Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 3 GENLİK (AM) MODÜLASYONU

Benzer belgeler
Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 4 GENLİK (AM) DEMODÜLASYONU

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 5 FM MODÜLASYONU

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

Bölüm 6 DSB-SC ve SSB Demodülatörleri

BÖLÜM 3 AM MODÜLATÖRLERİ

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I

DENEY 7. Frekans Modülasyonu

BÖLÜM 4 AM DEMODÜLATÖRLERİ

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I DENEY 6 FM DEMODÜLATÖRÜ

DENEY 4. Rezonans Devreleri

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 10. Tablo 10.1 Deney 10 da kullanılan devre elemanları ve malzeme listesi

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop

Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

DĐYOTLARIN DOĞRULTUCU DEVRELERDE KULLANILMASI

ANALOG HABERLEŞME (GM)

Bölüm 7 FM Modülatörleri

Direnç(330Ω), bobin(1mh), sığa(100nf), fonksiyon generatör, multimetre, breadboard, osiloskop. Teorik Bilgi

Bölüm 8 FM Demodülatörleri

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

DENEY 5. Rezonans Devreleri

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Bölüm 16 CVSD Sistemi

Şekil 5-1 Frekans modülasyonunun gösterimi

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

DENEY 1: AC de Akım ve Gerilim Ölçme

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

EEM HABERLEŞME TEORİSİ NİĞDE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

EEM 202 DENEY 8 RC DEVRELERİ-I SABİT BİR FREKANSTA RC DEVRELERİ

Bölüm 13 FSK Modülatörleri.

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ

HABERLEŞME ELEKTRONĐĞĐNE DENEY FÖYLERĐ 2011 V.Y.S.

AC DEVRELERDE KONDANSATÖRLER

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ *

1. LİNEER PCM KODLAMA

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT UYGULAMALARI DENEYİ

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY NO : 4 DENEY ADI : Taşıyıcısı Bastırılmış Çift Yan Bant ve Tek Yan Bant Genlik Modülatör ve Demodülatörleri

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ DİYOT KARAKTERİSTİKLERİ DENEYİ

PARALEL RL DEVRELERİ

Ölçü Aletlerinin Tanıtılması

YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-I

EGE UNIVERSITY ELECTRICAL AND ELECTRONICS ENGINEERING COMMUNICATION SYSTEM LABORATORY

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

DENEY 2 DİYOT DEVRELERİ

Deney 3 5 Üç-Fazlı Tam Dalga Tam-Kontrollü Doğrultucu

Bölüm 5 DSB-SC ve SSB Modülatörleri

AC DEVRELERDE BOBİNLER

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

A - DENEY HAKKINDA TEORİK BİLGİLER: 1. Genlik Modülasyonu:

DENEY 1-1 AC Gerilim Ölçümü

BAŞKENT ÜNİVERSİTESİ

kdeney NO:1 OSİLASKOP VE MULTİMETRE İLE ÖLÇME 1) Osiloskop ile Periyot, Frekans ve Gerlim Ölçme

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 6 GEÇİCİ DURUM ANALİZİ

Bölüm 12 İşlemsel Yükselteç Uygulamaları

ANALOG MODÜLASYON BENZETİMİ

Bölüm 14 FSK Demodülatörleri

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ

KMU MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELETRONİK LABORATUVARI DENEY 1 OSİLOSKOP KULLANIMI

ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ

Deney no;1 Deneyin adı; Güneş pilinin ürettiği gerilimin ölçülmesi. Deney bağlantı şeması;

DOĞRULTUCULAR VE REGÜLATÖRLER

DENEY 3: RC Devrelerin İncelenmesi ve Lissajous Örüntüleri

BÖLÜM 1 RF OSİLATÖRLER

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:

KIRPICI DEVRELER VE KENETLEME DEVRELERİ

EEME210 ELEKTRONİK LABORATUARI

ALTERNATİF AKIM (AC) II SİNÜSOİDAL DALGA; KAREKTRİSTİK ÖZELLİKLERİ

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) OPAMP lı Tersleyen, Terslemeyen ve Toplayıcı Devreleri

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

Bölüm 12 PWM Demodülatörleri

ELE 201L DEVRE ANALİZİ LABORATUVARI

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

Bölüm 13 FSK Modülatörleri.

Şekil 1. Bir güç kaynağının blok diyagramı

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE

Şekil 6.1 Faz çeviren toplama devresi

ASK modülasyonu ve demodülasyonu incelemek. Manchester kodlamayı ASK ya uygulamak. Gürültünün ASK üzerine etkisini incelemek.

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

Deneyle İlgili Ön Bilgi:

DENEY-4 Yarım ve Tam Dalga Doğrultucular

ANALOG FİLTRELEME DENEYİ

Transkript:

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölüü EEM 316 Haberleşe I DENEY 3 GENLİK (AM) MODÜLASYONU 3.1 Aaçlar 1. Genlik (AM) odülasyon prensiplerinin anlaşılası 2. Genlik (AM) sinyalinin rekans spektruu ve dalga yapısının anlaşılası, odülasyon indisinin yüzdeliğinin hesaplanası 3. MC1496 ile genlik odülasyonunun tasarlanası 4. Genlik odülasyon devresi üzerinde ölçüler yapılası 3.2 Ön Çalışa Kitaptan 4. Üniteyi okuyunuz. 3.3 Cihazlar ve Malzeeler Deney için gerekli alzeeler Tablo 3.1 de listeleniştir. Deneye başlaadan öne, deneyde kullanılaak olan ihazların odel nuarasını, seri nuarasını ve ois stok nuarasını yazınız. Ayrıa, hasarlı ihazları not ediniz. Tablo 3.1 Deneyde kullanılaak alzee listesi No: Malzeeler Model Seri No: Ois Stok No: 1 Dijital Osiloskop 2 Sinyal Jeneratörü (1) 3 Sinyal Jeneratörü (2) 4 DC Güç Kaynağı 5 Osiloskop Probları ve Kablolar 6 MC1496 lı Genlik Modülatörü Hasar ve diğer yorular: 3.4 Teel bilgiler Düşük rekanslarda bilgi taşıyan bir sinyalin yüksek rekanslara sahip bir sinyal ile iletilesine odülasyon denir. Genlik odülasyonunda (AM); yüksek rekanslara sahip bir sinyal taşıyıı ile düşük rekanslara sahip bir sinyal taşınır. Genellikle taşınan sinyal bir ses sinyalidir. Şekil 3.1 de taşınan ve taşıyıı sinyaller örnek olarak gösterilişlerdir. Eğer ses sinyalini A os ( 2π t) ve taşıyıı sinyalini A os ( 2π t) olarak kabul edersek, odülasyon sinyalinin şu şekilde oluştuğunu söyleyebiliriz; EEM 316 Haberleşe I Deney 3 Saya 1/11

x AM ( t) = [ ADC + A os( 2π t) ] A os( 2π t) = ADC [ 1+ os( 2π t) ] A os( 2π t) = A A [ 1+ os( 2π t) ] os( 2π t) DC (3.1) A DC = Sinyalin DC seviyesi A = Ses sinyalinin genliği A = Taşıyıı sinyalin genliği = Ses sinyali rekansı = Taşıyıı sinyali rekansı = Modülasyon indisi (odulasyon derinliği yada yüzdesi) Taşınan sinyal (Ses sinyali) Taşıyıı sinyal E ax E in Eğer denkle 3.1 i tekrar yazaak olursak, x AM Genlik odülasyonu sonrasında sinyaller Şekil 3.1 Genlik odülasyonu sinyal şekli 1 = DC DC (3.2) 2 ( ) A A { os[ 2π ( + ) t] + os[ 2π ( ) t] } + A A os( 2π t) Denkle 3.2 de eşitliğin sağındaki ilk teri çit taralı sinyal çitini, ikini teri taşıyıı sinyalini verir. Denkle 3.2 yi kullanarak genlik (AM) odülasyonunu, Şekil 3.2 deki gibi çizebiliriz. Genlik odülasyonunda; taşınan sinyalin rekansta ve genlikteki değişilerine karşın, taşıyıı sinyalin rekansından ve genliğinden dolayı her zaan elde edilen sinyalde taşıyıı sinyalden sabit değerler kalaktadır. Taşıyıı sinyal herhangi bir bilgi içerez ve rekans ve genliği değişez. Genlik odülasyonu oluşturulduğunda, taşıyıı sinyali oluşturak için verilen güçte kayıplar eydana gelektedir. Bu nedenle genlik odülasyonunun verililiği çit yan bant - bastırılış taşıyıı (DSB-SC) odülasyonundan daha azdır. Fakat AM odülasyonunun devresi oldukça basittir. EEM 316 Haberleşe I Deney 3 Saya 2/11

( ) X (V) A DC A 0,5A DC A 0,5A DC A ( Hz) Şekil 3.2 Genlik odülasyonu sinyal spektruu Denkle 3.1 de bahsettiğiiz odülasyon indisidir ve odülasyon için oldukça öneli bir paraetredir. Genellikle, odülasyon yüzdesi olarak da adlandırılır ve Denkle 3.3 deki orül ile hesaplanabilir. SesSinyali A =.100% =.100% (3.3) DC Seviye A DC Modülasyonda sinyallerin ayrı ayrı genliklerinin hesaplanasının zorluğundan dolayı odülasyon indisini Denkle 3.4 ile hesaplaak daha pratiktir. E ax in = (3.4) E ax E + E in E = A + A = A A ax ve in E, Şekil 3.1 de görülektedirler. Ses sinyalinin taşıyıı sinyal ile odüle edilesinden sonra ses sinyali odüle ediliş sinyalin kenarlarında taşınır ve böyle taşınası iletiin verililiğini artırır. Denkle 3.2 den büyük bir odülasyon indisine sahip yan bant (sideband) sinyale ve çok iyi bir ileti verililiğine sahip olaktayız. Pratikte odülasyon indisi 1 den küçük veya eşit olalı. Eğer odülasyon indisi 1 den büyükse, buna Aşırı Modülasyon (Over Modulation) denir. AM odülasyon indislerinin ve bunun netiesinde elde edilen sinyal şekillerinin karşılaştırılası Tablo 3.2 de görülektedir. EEM 316 Haberleşe I Deney 3 Saya 3/11

Tablo 3.2 AM odülasyon indislerinin karşılaştırılası Modülasyon İndisi, µ Sınıı Sinyal Şekli µ < 1 Az odülasyon µ = 1 100 % odülasyon µ > 1 Aşırı odülasyon Bu deneyde AM genlik odülasyonu için bir dengeleniş odülasyon (balaned odulation) MC1496 devresinin kullanıını göstereeğiz. Farklı giriş sinyallerine göre, MC1496 rekans çarpıı, AM Genlik odülatörü veya DSB-SC odülatörü olarak kullanılaaktır. Tablo 3.3 de arklı giriş sinyalleri ve çıkış sinyalleri karakteristikleri özetleniştir. Tablo 3.3 Çeşitli denge odülasyon çıkışlarının giriş sinyallerine göre karşılaştırılası Taşıyıı Giriş Ses Giriş Denge Modülasyon Çıkışı Devre Karakteristiği 2 Frekans Çarpıı ' + ' AM + ' DSB-SC Şekil 3.3 de MC1496 nın devre şeası görülektedir. Q 5 ve Q 6 arksal kuvvetlendiriileri Q 1 Q 2 and Q 3 Q 4 arksal kuvvetlendirileni sürek (çalıştırak) için kullanılır. Q 7 ve Q 8 sabit akı kaynakları Q 5 ve Q 6 yı sabit akı ile besleektedir. MC 1496 nın tü kazanı 2 ile 3 nolu ayaklar arasında olan harii direnç taraından kontrol edilir. Genlik odülasyonunda, ses sinyali 1 ile 4 nolu bağlantı noktalarından ve taşıyıı sinyal ise 8 ile 10 nuaralı bağlantı EEM 316 Haberleşe I Deney 3 Saya 4/11

noktasından uygulanalıdır. 5 nuaralı bağlantı noktası için seri bir direnç bağlanarak kutuplaa akıı sağlanır. Şekil 3.3 MC1496 devre şeası Şekil 3.4, Genlik (AM) odülasyon devresini gösterektedir. Taşıyıı ve taşınaak olan sinyaller basit olarak 1 ve 10 noktalarından bağlanaktadırlar. Tü devre kazanı R 8 ile hesaplanaktadır. R9 kutuplaa (bias) akı iktarının hesaplanası içindir. VR1 ile ses sinyalinin genliği ya da odülasyon yüzdesini ayarlayabiliriz. EEM 316 Haberleşe I Deney 3 Saya 5/11

Şekil 3.4 MC1496 kullanarak Genlik odülasyonunun elde edilesi 3.5 Deney Uygulaası ve Sonuçlar Not: Dijital osiloskop kullandığınızda; Dijital osiloskoptan verileri kaydederken, kritik tü bilgileri kaydedin. Örneğin; DC seviyesi, tepe değeri, periyot ve rekenas değerleri. Sonrasında çıkış dalga şeklini düzgün olarak Dijital osiloskop çıkışı olarak dereeli graiğe çiziniz. Dijital osiloskop çıkışını sabitleek için hold ve storage özelliklerini kullanınız. 3.5.1 Genlik Modülasyon Deneyi 1. AM odulasyon devresi MC 1496 yı HAMEG DC panele bağlayarak DC gerilileri yapınız. MC1496 nın AUDIO INPUT girişine HAMEG onksiyon üretiiden 250 V pp 1 khz sinus dalgası ve CARRIER INPUT girişine Protek onsiyon üretiiden 250 V pp 100 khz sinyal bağlayınız. 2. MC1496 nın OUTPUT çıkışını osiloskobun CHII sine bağlayınız. Osiloskop Tie/Div ayarını A:200 µs olarak ayarlayınız. Çıkış dalga orunu VR 1 i değiştirerek gözleleyiniz. VR 1 i kullanarak odulasyon indisini %50 olaak şekilde ayarlayınız (Denkle 3.4). Çıkış Dalga Forunu ve Modulasyon Yüzdesini Tablo 3.4 e kaydediniz. 3. AUDIO INPUT a verilen ses sinyalini 200 V pp ve 150 V pp için ayarlayarak sonuçlarınızı Çıkış Dalga Foru ve Modülasyon Yüzdesi olarak Tablo 3.4 e aktarınız (VR 1 de herhangi bir değişiklik yapayınız). 4. AUDIO INPUT girişine verdiğiniz sinyali tekrar 150 V pp olarak ayarlayınız ve CARRIER INPUT genliğini 150 V pp olarak değiştiriniz. Çıkış Dalga Foru ve EEM 316 Haberleşe I Deney 3 Saya 6/11

Modülasyon Yüzdesi ni %50 olaak şekilde ayarlayınız. Sonuçları Tablo 3.5 e kaydediniz. 5. CARRIER INPUT genliğini 250 V pp ve 400 V pp olarak tekrar ayarlayınız. Elde ettiğiniz Çıkış Dalga Foru ve Modulasyon Yüzdesi ni Tablo 3.5 de ilgili bölülere kaydediniz (VR 1 de herhangi bir değişiklik yapayınız). 6. Bu adı için AUDIO INPUT u l50 V pp 3 khz sinüs dalgası, CARRIER INPUT u 250 V pp 100 khz sinüs dalgası olaak şekilde ayarlayınız. Çıkış Dalga Foru ve Modulasyon Yüzdesi ni %50 olaak şekilde ayarlayınız. Sonuçları Tablo 3.6 da ilgili bölülere kaydediniz. 7. AUDIO INPUT rekansını 2 khz ve 1 khz olarak ayarlayınız. Çıkış Dalga Foru ve Modulasyon Yüzdesi ni Tablo 3.6 da ilgili bölülere kaydediniz (VR 1 de herhangi bir değişiklik yapayınız). 8. Şidi ise AUDIO INPUT u l50 V pp 2 khz sinus dalgası ve CARRIER INPUT u 250 V pp 500 khz sinus dalgası olaak şekilde ayarlayınız. Çıkış Dalga Foru ve Modulasyon Yüzdesi ni %50 olaak şekilde ayarlayınız. Sonuçları Tablo 3.7 nin ilgili kısılarına kaydediniz. 9. CARRIER INPUT u sırasıyle 1MHz ve 2MHz olarak değiştiriniz. Çıkış Dalga Foru ve Modulasyon Yüzdesi ni Tablo 3.7 ye kaydediniz (VR 1 de herhangi bir değişiklik yapayınız). ( V = 250 V, = 100kHz, = khz ) pp 1 Tablo 3.4 Audio Genliği Y1: 20 V pp, A: 200 µs. Çıkış Dalga Foru Modulasyon Yüzdesi 250 V pp E in = EEM 316 Haberleşe I Deney 3 Saya 7/11

Y1: 20 V pp, A: 200 µs. 200 V pp E in = Y1: 20 V pp, A: 200 µs. 150 V pp E in = Tablo 3.5 ( V = 150 V, = 100 khz, = khz ) pp 1 Taşıyı Genliği Y1: 10 V pp, A: 200 µs. Çıkış Dalga Foru Modulasyon Yüzdesi 150 V pp E in = EEM 316 Haberleşe I Deney 3 Saya 8/11

Y1: 10 V pp, A: 200 µs. 250 V pp E in = Y1: 10 V pp, A: 200 µs. 400 V pp E in = Tablo 3.6 ( V = 250 V pp, V = 150 V pp, = 100 khz ) Audio Frekansı Y1: 20 V pp, A: 200 µs. Çıkış Dalga Foru Modulasyon Yüzdesi 3 khz E in = EEM 316 Haberleşe I Deney 3 Saya 9/11

Y1: 20 V pp, A: 200 µs. 2 khz E in = Y1: 20 V pp, A: 200 µs. 1 khz E in = ( V = 250 V, V = 150V, = khz ) pp pp 2 Tablo 3.7 Taşıyıı Frekansı Y1: 5 V pp, A: 100 µs. Çıkış Dalga Foru Modulasyon Yüzdesi 500 khz E in = EEM 316 Haberleşe I Deney 3 Saya 10/11

Y1: 5 V pp, A: 100 µs. 1 MHz E in = Y1: 2 V pp, A: 100 µs. 2 MHz E in = 3.6 Teorik Değerlerin Deneysel Sonuçlarla Karşılaştırılası 1. Kısı 3.5 deki bütün durular için odülasyon indislerinin teorik değerlerini hesaplayarak deneysel sonuçlarla karşılaştırınız. Farklılıkların oluşa sebeplerini açıklayınız. 2. Taşınan sinyalin rekansı değiştirildiğinde, çıkış voltajı nasıl etkilenir? EEM 316 Haberleşe I Deney 3 Saya 11/11