzerine kodlanırken renkler direncin bir tarafına daha yakın olarak yerleştirilir. Değer okuması yaparken renk bandının kenara en yakın olanından başlamak gerekir. Aşağıdaki şekiller 4 ve 5 renk ile kodlanmış bir direncin görüntüsünü vermektedir. Dikkat ederseniz renkler sol taraftaki uca daha yakındır ve okumaya bu sol tarafa en yakın renkten başlanmalıdır. 4 renkli dirençlerde 1 nci ve 2 nci bantlar sayıyı 3 ncü bant çarpanı ve 4 ncü bant ise direncin toleransını verir.

5 renkli dirençlerde ise 1, 2 ve 3 ncü bantlar sayıyı 4 ncü bant çarpanı ve 5 nci bant ise toleransı verir. 5 bantlı dirençler genellikle daha hassas değerlere sahip dirençlerdir ve özel devreler için imal edilirler. Aşağıdaki tabloda ise renklerin rakamsal karşılıkları verilmiştir. Dirençlerde tolerans değeri olarak kullanılan renk kodları o direncin hassasiyetini verir. Örneğin tolerans değeri olarak gümüş rengi kullanılmış ise o direnç +/- %10 toleransa sahiptir ve üzerine kodlanan değerin %10 üzeri veya %10 altında olabilir demektir. Tolerans renginden hemen önce gelen renk kodu ise çarpan değerini verir. Bu değer kendisinden önce gelen sayı renk kodlarının çarpılacağı değeri verir. Çarpan renk kodundan önce gelen bütün renk kodları ise sayı değeridir. Bu renklerin karşılık geldiği rakamlar yan yana konur ve çarpan rengi ile çarpılarak direncin değeri bulunur. Örnek : 1.Renk = Kahverengi 2.Renk = Siyah 3.Renk = Kırmızı 4.Renk = Altın Sayı değeri olarak kahverengi 1, Siyah 0 olduğuna göre sayı değeri 10, çarpan rengi olan 3. Renk kırmızı olduğuna göre çarpan değeri 100'dür. Bu durumda direncin değeri 10 x 100 =

1000 Ohm yani 1 Kohm'dur. Tolerans rengi olan 4. Renkde altın rengi olduğuna göre direnç +/- % 5 toleransa sahiptir. Yani değeri 950 ohm olabileceği gibi 1050 ohm'da olabilir. Resimde sırası ile sabit ve ayarlı bir direncin devre çizimlerinde kullanılan şekli görülmektedir. Kondansatör Kondansatörler yapı itibarı ile iki iletken plaka arasına bir yalıtkan maddenin konulması ile oluşan devre elemanlarıdır. Kullanılan yalıtkan maddenin türüne göre (hava, mika, seramik vb.) kondansatör isim alır. Devrelerde genellikle filtre elemanı olarak veya şarj ve deşarj özelliği kullanılır. Alternatif akımları doğru akıma çevirmek için kullanılan hayati elemanlardan biridir. AC akımın pozitif anında şarj olur, AC akımın sıfıra düştüğü ve negatif anında ise üzerindeki yükü kullanarak bu farkı kapatır ve çıkışta diğer devre elemanlarının da (diyot vs.) yardımı ile DC akım elde edilir. Ölçüm birimi Farat'tır ve Mikrofarat (uf), Pikofarat (pf), Nanofarat (nf) gibi alt katları vardır. Genellikle mikrofarat ile gösterilen türleri elektrolitik kondansatör olarak adlandırılır ve artı,eksi kutuplarına sahiptir. Uygun voltajda ve yönde bir gerilim uygulanırsa bu değere şarj olur ve üzerinde tutar. Değeri ne kadar yüksek olursa o kadar uzun süreli bir şarja sahip olur. Pikofarat ve nanofarat değerliler ise genellikle artı-eksi kutupları bulunmaz. Bunlara mercimek kondansatör denilmektedir. Şekil itibarı ile bir mercimeği andırır. Kondansatörlerin değerleri çoğunlukla üzerine doğrudan yazılır. Renk kodu kullanılan kondansatörlerde vardır ancak bu renk kodları dirençlerde olduğu gibi bir standarda sahip değildir. Elektrolitik kondansatörlerde değer açık bir şekilde üzerine yazılır. 100 uf gibi. Ayrıca hangi ucun artı hangi ucun eksi olduğu da açık bir şekilde belirtilir. Bunlarında yanında yine anlaşılır bir şekilde maksimum kaç volt ile çalışabileceği de yazılmaktadır. Mercimek kondansatörlerde ise bazı rakam kodlamaları kullanılır. Üzerinde 104, 472, 223 152 gibi değerler olan kondansatörlerde ilk iki rakam dirençlerde olduğu gibi sayıyı son rakam ise çarpanı verir. Çıkan sonuç pf'dır. 104 = 10 x 10 4 = 100.000 pf = 100nF olarak bulunur. Bazılarında ise 4n7, 3p3, 100n gibi değerler yazılır. Buradaki harfler kondansatörün birimini verir. p = Pikofarat, n = Nanofarat gibi. 100n = 100 nf. Eğer bu harfler rakamların arasına yazılmış ise o zaman bu harf hem birimini hemde ondalık değere sahip olduğunu gösterir. 8n2 = 8.2 nf gibi.

Bir diğer kodlama türüde.47,.068,.0056 gibi kodlamalardır. Burada sayıların baş tarafında bulunan nokta (.) işareti ondalık değer taşır ve gerçekte.47 = 0.47 anlamındadır. Çıkan değer uf'dır..0056 = 0.0056 mf = 5.6 nf olarak okunur. Kondansatörlerde de aynen dirençlerde olduğu gibi seri ve paralel bağlantı durumu vardır. Ancak burada hesaplamalar dirençlere göre tam ters olarak yapılır. Yani seri bağlı kondansatörler paralel bağlı dirençleri gibi hesaplanırken, paralel bağlı kondansatörler seri bağlı dirençler gibi hesaplanır. Paralel bağlı kondansatörlerde sonuç tüm kondansatörlerin değerlerinin toplanması ile bulunur. Yandaki resimde artı-eksi yön farkı bulunmayan bir kondasatör ile artı ve eksi yönlere sahip bir elektrolitik kondansatörün devre çizimlerinde kullanılan sembolleri görülmektedir. Diod Diod'lar bir yönde akım geçiren diğer yönde akımı geçirmeyen devre elemanlarıdır. Anot ve Katot uçlarına sahiptir. Her zaman Anoduna artı (+), Katoduna eksi (-) gerilim verildiğinde iletime geçer, tersi durumda yalıtkandır. Bu özelliğinden dolayı AC gerilimi DC gerilime çevirmek için kondansatörler ile beraber kullanılan bir elemandır. Diod'ların yapı malzemeleri Germanyum veya Silisyumdur. Silisyum diod'lar doğru yönde bağlandığı taktirde 0.6 volt civarında iletime geçerler geriye kalan gerilimi doğrudan üzerinden geçirir. Germanyum diod'lar ise 0.3-0.3 volt civarında iletime geçer. Ac gerilimi DC gerilime çevirmek için silisyum diod kullanılır. Ayrıca voltaj ayarlamalarında kullanılan zener diod'lar vardır ki bu diod'lar sabit bir voltaj değerinden fazlasını üzerinden geçirmez. Bu şekilde sabit ve kararlı bir gerilime ihtiyaç duyan cihazlara gerekli gerilimi vermek amacıyla zener diod'lar ile regüle devreleri yapılır. Diod'ların değerleri doğrudan üzerlerine yazılır. Zener diod'larda sabit voltaj değeri yazılırken diğer diod'larda diod'un modeli yazılır. Mesela bir zener diod üzerinde 2v7 yazıyorsa bu 2.7V bir zener diod anlamına gelir. Diğer diod'larda ise 1N4001, 1N4148 gibi diod'un modeli yazılır. Genellikle katot ucuna yakın tarafa bir çizgi konularak anot katot uçlarının kolay bulunması sağlanır. Yandaki resimde sırası ile normal bir diod ve zener diodun devre şemalarında kullanılan sembolü görülmektedir. Her iki diodunda sağ tarafta kalan uçları katot uçlarıdır.

Sağlamlık Kontrolü : Diod'lar iki amaçla ölçülür birincisi diodun sağlam olup olmadığını anlamak için ikincisi ise uçları belli olmayan diodun anot ve katot uçlarını tespit etmek için. Ölçü aletinin ohm metre konumunda kırmızı uç diodun bir ucuna siyah uç diğer ucuna bağlanır. Bu durumda eğer ohm metre düşük direnç gösteriyorsa ölçü aletinin uçları ters çevirilerek bağlandığında yüksek direnç göstermelidir. Eğer bu şekilde bir ölçüm yaptıysanız diod sağlamdır ve düşük direnç okunan durumda kırmızı ucun bağlı olduğu yer diodun anot ucudur. Eğer her iki durumda da düşük direnç veya yüksek direnç okunuyorsa diod arızalıdır. LED Led'ler (Light Emiting Diode) yani ışık yayan diyotlar yapı itibari ile elektrik enerjisini ışığa çeviren kimyasal maddelerden oluşurlar. Kullanılan kimyasal maddedin türüne göre farklı renkte ışık verirler. Örneğin galyum fosfid kullanılan LED'ler yeşil ışık verir. Galyum fosfid'e oksijen ve çinko karıştırılarak yapılan LED'ler kırmızı ışık verir. Bunun yanında Galyum arsenid kullanılarak yapılan led'ler ise kızıl ötesi ışık verirler. Led'lerin çalışma voltajları içinde kullanılan maddeye göre değişiklik gösterir. Kızıl ötesi ışık veren bir led'in çalışma voltajı 1.4V iken yeşil ışık veren led'in çalışma voltajı 2.26V'dur. Led'lerin bu çalışma gerilimi aşıldığında içindeki kimyasal maddenin gireceği reaksiyondan dolayı led bozulur. Bu yüzden çalışma gerilimini aşan bir voltaj uygulanacağı zaman uygun bir direnç ile led korunmalıdır. Led'ler genellikle endüstriyel ve amatör elektronik alanında ikaz ve görsel efektler amacıyla kullanılır. Ayrıca led'ler hem DC hemde AC gerilim ile çalışabilir. Alttaki resimde LED'in devre çizimlerinde kullanılan sembolü görünmektedir. Sağlamlık Kontrolü : Ohm metrenin içindeki pil kullanılarak led'lerin sağlamlık kontrolü yapılabilir. Genellikle yeni bir led'de uzun bacak anot (+), kısa bacak katot (-) ucudur. Ohm metrenin kırmızı ucu katoda, siyah ucu anoda bağlandığında led'in ışık vermesi gerekir.

Infra LED Yapı itibariyle tamamen normal led'ler gibidir ancak tek farkı yaydığı ışığın insan gözüyle görülemeyecek bir frekans bandında olmasıdır. Yaklaşık 1.5V ile çalışır ve genellikle Foto transistörlerin ışık kaynağı olarak kullanılır. Sağlamlık Kontrolü : İnsan gözünün göremeyeceği bir ışık yaydığı için ohm metre ile Led'lerde olduğu gibi görsel bir ölçüm yapılamaz. Bunun yerine normal diyotlar gibi ölçülür. Ölçüm uçlarının bir yönünde açık devre diğer yönünde ise düşük direnç göstermelidir. Bobin Endüktans: Endüktans, akım değişimine karşı koyma özelliğine denir. Her iletkenin bir endüktansı olduğundan bütün devrelerde az veya çok endüktif etki görülür. Fakat genel anlamda endüktans olayı bobinler için düşünülür. Bobinin endüktansı diğer bazı faktörlerle birlikte sarım sayısının karesiyle doğru orantılı olarak artar. Nüve(çekirdek) olarak manyetik ve manyetik olmayan malzemeler kullanılır. Nüvenin büyüklügü ve sarım sayısı bobinin endüktansını etkiler. Bobin etrafındaki manyetik alanın sürekli artıp azalması bobinin endüktansı ile ilgilidir. Uygulanan gerilim genlik ve yönünün değişimi ile oluşan manyetik alan, bobin üzerinde bir gerilim indükler. Bu gerilim zıt E.M.K. adını alır ve uygulanan gerilime ters yöndedir. Endüktif etki; manyetik alanın, uygulanan gerilimin yön ve genliğinin değişken olması sebebiyle görülür. Bu etkinin görülmesi için bobine AC gerilim uygulanması gerekir. DC gerilimin yön ve genliği değimeyeceğinden bobinde endüktif etki görülmez. Endüktans birimi HENRY'dir. 1 Henry; bir bobinde 1 saniyede 1 amperlik akım değişimi 1 voltluk zıt E.M.K. indüklüyorsa o bobinin endüktansı 1 HENRY'dir. Henri büyük bir değer olduğundan askatları olan milihenry ve mikrohenry kullanılır. Bobin elektrik ve elektronik devrelerde geniş olarak kullanılır. Bobinler sabit ve değişken olarak yapılırlar. Şok filtresi, empedans elemanı, kuplaj elemanı olarak elektronikte ayrıca rezonans devrelerinde ayar elemanı, faz kaydırma elemanı olarak kullanılır. Yaptığımız açıklamaları özetleyecek olursak; 1. Bobin, elektrik akımındaki ani değişimlere karşı koyma özelliğine sahiptir. 2. Bobin DC' de çalışırken sadece omik direnç gösterir ve bobinlerin omik dirençleri çok düşüktür. 3. Bobinler elektrik enerjisini manyetik alan şeklinde depolarlar.

Transistör Transistörler PNP ve NPN olmak üzere iki çeşittir. Emiter, Kollektör ve Beyz olmak üzere 3 adet bağlantı ucu vardır. En çok kullanılan yarı iletken devre elemanıdır ve devrelerde bir anahtar görevi görür. PNP transistörlerde kollektör eksi (-), Emiter artı (+) ve beyz ucuda emitere göre eksi (-), kollektöre göre artı (+) polarize alır. NPN tipinde ise durum tam tersidir. Transistörler birbirlerini tetikleyecek şekilde bağlandığında akım kazancı elde edebilen devre elemanlarıdır. Yukarıdaki şekiller PNP ve NPN tipi transistörlerin devre şemalarında kullanılan sembollerini göstermektedir. OpAmp (İşlemsel Kuvvetlendirici) Genel olarak op-amp,çok yüksek kazançlı bir DC yükselteçtir.çeşitli özellikleri,devreye dışardan bağlanan devre elemanları ve bunların sağladığı geri besleme ile,kontrol altına alınabilir. Op-amp devresi tek başına düşünüldüğünde, 5 önemli özelliğe sahiptir.bunlar: 1. Kazancı çok fazladır. 2. Giriş empedansı(direnci) çok yüksektir.(5mω) 3. Çıkış empedansı sıfıra yakındır. 4. Band genişliği fazladır.(1mhz) 5. Girişe 0v uygulandığında çıkışta yaklaşık 0v elde edilir.