Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları

Benzer belgeler
İNŞ 343 MÜHENDİSLİK HİDROLOJİSİ 2.1.YAĞIŞIN MEYDANA GELMESİ İÇİN GEREKLİ ŞARTLAR 2.2. YAĞIŞ TİPLERİ

3/16/2017. Yağış. Yağış

BÖLÜM 1 GİRİŞ İNŞ 343 MÜHENDİSLİK HİDROLOJİSİ

HİDROLOJİ. Yağış. Yrd. Doç. Dr. Mehmet B. Ercan. İnönü Üniversitesi İnşaat Mühendisliği Bölümü

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları

HİDROLOJİ DERS NOTLARI

3/16/2017 UYGULAMALAR YAĞIŞ

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları Hidroloji Ders Notları

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları Hidroloji Ders Notları

Fatih TOSUNOĞLU Hidroloji Hidroloji Ders Notları Hidrolojik Analiz ve Tasarım Ders Notları Hidroloji Ders Notları

SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU

HİDROJEOLOJİ. Hidrolojik Çevrim Bileşenleri Buharlaşma-Yağış. 2.Hafta. Prof.Dr.N.Nur ÖZYURT

Meteoroloji. IX. Hafta: Buharlaşma

HİDROLOJİ. Buharlaşma. Yr. Doç. Dr. Mehmet B. Ercan. İnönü Üniversitesi İnşaat Mühendisliği Bölümü

HİDROLOJİ DERS NOTLARI

Hidroloji Disiplinlerarası Bir Bilimdir

2016 Yılı Buharlaşma Değerlendirmesi

508 HİDROLOJİ ÖDEV #1

HİDROLOJİ Doç.Dr.Emrah DOĞAN

HİDROLOJİK DÖNGÜ (Su Döngüsü)

YAGIŞ-AKIŞ SÜREÇLERİ

Tablo 4.2 Saat Yağış yüksekliği (mm)

HİDROLOJİ DERS NOTLARI

Bahar. Hidroloji. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü.

Yüzeysel Akış. Havza Özelliklerinin Yüzeysel Akış Üzerindeki Etkileri

METEOROLOJİ. III. Hafta: Sıcaklık

SU HALDEN HALE GİRER. Nazife ALTIN. Fen ve Teknoloji

Havacılık Meteorolojisi Ders Notları. 7. Yağış

Hidrograf. Hiyetograf. Havza. Hidrograf. Havza Çıkışı. Debi (m³/s) Zaman (saat)

METEOROLOJİ. VI. Hafta: Nem

Akışkanların Dinamiği

BUHARLAŞMA. Atmosferden yeryüzüne düşen yağışın önemli bir kısmı tutma, buharlaşma ve terleme yoluyla, akış haline geçmeden atmosfere geri döner.

B A S I N Ç ve RÜZGARLAR

SIZMA SIZMA. Yağışın bir kısmının yerçekimi, Kapiler ve moleküler gerilmeler etkisi ile zemine süzülmesi sızma (infiltrasyon) olarak adlandırılır

BÖLÜM 3 BUHARLAŞMA. Bu kayıpların belirlenmesi özellikle kurak mevsimlerde hidrolojik bakımdan büyük önem taşır.

METEOROLOJİ SICAKLIK. Havacılık Meteorolojisi Şube Müdürlüğü. İbrahim ÇAMALAN Meteoroloji Mühendisi

TÜRKİYE NİN İKLİMİ. Türkiye nin İklimini Etkileyen Faktörler :

Akışkanların Dinamiği

Yandaki SOS oyununda toplam 100 tane kutu vardır. Bu oyunda en fazla 100 tane harf kullanabiliriz. MAKSİMUM NEM

Akarsular hidrolojik çevrimin en önemli elemanlarıdır. Su yapılarının projelendirilmesi ve işletilmesinde su miktarının bilinmesi gerekir.

BÖLÜM-1 HİDROLOJİNİN TANIMI VE ÖNEMİ

METEOROLOJİ. IV. HAFTA: Hava basıncı

- Su hayatsal olaylar - Çözücü - Taşıyıcı - ph tamponlaması - Fotosentez - Mineral madde alınımı - YAĞIŞLAR

MADDENİN HALLERİ VE ISI ALIŞ-VERİŞİ

MADDENİN DEĞİŞİMİ VE TANINMASI

Ağır Ama Hissedemediğimiz Yük: Basınç

TAŞKIN TEHLİKESİNİN BELİRLENMESİ AMACI İLE OTOMATİK YAĞIŞ MİKTARI ÖLÇÜM SİSTEMİNİN GELİŞTİRİLMESİ DEVELOPMENT OF AN AUTOMATIC SYSTEM

Yüzeysel Akış Oluşumu Etki Eden Faktörler 1. Havzanın Fiziksel Özellikleri Zemin cinsi ve jeolojik yap İklim Bitki örtüsü


BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

JAA ATPL Eğitimi (METEOROLOJİ)

5.SINIF FEN VE TEKNOLOJİ KİMYA KONULARI MADDENİN DEĞİŞMESİ VE TANINMASI

UYGULAMALAR BUHARLAŞMA ve TERLEME

Bahar. Su Yapıları II Hava Payı. Yrd. Doç. Dr. Burhan ÜNAL. Yrd. Doç. Dr. Burhan ÜNAL Bozok Üniversitesi n aat Mühendisli i Bölümü 1

İklim---S I C A K L I K

1 SU HALDEN HALE GİRER

PERKOLASYON İNFİLTRASYON YÜZEYSEL VE YÜZETALTI AKIŞ GEÇİRGENLİK

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

MADDENİN AYIRT EDİCİ ÖZELLİKLERİ. Nazife ALTIN Bayburt Üniversitesi, Eğitim Fakültesi

c harfi ile gösterilir. Birimi J/g C dir. 1 g suyun sıcaklığını 1 C arttırmak için 4,18J ısı vermek gerekir

SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

YAĞIŞ. Yağış oluşumu Yağış ölçümü Yağış analizleri. Hyetograph Alansal ortalama yağış hesabı

EK-3 NEWMONT-OVACIK ALTIN MADENİ PROJESİ KEMİCE (DÖNEK) DERESİ ÇEVİRME KANALI İÇİN TAŞKIN PİKİ HESAPLAMALARI

ATIK SULARIN TERFİSİ VE TERFİ MERKEZİ

NEMLİLİK VE YAĞIŞ Su Döngüsü: döngüsü NEMLİLİK nem

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

Örnek 4.1: Tablo 2 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.

ATMOSFERDEKİ YAĞIŞA GEÇERİLİR SURUHARI MİKTARININ HESAPLANMASI

MEVSİMLERİN OLUŞUMU. Halil KOZANHAN EKSEN EĞİKLİĞİ DÜNYA NIN KENDİ EKSENİ ETRAFINDAKİ HAREKETİYLE GECE-GÜNDÜZ,

ERİME DONMA KAYNAMA YOĞUNLAŞMA SÜBLİNLEŞME

Meteoroloji. XII. Hafta: Rasat Parkı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

Havacılık Meteorolojisi Ders Notları. 3. Atmosferin tabakaları

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ

Zeus tarafından yazıldı. Cumartesi, 09 Ekim :27 - Son Güncelleme Cumartesi, 09 Ekim :53

AKM 205 BÖLÜM 8 - UYGULAMA SORU VE ÇÖZÜMLERİ

İKLİM ELEMANLARI SICAKLIK

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

Hidroloji Uygulaması-7

HİDROLOJİ DERS NOTLARI

MADDENİN ISI ETKİSİ İLE DEĞİŞİMİ

Maddeye dışarıdan ısı verilir yada alınırsa maddenin sıcaklığı değişir. Dışarıdan ısı alan maddenin Kinetik Enerjisi dolayısıyla taneciklerinin

Su, yaşam kaynağıdır. Bütün canlıların ağırlıklarının önemli bir kısmını su oluşturur.yeryüzündeki su miktarının yaklaşık % 5 i tatlı sulardır.

Havacılık Meteorolojisi Ders Notları. 11. Buzlanma

TEMEL HARİTACILIK BİLGİLERİ. Erkan GÜLER Haziran 2018

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

Maddenin Isı Etkisi İle Değişimi a)isınma-soğuma

TEMEL ELEKTROT SİSTEMLERİ Silindirsel Elektrot Sistemi

ISI VE SICAKLIK. 1 cal = 4,18 j

HİDROLOJİ. Yağışın gerçekleşmesi için hava doygun olmalıdır, ama eğer hava saf ise % 100 doygunluk bile yağışı doğuramaz

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

EŞANJÖR (ISI DEĞİŞTİRİCİSİ) DENEYİ FÖYÜ

1 - S u H a l d e n H a l e G i r e r Doğada su halden hale girer.yeryüzündeki sular birçok hava olayı ile yeryüzüne geri döner.

BİTKİ SU TÜKETİMİ 1. Bitkinin Su İhtiyacı

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

4.SINIF KİMYA KONULARI

Transkript:

Fatih TOSUNOĞLU Hidroloji, Prof. Dr. Mehmetcik Bayazıt, Birsen Yayınevi, İstanbul Hidroloji Ders Notları, Prof. Dr. Ercan Kahya,İTÜ, Mühendislik Fakültesi, İnşaat Müh. Böl. Hidrolojik Analiz ve Tasarım Ders Notları, Prof. Dr. Recep Yurtal, Çukurava Üniv. Mühendislik Fakültesi, İnşaat Müh. Böl.

BÖLÜM 1 HİDROLOJİYE GİRİŞ

1.1. Hidrolojinin Tanımı

1.2. Hidrolojinin İnşaat Mühendisliğindeki Yeri ve Önemi

1.3. Hidrolojinin Metotları

1.4. Hidrolojik Çevrim

Şekil 1.1. Hidrolojik Çevrim ENERGY: Güneş & Yerçekimi

Şekil 1.2. Hidrolojik Çevrim

1.5. Hidrolojinin Temel Denklemleri Fiziğin iki temel kanunu olan kütlenin korunumu ve enerjinin korunumu eşitlikleri hidrolojinin temel denklemlerini oluşturur.

1.5.1. Kütlenin Korunumu: Kütlenin korunumu ilkesi: Hidrolojik çevrimin herhangi bir parçasında su miktarının korunduğunu gösteren süreklilik denklemine götürür (su dengesi, su bütçesi). Bu denklemde, X: göz önüne alınan hidrolojik sisteme birim zamanda giren su miktarı, Y: birim zamanda sistemden çıkan su miktarı, S: sistemde birikmiş su miktarıdır. Bu denklem herhangi sonlu bir Δt zaman aralığındaki değerler (X,Y) göz önüne alınarak da yazılabilir: (1)

Şekil 1.3. Süreklilik denkleminin hidrolojik çevrimin bir parçasına uygulanması

1.5.2. Enerjinin Korunumu:

1.6. Yerküresinin Su Dengesi

1.6. Yerkürenin Isı Dengesi Güneş ısısı: sabit & ort. dakikada 2 kal/cm2. Örnek olarak, 40. enlemde bir günde kışın 326 kal/cm2 & yazın 1021 kal/cm2 düşer! Güneş enerjisi: %33 atm yansıtır + %22 hava ve su molekülleri tutar kalan %45 yeryüzüne ulaşır. Yerkürenin ort. Sıcaklığı: 15 C

SORU 1:

SORU 2:

SORU 3:

BÖLÜM 2 YAĞIŞ

YAĞIŞ Atmosferden katı yada sıvı halde yeryüzüne düşen sulara yağış denilir. Sıvı haldeki yağış yağmur şeklindedir, katı haldeki yağış ise kar, dolu, çiğ, kırağı şekillerinde olabilir. Yağışın Meydana Gelmesi İçin Gerekli Şartlar: 1) Atmosferde yeterince su buharı bulunmalıdır. 2) Hava kütlesi soğumalıdır. Hava soğuyunca, su buharı taşıma kapasitesi de azalır. Belirli bir sıcaklıktan sonra da su buharı sıvı haline gelir. 3) Yoğunlaşma olmalıdır. Yoğunlaşma olayı, "yoğunlaşma çekirdeği" adı verilen çok küçük tozlar üzerinde gerçekleşir. 4) Yeryüzüne düşebilecek irilikte (yaklaşık 1 mm) damlalar oluşmalıdır. Bu ya üzerinde su buharının yoğunlaşa bileceği buz kristallerinin varlığıyla ya da küçük damlacıkların çarpışarak birleşmesi sonunda olabilir.

Yağış Tipleri Nasıl Tanımlanır: 1. Konvektif yağış: Yeryüzüne yakın hava fazla ısınırsa yükselir. Bu özellikle etrafı dağlarla çevrili bölgelerde yaz aylarında görülür. Yağış yerel, kısa süreli ve şiddetlidir. İç Anadolu da yaz akşamlarında görülen sağanakların nedeni budur. 2. Orografik Yağış: Nemli bir hava kütlesi bir dağ dizisini aşmak için yükselirken soğur ve orografik yağışa yol açar. Ülkemizde denize paralel dağ sıralarının (Kuzey Anadolu dağları,toroslar) denize bakan yamaçlarında denizlerden gelen nemli ve sıcak hava kütleleri bu şekilde yağış bırakır. Orografik yağış alan bölgelerde arazini kotu ile yağış yüksekliği arasında bir ilişki vardır.

3. Depresyonik (Siklonik) Yağışlar: Bir sıcak hava kütlesi ile bir soğuk hava kütlesinin düşey bir cephe boyunca karşılaşmaları halinde; sıcak hava yukarıya, soğuk havada aşağıya doğru hareket eder. Böylece sıcak havanın yukarıda soğuması ile oluşan depresyonik (siklonik, cephe) yağışlar, orta şiddette ve uzun süreli olup oldukça geniş alanlarda etkili olabilirler. Yurdumuzda meydana gelen yağışların çoğu bu şekildedir. Not: Soğuk cephe daha şiddetli ve etkilidir.

Yağışın Ölçülmesi Yatay bir yüzeye düşen ve düştüğü yerde kalarak biriktiği kabul edilen su sütununa "yağış yüksekliği" adı verilir ve genellikle mm cinsinden ifade edilir (1mm = 1 kg/m2). Yağmurun Ölçülmesi a. Yazıcı Olmayan Ölçekler (Plüviyometre): - Düşey kenarlı bir kap - En çok kullanılan plüviyometre tipi, 20 cm çaplı bir silindir şeklindedir. Okuma hassasiyetini artırmak için, bu silindirden daha küçük ikinci bir silindir iç kısma yerleştirilmiştir. - Plüviyometreler, yalnızca belirli bir zaman aralığındaki toplam yağış yüksekliğini verirler, yağış yüksekliğinin zamanla değişimini kaydedemezler.

b. Yazıcı Ölçekler (Plüviyograf): Bunlar, yağış yüksekliğinin zamanla değişimini kaydederler. 1. Tartılı plüviyograflar: Yağmur, alt tarafına yay monte edilmiş bir kovada toplanır; yağmur yağdıkça kova ağırlaşarak aşağı doğru hareket edip dönen bir kâğıt şerit üzerindeki yazıcı ucu hareket ettirir ve böylece yağış yüksekliğinin zamanla değişimi kaydedilir. - Bu sistemle, oldukça hassas ve doğru ölçümler yapılabilir. - Türkiye'de en yaygın olarak kullanılan plüviyograf tipidir. 2. Devrilen kovalı plüviyograflar: Giriş kabına yağan yağmur küçük bir kovada toplanır. Kova dolunca devrilir ve her devrilme ile yazıcı bir uç kâğıt şerit üzerinde hareket eder. Bir kovacık devrilince yerine bir diğeri geçerek dönel şerit üzerinde basamaklı çizgiler elde edilir. - Hassasiyeti daha azdır. 3. Şamandıralı plüviyograflar: Kaptaki su seviyesinin yükselmesi ile su yüzeyinde bulunan bir şamandıra (yüzgeç), yazıcı bir ucu hareket ettirerek kâğıt şerit üzerinde yazı yazmasını sağlar.

Çeşitli plüviyograf tipleri Ayrıca, radarlar yardımıyla da yağmur ölçümleri yapılmaktadır.

Karın Ölçülmesi Yağmur ölçekleri kullanılır. - Karın donmasını önlemek için ölçüm aletine kalsiyum klorür veya etilen glikol gibi antifriz maddeler konur. - Karın erimesiyle oluşacak akış miktarını hesaplamak için karın su eşdeğerinden yararlanılır. Karın su eşdeğeri: Kar eridiğinde oluşacak su miktarının su yüksekliği cinsinden değeridir. - Karın yoğunluğu ile kar yüksekliğinin çarpımına eşittir. - Yeni yağmış karın yoğunluğu 0.1, eski (sıkışmış) karın yoğunluğu ise 0.3-0.6 arasındadır.

Ölçüm Hataları a. Rüzgâr tesiri: Rüzgâr nedeniyle, yağışın bir kısmının ölçeğe girmesi engellenir. Bunu önlemek için, yağış ölçeği rüzgâr etkisinden uzak bir yere konur; ayrıca rüzgâr perdeleri de kullanılabilir. b. Ölçeğin etrafındaki engeller: Yağış ölçeğinin etrafındaki ağaç, bina gibi yüksek engeller, doğru ölçüm yapılmasına mani olur. - Tedbir olarak, ölçeklerin, engel yüksekliğinin en az iki katı uzağına yerleştirilmesi gerekir. c. Ölçek kabında buharlaşma: Tedbir olarak, su yüzeyinde ince bir yağ tabakası teşkil edilir. d. Civardan sıçrayan damlalar: Ölçek, yerden en az 1 m yükseğe yerleştirilmelidir.

Yağış Ölçekleri Ağı Yağışın yerel dağılımının öğrenilebilmesi için bir ölçüm ağının kurulması gerekir. Özellikle dağlık bölgelerde yağış miktarı ve şiddeti hızla değiştiğinden, bu yerlerde oldukça sık bir ölçüm ağı kurulmalıdır. Dünya Meteoroloji Teşkilatı, (WMO), optimum ölçek sıklığı olarak, - düz bölgelerde 600-900 km2 de, - dağlık bölgelerde ise 100-250 km2 de bir ve ayrıca en çok 500 m kot farkıyla ölçek yerleştirilmesini tavsiye etmektedir. Türkiye'de ölçümler DMİ ve DSİ tarafından yapılmaktadır.

Yağış Verilerinin Analizi Tanımlar a. Yağış süresi (t): Bir yağışın başlama anı ile sona erişi arasında geçen süredir. b. Toplam yağış eğrisi: Yağış kayıtları düzenlenerek, toplam yağış (P) ordinatta, zaman (t) apsiste olmak üzere toplam yağışın zamanla değişimini veren grafiğe "toplam yağış eğrisi" denir. - Yağışın zaman içerisindeki değişimini, artışını, azalmasını durmasını gösteren diyagramdır.

c. Yağış şiddeti (i): Birim zamanda düşen yağış yüksekliğine "yağış şiddeti" denir. Birimi [mm/saat], [cm/saat]. - Hafif yağışlarda 1 mm/saat, i = dp / dt ΔP / Δt şiddetli yağışlarda 10-20 mm/saat olabilir. d. Hiyetograf: Yağış şiddetinin zamanla değişimini gösteren grafiğe "hiyetograf" denir. Yağış şiddeti (i) ordinatta, zaman (t) apsiste gösterilir. e. Yağış frekansı: Belirli bir şiddetteki bir yağışın belli bir zaman süresi içinde (1 yıl, 10 yıl, 50 yıl vb.) oluşma sayısına "yağış frekansı" adı verilir.

Verilerin Homojen Hale Getirilmesi Bir yağış ölçeğinin yer veya konumunda, ölçme yönteminde veya çevre şartlarında yapılan değişiklikler sonucu, bir istasyonda ölçülen eski ve yeni yağış değerleri arasındaki homojenlik bozulmuş olabilir. Homojenliğin bozulup bozulmadığını belirlemek ve bozulmuşsa homojenliğini sağlamak için "çift toplama yağış yöntemi" kullanılır. - Yıllık yağış ort. kullanılarak kümülatif (eklenik) grafik çizilir ve eğimde kırıklık aranır... Bu verileri homojenleştirmek için, o yıldan önceki veriler, kırıklığın olduğu noktadan önceki doğrunun eğiminin (m1) kırıklıktan sonraki doğrunun eğimine (m2) oranı (m1/m2) ile çarpılır (Şekil 2.8). Bu yöntem, yalnızca yağışlar için değil, her türlü hidrolojik veriler için de kullanılabilir.

Y X 2 X 1 S 2 Y 2 S 1 Y 1 X

KAYITLARIN HOMOJEN HALE GETİRİLMESİ (CASE 1) Y S 2 S 2 S y 2 1 Y1 S1 Y' 1 S 1 Y 1 X

KAYITLARIN HOMOJEN HALE GETİRİLMESİ (CASE 2) Y Y 2 S 2 S 1 y S 1 2 Y2 S2 S 1 X

ÖRNEK: TOPLAM KÜMÜLATİF Yıl A B C D A+B+C A+B+C D 1979 55 66 58 71 179 179 71 1980 53 66 63 83 182 361 154 1981 68 78 71 96 217 578 250 1982 63 73 73 78 209 787 328 1983 48 55 58 60 161 948 388 1984 60 63 66 71 189 1137 459 1985 43 48 50 55 141 1278 514 1986 53 55 58 66 166 1444 580

700 600 1986 Kümülatif D (cm) 500 400 300 200 1980 1981 1982 1983 1984 1985 100 1979 0 0 500 1000 1500 Kümülatif (A+B+C) (cm)

0.881 x 71 = 62 TOPLAM KÜMÜLATİF Yıl A B C D A+B+C A+B+C D d i 1979 55 66 58 71 179 179 71 62 1980 53 66 63 83 182 361 154 73 1981 68 78 71 96 217 578 250 84 1982 63 73 73 78 209 787 328 78 1983 48 55 58 60 161 948 388 60 1984 60 63 66 71 189 1137 459 71 1985 43 48 50 55 141 1278 514 55 1986 53 55 58 66 166 1444 580 66 250 0 580 250 S1 0.4325 S2 0. 3811 578 0 1444 578 d 0,3811 0,4325 1 D1 0. 881 D 1

EKSİK VERİLERİN TAMAMLANMASI Bir ölçekteki eksik veriler civarda bulunan diğer ölçeklerin kayıtlarından yararlanılarak tamamlanabilir: En yakın üç ölçeğe ait yıllık ortalama yağışlar; N 1, N 2, N 3 olsun Eksik verilere karşılık gelen diğer istasyonlardaki yağışlar da P 1, P 2, ve P 3 olsun. Eksik veriye sahip ölçeğin yıllık ortalama yağışı da N x olsun. P x 1 N x N x N x P1 P2 P3 3 N1 N2 N3

ÖRNEK: Bir havzada 18 saat süreyle devam eden bir fırtına için X ölçeğine ait yağış yüksekliği bilinmemektedir. Bu fırtına sırasında X ölçeğine en yakın olan A, B, C ölçeklerinde ölçülen yağışlar: P A = 7.1 cm, P B = 8.9 cm, P C = 12.2 cm X, A, B, C ölçeklerine ait yıllık yağış ortalamaları ise; N X = 60.5 cm, N A = 47.3 cm, N B = 78.3 cm ve N C = 98.4 cm dir. X ölçeğinde eksik olan yağış yüksekliğini hesaplayınız.

Çözüm P x 1 N x N x N x P1 P2 P3 3 N1 N2 N3 1 60.5 60.5 60.5 P x 7.1 8.9 12.2 8. 0 3 47.3 78.3 98.4 cm

Ortalama Yağış Yüksekliğinin Hesabı Bir bölgedeki çeşitli noktalarda yağış gözlemleri yapılmışsa, o bölgenin ortalama yağış yüksekliği çeşitli yöntemlerle hesaplanabilir. Burada en çok uygulanan üç yöntem açıklanacaktır. Bir bölgenin ortalama yağış yüksekliği şöyle tanımlanır: Burada: Pi her istasyonun yağış değeri, Ai istasyonun temsil ettiği alan, A toplam alandır.

a. Aritmetik Ortalama Yöntemi: - Bu yöntemde, bölge içindeki tüm istasyonların değerlerinin ortalaması alınarak bölgenin ortalama yağış yüksekliği bulunur. - Çok basit olan bu yöntem, dağlık bölgelerde ve şiddetli yağışlar sırasında uygulanamaz. Çünkü bu durumlarda yağış şiddeti çok kısa mesafelerde hızla değişebilir. - Yağış ölçeklerinin oldukça üniform olduğu 500 km2 den küçük bölgelerde bu yöntem uygulanabilir.

b. Thiessen Yöntemi: - Bölgedeki yağış istasyonlarının dağılımı üniform değilse bu yöntem, uygulanır. - Bölge içinde olmayan yakındaki yağış istasyonlarının verileri de kullanılabilir. - Birbirine yakın istasyonlar doğru parçalarıyla birleştirilir; bu doğru parçalarından orta dikmeler çıkılarak her bir istasyona ait bir çokgen (Thiessen Çokgeni) teşkil edilir. - Her bir çokgenin sınırladığı alanın o istasyonla temsil edildiği varsayılarak ve Por eşitliği yardımıyla ortalama yağış yüksekliği hesaplanır.

P = 6,80 cm P = 6,00 cm P = 4,10 cm P = 5,00 cm P = 2,60 cm P =4,00 cm P = 3,40 cm

P = 6,80 cm P = 6,00 cm P = 4,10 cm P = 5,00 cm P = 2,60 cm P =4,00 cm P = 3,40 cm

P = 6,80 cm P = 6,00 cm P = 4,10 cm P = 5,00 cm P = 2,60 cm P =4,00 cm P = 3,40 cm

P = 6,80 cm A = 50 km² P = 4,10 cm A = 30 km² P = 6,00 cm A = 80 km² A = 60 km² A = 110 km² P = 5,00 cm A = 50 km² P =4,00 cm A = 55 km² P = 2,60 cm P = 3,40 cm

Thiessen Yöntemi 50/435*100 4,10 * 0.115 İstasyonda ölçülen Yağış (cm) Alan Alan Yüzdesi Ağırlıklı Ortalama Yağış (km²) (%) (cm) 4,10 50 11,5 0,47 4,00 60 13,8 0,55 3,40 55 12,6 0,43 2,60 50 11,5 0,30 6,00 80 18,4 1,10 6,80 30 6,9 0,47 5,00 110 25,3 1,27 435 100 4,59

c. İzohiyet Yöntemi: - Bu yöntem, özellikle dağlık bölgelerde iyi sonuçlar verir. - Yağış yüksekliği aynı olan noktaları birleştiren izohiyetler (eş yağış yüksekliği eğrileri) çizilir. - İki ardışık izohiyet arasındaki alanda yağış yüksekliğinin, izohiyetlerin değerlerinin ortalamasına eşit olduğu varsayılarak ortalama yağış yüksekliği Por eşitliğiyle bulunur.

P = 3,80 cm 4 cm P = 5,00 cm 5 cm P = 4,00 cm P = 6,50 cm 4 cm P =5,20 cm 8 cm P = 7,10 cm 6 cm 5 cm 6 cm 7 cm P = 6,90 cm 7 cm

4 cm 5 cm 4 cm 8 cm 6 cm 5 cm 6 cm 7 cm 7 cm

4 cm A = 10 km² A = 80 km² A = 90 km² 5 cm 70 km² A = 50 km² A = 20 km² 4 cm 8 cm 6 cm 5 cm 6 cm 7 cm 7 cm

30/435 * 100 (4,00 + 5,00) / 2 İstasyonda ölçülen Yağış (cm) Alan (km²) Alan Yüzdesi (%) Ortalama yağış (cm) Ağırlıklı Ortalama Yağış (cm) < 4,00 30 6,9 3,80 0,26 4,00 5,00 100 23,0 4,50 1,04 5,00-6,00 120 27,6 5,50 1,52 6,00 7,00 90 20,7 6,50 1,35 7,00 8,00 55 12,6 7,50 0,95 > 8,00 40 9,2 8,40 0,77 435 100 5,88 0,069 * 3,80

Yağış Yüksekliği-Alan-Süre (P-A-t) Analizi Bir yağış sırasında yağış yüksekliğinin yerel dağılımını belirlemek için eş yağış eğrileri çizilir. Yağış merkezinden uzaklaştıkça yağış yüksekliğinde bir azalma olur. Bu azalma oranı, yağış süresi ile ters yönde değişir. Yani, kısa süreli bir yağışın yerel değişimi, uzun süreliden daha fazladır.

Yağışın Yerel Dağılımı Horton Formülü (2.7) Burada; Po merkezdeki yağış yüksekliği, A yağış alanı, P alanı A olan bölgedeki yağış yüksekliği, k ve n her yağış süresi için belirlenen sabitlerdir.

Yağış Yüksekliği-Süre-Tekerrür (P-t-T) Analizi Bir havzadaki veya bölgedeki çeşitli tekerrür süreli (T), yağış yüksekliklerinin (P), yağış süresi (t) ile değişimini belirlemek için, yağış yüksekliği-yağış süresitekerrür süresi arasındaki ilişkiler belirlenir. Yağış yüksekliği-süre-tekerrür analizine benzer olarak, yağış yüksekliği yerine yağış şiddeti dikkate alınarak, yağış şiddetisüre-tekerrür (i-t-t) analizleri yapılabilir

Muhtemel Maksimum Yağış Bir havzada belli bir yağış süresi için fiziksel olarak mümkün olabilecek en büyük ve aşılması ihtimali çok küçük olan yağışa "Muhtemel Maksimum Yağış" adı verilir. Bu yağış, özellikle, yıkılması halinde çok büyük can ve mal kaybına yol açabilecek barajların dolu savaklarının boyutlandırılmasında dikkate alınır. Muhtemel maksimum yağışın tahmin edilmesi çalışmalarında meteoroloji uzmanlarıyla işbirliği yapılmalıdır. - Muhtemel maksimum yağışın hesabında kullanılan yöntemler ikiye ayrılırlar: a. Fiziksel Yöntemle Muhtemel Maksimum Yağış Hesabı [Havzada mevcut veya diğer bir havzadan taşınan yağış değerleri, çeşitli tekniklerle büyütülerek, o havzada olabilecek en büyük yağış tahmin edilir (maksimizasyon)] b. İstatistik Yöntemle Muhtemel Maksimum Yağış Hesabı İkinci yöntemin uygulaması oldukça kolay olmasına karşılık, elde edilen sonuçlar fiziksel yöntem ile elde edilenlerden daha hatalı olmaktadır.

ÖRNEK Bir kaydedici yağış ölçeğinde bir yağış sırasında aşağıda görülen toplam yağış eğrisi elde edilmiştir. Bu yağış sırasında yağış şiddetinin zamanla değişimini hesaplayarak yağış hiyetografını çiziniz.