FOTOVOLTAİK SİSTEM DENEY FÖYÜ

Benzer belgeler
KTÜ OF TEKNOLOJĠ FAKÜLTESĠ ENERJĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ FOTOVOLTAĠK SĠSTEM DENEY FÖYÜ

DENEY 6 YENİLENEBİLİR ENERJİ EĞİTİM ÜNİTESİ

Şekil 1. R dirençli basit bir devre

OHM KANUNU DĠRENÇLERĠN BAĞLANMASI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

1) Seri ve paralel bağlı dirençlerin eşdeğer direncinin bulunması. 2) Kirchhoff akım ve gerilim yasalarının incelenmesi.

YENİLENEBİLİR ENERJİ SİSTEMLERİ DENEYİ

ELEKTRİK DEVRE TEMELLERİ DENEY FÖYÜ

Deney no;1 Deneyin adı; Güneş pilinin ürettiği gerilimin ölçülmesi. Deney bağlantı şeması;

Fiz102L TOBB ETÜ. Deney 2. OHM Kanunu, dirençlerin paralel ve seri bağlanması. P r o f. D r. S a l e h S U L T A N S O Y

YENİLENEBİLİR ENERJİ EĞİTİM SETİ TEMEL SEVİYE TEKNİK ÖZELLİKLER

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI 1

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

ELEKTRİK DEVRELERİ UYGULAMALARI

EEME210 ELEKTRONİK LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

Ölçü Aletlerinin Tanıtılması

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

FRANCK HERTZ DENEYİ (CIVA TÜPLÜ 1. BİLGİSAYAR ORTAMINDA SONUÇ ALMAK İÇİN; DENEYİN YAPILIŞI:

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız.

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

GÜNEŞ ENERJİ SİSTEMLERİ

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

Taşınabilir Güneş Enerjili Lamba Sistemi - SRY 001

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

BÖLÜM 5 DC Şönt Motor Testleri

YENİLENEBİLİR ENERJİ EĞİTİM SETİ

EEM 201 DEVRE TEORĐSĐ I DENEY 3

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI-2

Şekil 1: Diyot sembol ve görünüşleri

DENEY 1-4. Yük Karakteristikleri AMAÇ GEREKLİ TEÇHİZAT

Doğru Akım Devreleri

DENEY 7: GÖZ ANALİZİ METODU UYGULAMALARI

YAKIT PİLİ DENEY SETİ TEKNİK ŞARTNAMESİ

GÜNEŞ ENERJİLİ CEP TELEFONU ŞARJ CİHAZI KULLANMA KILAVUZU

EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi

BÖLÜM 7 DC Seri Jeneratör Testleri

BÖLÜM 6 DC Kompunt Motor Testleri

DENEY 7: GÖZ ANALİZİ METODU UYGULAMALARI

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EEME 210 ELEKTRONİK LABORATUARI

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI

BÖLÜM 8 DC Şönt Jeneratör Testleri

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ GÜNEŞ ENERJİSİ LABORATUARI DENEY RAPORU

ELEKTRİK DEVRELERİ-2 LABORATUVARI II. DENEY FÖYÜ

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

Fotovoltaik Teknoloji

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

DENEY DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

T.C Ondokuz Mayıs Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği KMB 405 Kimya Mühendisliği Laboratuvarı III

DENEY NO:6 DOĞRU AKIM ÖLÇME

YE-1030 GÜNEŞ HÜCRESİ (PV) EĞİTİM SETİ DENEY FÖYLERİ

EEM 311 KONTROL LABORATUARI

KULLANILACAK ARAÇLAR

T.C. ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI I DENEY FÖYLERİ

ÜÇ-FAZ SENKRON JENERATÖRÜN GERİLİM REGÜLASYONU DENEY

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM

DENEY NO: 8 SERİ DEVRELER

Elektrik Müh. Temelleri

T.V FÖYÜ. öğrenmek. Teori: Şekil 1. kullanılır.

TTL ve CMOS BAĞLAÇ KARAKTERİSTİKLERİ

DENEY 0: TEMEL BİLGİLER

T.C. Kırklareli Üniversitesi Meslek Yüksekokulu Elektronik ve Otomasyon Bölümü

ÜÇ-FAZ SENKRON JENERATÖRÜN AÇIK DEVRE VE KISA DEVRE KARAKTERİSTİKLERİ DENEY

DENEYLERDE KULLANILACAK LABORATUVAR EKİPMANLARI

: HEE 226 Temel Elektrik I Laboratuvarı. : Laboratuvar Elemanları Tanıtımı

Süperpozisyon/Thevenin-Norton Deney 5-6

OHM KANUNU DENEY 1 OHM KANUNU 1.1. DENEYİN AMACI

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

DENEY-3 AKIM VE GERİLİM BÖLME KIRCHOFF AKIM VE GERİLİM KANUNLARININ İNCELENMESİ

DENEY 4 DC ŞÖNT ve SERİ MOTORUN YÜKLEME KARAKTERİSTİKLERİ

DENEY NO: 7 OHM KANUNU

Deney Esnasında Kullanılacak Cihaz Ve Ekipmanlar

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1.

PV PANELLERİN YAPISI VE PANELLERDEN ELEKTRİK ÜRETİMİNE SICAKLIĞIN ETKİSİ

326 ELEKTRİK MAKİNALARI LABORATUVARI II ÜÇ-FAZ SİNCAP KAFESLİ ASENKRON (İNDÜKSİYON) MOTOR DENEY

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

DENEY NO: 14 SERİ-PARALEL DEVRELERİN DİRENCİ

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜNEŞ ENERJİSİ İLE ELEKTRİK ÜRETİMİ 10. HAFTA

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

Solar PV Paneller Genel Bilgi

OFF-GRID veya STAND-ALONE INVERTER NEDİR?

Elektrik Devre Temelleri 3

DENEY 2: TEMEL ELEKTRİK YASALARI (OHM, KİRCHOFF AKIM VE GERİLİM)

KIRCHOFF'UN AKIMLAR VE GERĠLĠMLER YASASININ DENEYSEL SAĞLANMASI

DENEY 2: AC Devrelerde R, L,C elemanlarının dirençlerinin frekans ile ilişkileri ve RC Devrelerin İncelenmesi

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Fotovoltaik Teknoloji

4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

Transkript:

T.C. KARADENĠZ TEKNĠK ÜNĠVERSĠTESĠ TEKNOLOJĠ FAKÜLTESĠ ENERJĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ FOTOVOLTAİK SİSTEM DENEY FÖYÜ Ders: Yenilenebilir Enerji Kaynakları Ders Sorumlusu: Doç. Dr. İsmail Polat Eylül 2016

Deney Seti Tanıtımı Deney Seti Elemanları ġekil 1:Fotovoltaik Sistem Deney Seti 1) Fotovoltaik panel (PV panel): Güneş ışınlarını doğrudan elektrik enerjisine dönüştüren kristal Si hücrelerinden oluşan yapıdır. 2) Destekleyici: Pv panellerini taşıyan yapıdır. 3) ġarj regülatörü: Pv panel ve aküdeki akımı düzenleyip invertere aktaran devre elemanıdır. 4) Akü: Pv panellerde üretilen fazlalık elektrik enerjisini depolayarak güneş pillerinin çalışmadığı veya yeterince ışınımın olmadığı zamanlarda sistemi destekler. 5) Ġnverter: DC gerilimi AC gerilime veya DC akımı AC akıma dönüştüren cihazdır. 6) Voltmetre: Voltaj ölçer. 7) Ampermetre: Akım ölçer. 8) AC Güç analizörü: Üretilen AC gerilim, akım ve güç değerlerini gösteren bilgi ekranıdır. 9) Sistem bağlantı Ģeması: PV panel sisteminin bağlantı şemasıdır. Solar radyasyon metre: Panel üzerine düşen ışınım şiddetini ölçen cihazdır.

Kontrol Paneli Bağlantı Noktaları ġekil 2. Kontrol panelini sağ tarafı. 2 nolu bağlantı: PV panellerin bağlantı kombinasyon uçları. 3 nolu bağlantı: Pv paneli kontrol paneline bağlayan fiş. ġekil 3. Kontrol paneli sol tarafı 1 Sistem açma-kapama düğmesi 2 Akü bağlantı kabloları DENEY 1: Amaç: Birim yüzeye birim zamanda düşen ışık enerjisini W/m 2 ölçülmesi. cinsinden Güneşten gelen ışınımın ölçümü, rüzgâr hızından etkilenir. Toplam güneş ışınımını ölçmek için en uygun zaman havanın açık, bulutsuz ve rüzgâr hızının 3 m/s den daha düşük olduğu bir zamandır.

Güneş ışını ölçer ile farklı ışık kaynaklarının şiddetini ölçün 1. Ölçüm :..W/m 2 2. Ölçüm :..W/m 2 3. Ölçüm :..W/m 2 4. Ölçüm :..W/m 2 DENEY 2: Amaç: Pv panellerin farklı kombinasyonlarda bağlanmasının, akım-voltaj (I V), güç-voltaj (P-V) eğrileri üzerine etkilerinin incelenmesi. GüneĢ Panellerinin Farklı Bağlantı Biçimleri Pv deney setinde, bir birinden bağımsız olarak çalışabilen iki adet Pv panel vardır. Bu Pv paneller, Şekil 4 te gösterilen bağlantılar yardımıyla tek tek kullanılabildiği gibi birbiri ile seri veya birbiri ile paralel olarak da kullanılabilir. Farklı kombinasyonlara ait bağlantı biçimleri Tablo 1 ve Şekil 5 de verilmiştir. ġekil 4. Pv panellerin kablo bağlantı uçları. Tablo 1. Pv panellerin bağlantı biçimleri. Bağlantı biçimi Elektrik Kabloları Panel Bağlantısı 19 20 21 22 1 Kırmızı Kırmızı Sadece alt panel 2 Siyah Siyah Sadece üst panel 3 Siyah Siyah Seri 4 Kırmızı Siyah Kırmızı Siyah Paralel

ġekil 5: Pv panellerin bağlantı şekilleri. NOT: İyi bir karşılaştırma için tüm deneyler aynı ışınım altında yapılmalıdır. Deneyin yapılıģı, 1. Pv panelden gelen kablo uçlarını şarj kontrolüne bağlayan köprüleri, deney setinden çıkartın. 2. Pv panelden gelen uçları, sürgülü reostaya (ayarlı direnç) Şekil 6 da gösterildiği gibi bağlayın. ġekil 6. Pv panelin elektriksel güç ölçüm düzeneği. 3. Pv panellerin uçlarına takılan sürgülü reostayı 0-50 arasında 5 luk adımlarla ayarlayarak voltaj ve akım değerlerini sırasıyla V1 voltmetresi ve A1 ampermetresinden okuyun ve aşağıdaki tabloları 1, 3 ve 4 nolu bağlantı (Sadece alt panel, seri ve paralel bağlantılar) biçimleri için doldurun. P= V.I bağıntısı yardımıyla güç değerlerini hesaplayın. a) Sadece alt Pv panelinin çalıştırılması: Şekil 5 deki 1 nolu bağlantıyı kullanın. Tablo değerleri yardımıyla I-V ve P-V grafiklerini milimetrik kâğıda çizin.

Tablo 2. Sadece alt Pv paneli için deneysel değerler R (Ω) Voltaj (V) Akım (A) P (W) 0 5 10 15 20 25 30 35 40 45 50 b) Pv panellerin seri bağlanması: Şekil 5 teki 3 nolu bağlantıyı kullanın Tablo değerleri yardımıyla I-V grafiğini milimetrik kâğıda çizin. Tablo 3. Pv panellerin seri bağlanması için deneysel değerler R (Ω) Voltaj (V) Akım (A) 0 5 10 15 20 25 30 35 40 45 50 c) Pv panellerin paralel bağlanması: Şekil 5 deki 4 nolu bağlantıyı kullanın Tablo değerleri yardımıyla I-V grafiğini milimetrik kâğıda çizin. Tablo 4. Pv panellerin paralel bağlanması için deneysel değerler R (Ω) Voltaj (V) Akım (A) 0 5 10 15 20 25 30 35 40 45 50 4. Çizmiş Olduğunuz grafiklerden kısa devre akımı I sc (short-circuit current) ve açık devre gerilim V oc (no-load voltage) gösterin. Sadece alt panel baglantısı için maksimum güç noktası değerlerini (Pmp, Vmp ve Imp) bulun. 5. Sonuçları yorumlayın.

DENEY 3: Amaç: Artan elektriksel yük altında sistemin elektrik parametrelerinin incelenmesi. Deneyin yapılıģı: 1) Pv panelleri paralel bağlı konumda çalıştırın. 2) Sistemdeki tüm köprüleri bağlayın. 3) İnverterin güç düğmesinin aktif olduğundan emin olun. 4) Aktif edilen lamba sayısına göre Tablo 3 ü doldurun. 5) Sonuçları yorumlayın. Tablo 5. Pv panel sisteminin elektriksel parametreleri Devredeki Lamba sayısı 0 1 2 3 4 5 DENEY 4: DC V1(V) V2 (V) V3 (V) A1 (A) A2 (A) A3 (A) V (V) I (A) P (W) AC Amaç: Şarj regülatörünün davranışının incelenmesi. Şarj regülatörü, Pv panel, akü ve inverterdeki güç akışını düzenleyen ekipmandır. Deney düzeneği bu devre elemanlarının her birinden geçen akımı ve uçlarındaki voltajı göstermektedir. Deneyin YapılıĢı 1) Pv panellerini, bağlantı köprüleri yardımıyla sistemden ayırın. Diğer köprülerin bağlı olduğuna dikkat edin. 2) Sistemde bulunan tüm lambaları aktif hale getirerek bataryanın tamamen boşalmasını sağlayın. 3) Akünün şarjı tamamen bittiğinde lambaların anahtarlarını kapatın ve akü ile invertere arasındaki köprüleri çıkarın. 4) Pv panelleri devreye sokun. A2-V2 çiftleri için zamana bağlı grafik çizin.

Akü, Pv paneller yardımıyla dolmaktadır. Akünün şarj seviyesi maksimum değere yaklaştığında, şarj regülatöründen geçen akım giderek azalır. Tam dolduğunda ise şarj regülatörü akımı tamamen keser. DENEY 5: Amaç: Akünün teknik özellikleri ve parametrelerinin incelenmesi Nominal Gerilim: Aküde olması beklenen gerilim değeridir. Akü 6 hücreden oluşmaktadır. Her bir hücre 2V luk bir gerilim üretir. Akü 12V nominal gerilime sahip olduğundan akü 12/2 = 6 hücreden oluşur. Aküden ölçülen etkin gerilim, akünün şarj durumuna bağlı olarak daha yüksek veya daha düşük çıkabilir. Akünün şarj durumunu ölçmek için; 1) Pv panel ve inverter köprü bağlantılarını kesin. 2) Akünün şarj seviyesini gözleyin. 3) Akü bağlantısını kesin V2 voltmetresindeki etkin gerilim değerini okuyun. DENEY 6: Amaç: Pv panel veya harici akü şarj cihazı yardımıyla akünün şarj edilmesi Pv sisteme bağlı akü, Pv panel aracılığıyla sürekli şarj edilmektedir. Ancak düşük ışınım altında panel gerilimi bazen 10,5 V un altına kadar düşebilmektedir. Böyle bir durumda akü Pv paneller aracılığıyla tam olarak şarj edilemez ve aküdeki enerjinin tamamı sisteme bağlı cihazlar tarafından tamamen tüketilebilir. Bu durumda akü, harici şarj cihazı ile doldurulabilir. Akü voltajı 14,2 V değerine ulaştığında batarya dolmuş olur. Bataryanın voltaj değeri harici bir voltmetre ile takip edilebilir (Şekil 7). Şekil 7: Manuel akü şarj ölçüm cihazı