DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

Benzer belgeler
DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

EEME210 ELEKTRONİK LABORATUARI

Şekil 1. Bir güç kaynağının blok diyagramı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım Devre Analizi

ALTERNATİF AKIMIN TEMEL ESASLARI

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

TEK FAZLI DOĞRULTUCULAR

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN TANIMI

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

Teknoloji Fakültesi El. El. Ölçme Laboratuvarı Deney Föyleri

DENEY 3. Maksimum Güç Transferi

DENEY 5: RC DEVRESİNİN OSİLOSKOPLA GEÇİCİ REJİM ANALİZİ

TEMEL DC ÖLÇÜMLERİ: AKIM ÖLÇMEK: Ampermetre ile ölçülür. Ampermetre devreye seri bağlanır.

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR

Yarım Dalga Doğrultma

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

BÖLÜM 2 DİYOTLU DOĞRULTUCULAR

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ

ELEKTRONİK-2 DERSİ LABORATUVARI DENEY 1: Doğrultucu Deneyleri

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I

DENEY 4. Rezonans Devreleri

ELEKTRİK DEVRELERİ-2 LABORATUVARI II. DENEY FÖYÜ

Cihazın Bulunduğu Yer: Enerji Sistemleri Mühendisliği Bölümü B-Blok, Enerji Verimliliği Laboratuvarı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

ALTERNATİF AKIMIN DENKLEMİ

ELEKTRONİK DEVRE ELEMANLARI

BÖLÜM 2 DİYOTLU DOĞRULTUCULAR

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

AC DEVRELERDE BOBİNLER

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELEKTRİK DEVRELERİ-2 LABORATUVARI VI. DENEY FÖYÜ

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

DENEY FÖYÜ 5: Diyotlu Doğrultma Devreleri

DENEY 3 DİYOT DOĞRULTUCU DEVRELERİ

DENEY 3: RC Devrelerin İncelenmesi ve Lissajous Örüntüleri

DENEY 3 Ortalama ve Etkin Değer

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ

DENEY 5: FREKANS CEVABI VE BODE GRAFİĞİ

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Adapazarı Meslek Yüksekokulu Analog Elektronik

Bölüm 11 ALTERNATİF AKIM (AC) Copyright 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley

BAŞKENT ÜNİVERSİTESİ

Çukurova Üniversitesi Biyomedikal Mühendisliği

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

AKIM VE GERİLİM ÖLÇME (DOĞRU AKIM)

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler

DENEY 3. Maksimum Güç Transferi

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Ölçü Aletlerinin Tanıtılması

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

BLM 224 ELEKTRONİK DEVRELER

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

ANALOG HABERLEŞME (GM)

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELETRONİK LABORATUVARI DENEY 1 OSİLOSKOP KULLANIMI

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

DOĞRU AKIM DA RC DEVRE ANALİZİ

DENEY 1 DİYOT KARAKTERİSTİKLERİ

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

DENEY 5. Rezonans Devreleri

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ

1 ALTERNATİF AKIMIN TANIMI

Deney 32 de osiloskop AC ve DC gerilimleri ölçmek için kullanıldı. Osiloskop ayni zamanda dolaylı olarak frekansı ölçmek içinde kullanılabilir.

DENEY NO : 6 KIRPICI DİYOT DEVRELERİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ

Bu deneyde lab cihazlarının kullanımı için 4 uygulama yapılacaktır.

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

DENEY 3 Kırpıcı ve Kenetleyici Devreler

8.KISIM OSİLOSKOP-2 DC + AC ŞEKLİNDEKİ TOPLAM İŞARETLERİN ÖLÇÜMÜ

DENEY 2 Diyot Doğrultma Devreleri ve Gerilim Katlayıcı

DENEY 1: AC de Akım ve Gerilim Ölçme

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

Transkript:

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç: Bu deneyin amacı, öğrencilerin alternatif akım ve gerilim hakkında bilgi edinmesini sağlamaktır. Deney sonunda öğrencilerin, periyot, frekans, genlik, faz, OR, KOK gibi temel kavramları öğrenip; elektroniğin temel ölçüm aletlerinden biri olan osiloskobun kullanılmasına dair deneyim kazanmaları beklenmektedir. Bu amaçla ilk olarak, sinyal üretecinden verilecek farklı frekans ve şekillerdeki AC sinyaller doğrudan osiloskop yardımıyla ölçülerek yukarıda bahsedilen kavramlar hakkında detaylı inceleme yapılacaktır. Deneyin ikinci kısmında ise, yarım dalga doğrultucu ve tam dalga doğrultucu devreler ele alınacak ve diyodun alternatif akım devrelerinde kullanılmasına dair inceleme yapılacaktır. Genel Bilgiler: Yönü ve şiddeti zamanla değişmeyen akımlara doğru akım (DC: Direct Current) denir. DC gerilim kaynağı tarafından üretilen bir akım, Şekil 7-1 de görüldüğü gibi, pozitif kutuptan negatif kutba doğru hep aynı yönde ve şiddette akar. DC akım, pil, akü, dinamo, güneş hücreleri gibi DC gerilim kaynakları tarafından üretilir. Şekil 7-1. Doğru akım devresi ve bu devreye ait akım ve gerilim grafiği Yönü ve şiddeti zamanla periyodik olarak değişen akımlara alternatif akım (AC: Alternating Current) denir. AC gerilim üreten kaynaklara osilatör denir. AC gerilim kaynağı bulunan bir devrede, güç kaynağının kutupları periyodik olarak değiştiği için, üretilen akımın yönü de sürekli 1

olarak değişir. Yani gerilimin pozitif alternansında akım saat yönünde akıyorsa, negatif alternansta saat yönünün tersine akar (Şekil 7-). Şekil 7-. Alternatif akım devresi ve bu devreye ait akım ve gerilim grafiği Alternatif akım ve gerilim, en genel haliyle zamanın sinüsel bir fonksiyonu olarak değişir. Bu durumda üretecin gerilimi denklem 7.1 deki haliyle ifade edilebilir: (t) = sin t (7.1), (t) nin maksimum değeri, tepe değeri ya da voltaj genliğidir. ise üretilen gerilimin açısal hızıdır. Açısal hızı aşağıdaki şekilde yazabiliriz: f (t) sin ft (7.) Buradaki f kaynağın frekansı, ise periyodudur. Alternatif akım veya gerilimin herhangi bir t anındaki değerine anlık değer denir. Sinyalin bir periyod boyunca sahip olduğu anlık değerlerin ortalamasına ortalama değer denir. Ortalama değer aynı zamanda sinyalin doğru akım değeridir. Dalgalı bir gerilim ortalama değeri denklem 7.3 de verildiği şekilde hesaplanır: OR 1 ( t) dt Bu durumda doğrultulmamış bir alternatif akım ya da gerilimin ortalama değerinin sıfır olacağı açıktır. Çünkü böyle bir işaretin pozitif ani değerleri ile negatif ani değerlerinin sayısı ve büyüklüğü eşittir. (7.3)

Bir R direnci üzerinden belirli bir zaman aralığında akan AC akımın o dirençte ortaya çıkardığı ısı miktarını, aynı direnç üzerinde aynı zaman aralığında yaratabilecek DC akım veya gerilim değerine alternatif akımın/gerilimin etkin değeri denir. Bu değer aynı zamanda RMS (Root Mean Square) veya KOK (Kare Ortalamanın Karekökü) değeri olarak da isimlendirilir ve denklem 7.4 de görüldüğü gibi hesaplanır. 1/ 1 KOK ( t) dt (7.4) Örneğin bir sinüs dalgasının KOK değerini hesaplamak istersek; KOK 1 sin 1/ 1/ sin sin t t tdt tdt 4 (7.5) Sınır değerleri yerine yazılarak hesaplamalar yapıldığında denklem 7.6 elde edilir. KOK.77 (7.6) 1/ Bir AC devredeki akım/gerilim, ampermetre/voltmetre ile okunduğunda - cihaz DC akım/gerilim konumunda ise okunan değer ortalama değerdir. - cihaz AC akım/gerilim konumunda ise okunan değer etkin değerdir. Zamanla yönü ve şiddeti değişen gerilimlerin dalga şeklinin, frekansının ve genliğinin belirlenmesi için kullanılan ölçü aletine osiloskop denir. Osiloskop ile ölçülen işaretin genliği yatay eksenden, periyodu ise düşey eksenden görülür. Elektronik cihazları çalıştırmak için DC güç kaynağına ihtiyaç vardır. DC gerilim elde etmenin en pratik ve ekonomik yolu şehir şebekesinden alınan AC gerilimi DC gerilime dönüştürmektir. Bu dönüştürme işlemi, diyot kullanılarak tasarlanmış bir dizi doğrultmaç (redresör) devresi ile yapılır. ek bir diyot, Şekil 7-3 (a) daki gibi bir AC gerilim kaynağına bağlanırsa, osiloskopta gözlenen gerilimin zamanla değişimi Şekil 7-3 (b) deki gibi olacaktır. Çünkü buradaki diyot, sinyalin pozitif alternansında akımı geçirirken, negatif alternansında geçirmez. Bu devreye Yarım Dalga Doğrultucu denir. 3

Şekil 7-3. (a) Yarım dalga doğrultucu devre, (b) devrenin çıkış voltajı Bu çıkış sinyalinin ortalaması sıfır değildir çünkü sinyalin negatif yarısı diyot sayesinde yok edilmiştir. Pozitif yarısı için gerilimin ortalama değeri, denklem 7.7 ile hesaplanabilir: 1 / / OR sin ftdt (7.7) Dalganın negatif yarısı sıfır olduğu için, bunun ortalama değeri de sıfırdır. Bu durumda tüm periyodun ortalaması, pozitif kısmın ortalamasının yarısıdır. Bu durumda yarım doğrultulmuş bir sinüs dalgasının geriliminin bir periyodtaki ortalaması denklem 7.8 ile verilir: OR (7.8) Şekil 7-4 (a) da ise Köprü ipi am Dalga Doğrultucu bir devre görülmektedir. Bu devrenin çıkış gerilimi Şekil 7-4 (b) deki gibidir. Bu durumda çıkış geriliminin ortalamasının OR olacağı açıktır. Şekil 7-4. (a) Köprü tipi tam dalga doğrultucu devre, (b) devrenin çıkış voltajı 4

Raporu hazırlayan öğrencilerin Numarası ve Adı Soyadı: 1.. 3. 4. 5. Grup No: Deneyin Yapılış arihi: DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP Amaç ve Beklenti: Deneyde Kullanılan Araç ve Gereçler: 1) Sinyal üretecini kullanarak frekansı 4Hz, genliğini 5 olan sinüsel bir gerilim elde ediniz. Osiloskop ekranında gözlediğiniz işaretin periyodunu belirleyerek, frekansını hesaplayınız ve sinyal üretecinin ekranında gördüğünüz değer ile karşılaştırınız. 5

) oltmetre yardımıyla, bu sinyalin KOK ve OR değerlerini ölçünüz. Ölçtüğünüz bu değerleri teorik sonuçlar ile karşılaştırınız. Bu ölçüm işlemini, genlik aynı kalacak şekilde, 6Hz için tekrarlayınız. KOK OR 4Hz eorik Değer: = eorik Değer: 6 Hz eorik Değer: = eorik Değer: 3) Şekil 7-5 deki devreyi kurunuz. Şekil 7-5. Deneyde kullanılacak olan devre şeması Osiloskopta gözlediğiniz çıkış voltajını çiziniz. (Not: Çizim yaparken gözlediğiniz işareti tanımlayan sayısal değerleri (periyot, genlik) dikkate alınız.) 6

Çıkış geriliminin KOK ve OR değerlerini ölçünüz. Ölçtüğünüz değerleri teorik değerler ile kıyaslayınız. KOK OR eorik Değer: = eorik Değer: = 4) Şekil 7-6 deki devreyi kurunuz. Şekil 7-6. Deneyde kullanılacak olan devre şeması Osiloskopta gözlediğiniz çıkış voltajını çiziniz. (Not: Çizim yaparken gözlediğiniz işareti tanımlayan sayısal değerleri (periyot, genlik) dikkate alınız.) 7

Çıkış geriliminin KOK ve OR değerlerini ölçünüz. Ölçtüğünüz değerleri teorik değerler ile kıyaslayınız. KOK OR eorik Değer: = eorik Değer: = Sonuç ve Yorum: 8