26(2), 89-93, (2), 89-93, CoNiAlSn Manyetik Şekil Hatırlamalı Alaşımının Üretilmesi ve Bazı Fiziksel Özelliklerinin İncelenmesi

Benzer belgeler
Yüksek-Sıcaklık Cu-Al-Fe-Co Şekil Hatırlamalı Alaşımının İzotermal Oksidasyon Davranışının İncelenmesi

Basma Zoru Altında Kırılan ve Kırılmayan Cu-Al-Be Şekil Hatırlama Alaşım Numunelerinin Özelliklerinin İncelenmesi

ÖZET. Fe-%30Ni-%XMo ALAŞIMLARINDA ATERMAL VE İZOTERMAL MARTENSİTİK FAZ DÖNÜŞÜMLERİNİN FİZİKSEL ÖZELLİKLERİNİN İNCELENMESİ.

Fe-%18,79Mn-%4,53Ni Alaşımında Termal Etki ile Oluşan Martensitik Faz Dönüşümlerinin Fiziksel Özelliklerinin İncelenmesi

Murat Eskil Accepted: January Eyyüp Seval Kilis 7 Aralik University ISSN : ahmetcetinakis@hotmail.com


Çift Fazlı Paslanmaz Çeliklerde Yaşlandırma Koşullarının Mikroyapı Özellikleri Üzerindeki Etkisinin İncelenmesi

NiTi Şekil Hafızalı Alaşımlarda Cu İlavesinin Termal ve Mikroyapı Özelliklerine Etkileri

ÇELİKLERİN VE DÖKME DEMİRLERİN MİKROYAPILARI

20 (2), , (2), ,

: Çeşitli Heusler Alaşımlarının Yapısal ve Manyetik Özelliklerinin İncelenmesi

ÖZGEÇMİŞ VE ESERLER LİSTESİ

FARKLI ÇELİKLERE UYGULANAN DEĞİŞEN ISITMA HIZLARININ MEKANİK ÖZELLİKLERE ETKİSİNİN İNCELENMESİ

Chapter 9: Faz Diyagramları

DUAL FAZLI ÇELİKLERDE MARTENZİT VE YÜKLEME HIZININ MEKANİK ÖZELLİKLERE ETKİSİ

Kobalt Esaslı Elektrotlarla Kaplanan Malzemelerin İç Yapı ve Mekanik Özelliklerinin İncelenmesi

ÇÖKELME SERTLEŞMESİ (YAŞLANMA) DENEYİ

Bölüm 4: X-IŞINLARI DİFRAKSİYONU İLE KANTİTATİF ANALİZ

INVESTIGATION OF AA 2024 ALUMINUM ALLOY WITH NATURAL AGİNG METHOD OF MECHANICAL PROPERTIES

Isıl Çevrim Uygulanmış Al-Bronz Alaşımında Mikroyapı ve Aşınma Özelliklerinin Araştırılması

Sb 2 Te 3 ve Bi 2 Te 3 İÇERİKLİ YARI İLETKEN ALAŞIMLARIN ÜRETİMİ ve TERMOELEKTRİK, YAPISAL, MİKROYAPISAL ÖZELLİKLERİNİN İNCELENMESİ ÖZET

Casting and Characterization of High Nickel Bronzes Alloyed with Chromium

ÇÖKELME SERTLEŞTİRMESİ HOŞGELDİNİZ

Al-Cu Alaşımlarında Porozite ve Mikroyapının Yaşlandırma Üzerine Etkisi

AA2014 ALÜMİNYUM ALAŞIMI INGOTUN İÇYAPISINA HOMOJENİZASYON SICAKLIĞININ ETKİSİ

ÇİNKO KATKILI ANTİBAKTERİYEL ÖZELLİKTE HİDROKSİAPATİT ÜRETİMİ VE KARAKTERİZASYONU

ÇÖKELME SERTLEŞTİRMESİ

İNTERMETALİK MALZEMELER. Doç. Dr. Özkan ÖZDEMİR (DERS NOTLARI-4)

2xx SERİSİ ALÜMİNYUM ALAŞIMLARINDA Ag İLAVESİNİN MUKAVEMETE ETKİSİ

ELKTRİK AMAÇLI ALUMİNYUM KULLANIMI

SEMENTE EDİLMİŞ 8620 KALİTE ÇELİĞİN ÖZELLİKLERİNE SIFIRALTI İŞLEMİN ETKİSİ

Borlama Süresinin Düşük Karbonlu Mikro Alaşımlı Çeliklerin Sertlik Değerleri Üzerine Etkisi

BA KENT ÜNİVERSİTESİ. Malzemeler genel olarak 4 ana sınıfa ayrılabilirler: 1. Metaller, 2. Seramikler, 3. Polimerler 4. Kompozitler.

Magnetic Materials. 7. Ders: Ferromanyetizma. Numan Akdoğan.

AA2014 ALÜMINYUM ALAŞIMI INGOTUN İÇYAPİSİNA HOMOJENIZASYON SİCAKLİĞINİN ETKISI

MMT407 Plastik Şekillendirme Yöntemleri

ISIL İŞLEM VE YAŞLANDIRMA PARAMETRELERİNİN Al-Cu-Mg TOZ METALURJİSİ ALAŞIMINA ETKİLERİ

POLİTEKNİK DERGİSİ JOURNAL of POLYTECHNIC ISSN: (PRINT), ISSN: (ONLINE)

Retrogresyon İşleminin 7075 Alüminyum Alaşımının Aşınma Davranışına Etkisi

Isıl İşlemde Risk Analizi

PLAZMA TRANSFER ARK YÖNTEMİYLE FeCr/FeCr+C TOZUNUN DÜŞÜK KARBONLU ÇELİK YÜZEYİNE ALAŞIMLANMASI. Serkan ÖZEL, Bülent KURT, İlyas SOMUNKIRAN

1560 ppm Bor İlave Edilmiş AISI 1020 Çeliğine Isıl İşlem Yöntemlerinin Etkisi. The Effect of Heat Treatment Methods on 1560 ppm Boron Added AISI 1020

Çinko-Alüminyum esaslı ZA-12 alaşımının mikroyapı ve darbe dayanımına bor elementinin etkisi

INVESTİGATİON OF PHASE TRANSFORMATION İN AN Fe- Mn-Cr

Co-Cr-Mo Esaslı Alaşımın Özelliklerine Bazı Metallerin Etkisinin İncelenmesi

Fe-%5,23V VE Fe-%15V ALAŞIMLARININ YENİDEN KRİSTALLEŞME KİNETİĞİ

2-C- BAKIR VE ALAŞIMLARININ ISIL İŞLEMLERİ 2-C-3 MARTENSİTİK SU VERME(*)

TEKNOLOJĐK ARAŞTIRMALAR

TOKLUK VE KIRILMA. Doç.Dr.Salim ŞAHĠN

CuAl bazlı şekil hatırlamalı alaşımlarda sıcaklığa bağlı oluşan oksitlenme özelliklerinin incelenmesi

Doç.Dr. Tarık Aydoğmuş

Çentik Açma (Charpy Test Numunesi) 5 TL / Numune 1 gün DİNAMİK LABORATUVARI * TS EN ISO 148-1:2011 TS EN ISO 148-1:2011 TS EN ISO 9016:2012:2013

EN madde 8.2 Fracture toughness (Klc) EN madde 8.4 Fatique Test

ÖZGEÇMİŞ VE ESERLER LİSTESİ

Magnetic Materials. 11. Ders: Manyetik Anizotropi. Numan Akdoğan.

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. Basınç Destekli Hacim Yanma Sentezi Yöntemi ile Elde Edilen FeAl ve TiAl Kaplamalar

BAKIR BAZLI ŞEKİL HAFIZALI ALAŞIM BİLEŞİMİNİN TOZ METALURJİSİ İLE ÜRETİM KOŞULLARININ İNCELENMESİ

Derece Bölüm/Program Üniversite Yıl

Selçuk Üniversitesi ISSN 1302/6178 Journal of Technical-Online ŞEKİL HAFIZALI ALAŞIMLARDA MARTENSİTİK FAZ DÖNÜŞÜMÜ VE ŞEKİL HAFIZA MEKANİZMASI

BMM 205 Malzeme Biliminin Temelleri

SÜRTÜNME KARIŞTIRMA KAYNAĞI İLE BİRLEŞTİRİLMİŞ ALÜMİNYUM ALAŞIMLARININ MEKANİK ÖZELLİKLERİNİN İSTATİSTİKSEL OLARAK İNCELENMESİ

T.C. KİLİS 7 ARALIK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ANALİZ LİSTESİ. 150*150*150 ebatlarında 7 veya 28 Günlük Kürü Tamamlanmış Küp Beton Numune

MALZEME BİLGİSİ DERS 11 DR. FATİH AY.

AISI 1018 ÇELİK YÜZEYİNE GTA YÖNTEMİYLE STELLITE 6 KAPLAMANIN MEKANİK ÖZELLİKLERE ETKİSİ

Ultrases ile Çam ve Kavak Ağaçlarında Nem Oranı Tayini, Danışman: Prof. Ertunç ARAL

Deformasyon yaşlanmasının AA7075 Alüminyum Alaşımının Mekanik Özelliklerine Etkisinin İncelenmesi

İKİZ MERDANELİ SÜREKLİ DÖKÜM TEKNİĞİ İLE AA5754 MALZEME ÜRETİMİ. Koray TURBALIOĞLU

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 2 s Mayıs 2004

Temperleme İşleminin Yağda Soğutulan Çeliklerin Mikroyapı ve Sertlik Özelliklerine Etkisi

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 2 s Mayıs 2004

DIN17CrNiMo6 Çeliğinin Mikroyapı Özelliklerine Kritik Sıcaklıklararası Isıl İşlemlerin Etkisi

Doç.Dr.Vildan BiLGiN. Çanakkale Onsekiz Mart Üniversitesi Fen Edebiyat Fakültesi - Fizik Bölümü

Düzce Üniversitesi Bilim ve Teknoloji Dergisi Araştırma Makalesi

Alüminyum-Silisyum Alaşımlarının Mikroyapısal ve Mekanik Özelliklerinin T6 Isıl İşlemi ile İyileştirilmesi

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER

FAZ DİYAGRAMLARI ve DÖNÜŞÜMLERİ HOŞGELDİNİZ

ELASTİK PLASTİK. İstanbul Üniversitesi

SÜPERALA IMLAR. Yüksek sıcaklık dayanımı

Islah Çeliklerinden 4140 Çeliğine (42CrMo4) Değişik Oranlarda Bor İlave Edilerek Uygulanan Isıl İşlem Metotlarının Etkisi

TEKNOLOJİK ARAŞTIRMALAR

ALUMİNYUM ALA IMLARI

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

SİLİSYUM ESASLI İNTERMETALİK BİLEŞİKLER

FABRICATION AND CHARACTERIZATION OF NdFeB MAGNETIC POWDERS BY MELT SPINNING METHOD

NANO KURġUN ÜRETĠMĠ VE KARAKTERĠZASYONU

Halil Karakoç a, Hanifi Çinici b,ramazan Çıtak c

Ömer Faruk Koç, Ali Kalkanlı (Orta Doğu Teknik Üniversitesi)

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Pratik olarak % 0.2 den az C içeren çeliklere su verilemez.

Magnetic Materials. 10. Ders: Ferimanyetizma. Numan Akdoğan.

SENTETİK Fe-16Mn ALAŞIMININ BORLANMASI. BORONIZING OF SYNTHETIC Fe-16Mn ALLOY

TEKNOLOJİK ARAŞTIRMALAR

Gaz Tungsten Ark Kaynak Yöntemiyle AISI 304 Paslanmaz Çelik Yüzeyinde Üretilen M 7 C 3 Takviyeli Kompozit Kaplamaların Mikroyapısı

RRA işleminin 7075 alaşımının mekanik özelliklerine etkisi

DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik. AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi.

3. MALZEME PROFİLLERİ (MATERİALS PROFİLES) 3.1. METAL VE ALAŞIMLAR. Karbon çelikleri (carbon steels)

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:

Dr. F. Can Akbaşoğlu, Serhat Adışen, Uğur Gürol, Eylem Subaşı (Akmetal) Prof. Dr. S. Can Kurnaz (Sakarya Üni.)

Transkript:

Fırat Üniv. Fen Bilimleri Dergisi Firat Unv. Journal of Science 26(2), 89-93, 2014 26(2), 89-93, 2014 Özet CoNiAlSn Manyetik Şekil Hatırlamalı Alaşımının Üretilmesi ve Bazı Fiziksel Özelliklerinin İncelenmesi Köksal YILDIZ 1 *, Mediha KÖK 1 ve Fethi DAĞDELEN 1 1: Fırat Üniversitesi, Fen Fakültesi, Fizik Bölümü, 23119, Elazığ *kylidiz@firat.edu.tr (Geliş/Received: 20.05.2014; Kabul/Accepted: 19.07.2014) Bu çalışmada, arc-melter yöntemiyle üretilen ferromanyetik Co 38Ni 33Al 27Sn 2 şekil hatırlamalı alaşımının bazı fiziksel özellikleri incelendi. 1200 o C de 24 saat ısıl işleme tabi tutularak homojenize edilen alaşım oda sıcaklığında martensit fazda olması için 1350 o C de 4 saat yaşlandırıldı. Yaşlandırılan alaşımın martensit dönüşüm başlangıç sıcaklığı, DSC eğrisi alınarak, M s=98,7 o C olarak tespit edildi. Termogravimetrik ölçüm yöntemi kullanılarak alaşımın manyetik faz dönüşüm sıcaklığı olan Curie sıcaklığı (T c) 124,69 o C olarak belirlendi. Alaşımın morfolojik ve kristaloğrafik özellikleri, yüzey görüntüsü ve XRD deseni alınarak araştırıldı. Elde edilen sonuçlar, 1350 o C de gerçekleştirilen ısıl işlemin neticesinde, alaşımda β βʹ martensit faz dönüşümünün meydana geldiğini ve alaşımın mikroyapısının martensit βʹ fazı, çökelti fazı olan fcc γ fazı ve austenit β fazlarını içerdiğini gösterdi. Oda sıcaklığında alınan manyetik ölçüm, alaşımın dış manyetik alanın etkisinde dar bir histerezis sergilediğini ve yaklaşık 60 Oe olan koerzivite değeri ile de yumuşak manyetik özellik gösterdiğini ortaya koydu. Anahtar Kelimeler: Şekil hatırlamalı alaşım, manyetik özellik, dönüşüm sıcaklığı, Curie Sıcaklığı. Preperation and Investigation of Some Physical Properties of CoAlNiSn Magnetic Shape Memory Alloy Abstract In this study, some physical properties of Co38Ni33Al27Sn2 shape memory alloys, which was produced by arc melter method, were investigated. Heat treated alloys at 1200 oc for 24 hour was annealed at 1350 oc for 4 hour to become in martensite phase at room temperature. Martensite start transformation temperature of annealed alloy was determined as Ms=98.7 oc via DSC curve. Magnetic phase tranformation temperature named as Curie temperature (Tc) of alloy was measured to 124.69 oc by Thermogravimetric Analysis method. Morphological and crystalografic properties of alloy were investigated by obtaining XRD pattern and surface image. As a result of 1350 oc heat treated, the obtained results showed that β βʹ martensite phase transition was occurred and the microstructure of alloy contained with βʹ martensite phase, fcc γ precipitate phase and austenite β phase. The magnetic propety measurement was exhibited that alloy had narrow hysteresis and soft magnetic propery with 60 Oe coersivity value at room temperature. Key words: Shape memory alloy, magnetic property, transformation temperature, Curie temperature. 1.Giriş Son zamanlarda, Co-Ni-Al alaşımı, Ni-Mn- Ga ve Ni-Fe-Ga alaşımlarına alternatif olarak kullanılmaktadır. Çünkü iyi bir sünekliğe sahiptir. Tane sınırlarında γ fazın çökelmesi iyi sünekliğin temelidir. γ faz, numunenin kesme ve çekme sonrası sıcaklık uygulaması ile yer değiştirebilir. Curie sıcaklığı (T c) ve özellikle martensit dönüşüm sıcaklığı ayrı ayrı, değişen Co ve Al oranı ile -150 ile 200 ºC aralığında kontrol edilebilir. Co-Ni-Al alaşımı için önerilen kompozisyon sınırı Al için %20 den %30 a, Co için %40 tan azdır [1]. Bu alaşımlar, ferromanyetik şekil hatırlamalı alaşımlar içinde gelecek vaat eden alaşımlardandır. Çünkü termal uygulamalar boyunca şekillendirilmek için yeterli süneklik meydana gelir. Alaşımı meydana getiren bileşenler diğer ferromanyetik şekil hafızalı alaşımlara göre ucuzdur ayrıca dönüşüm sıcaklığını ve Curie sıcaklığını kumanda etme yeteneğine sahiptirler [2]. Enami ve Nenno [3]; B2 yapıdaki Ni-Al alaşımının şekil hatırlama etkisi sergilediğini bulmuşlardır. Ni-Al alaşımının şekil hatırlama olayına kobalt (Co) katkısının etkisi Kainuma ve arkadaşları [4] tarafından

Köksal Yıldız, Mediha Kök, Fethi Dağdelen çalışılmış ve Co-Ni-Al alaşımlarının termoelastik martensit dönüşüm verdikleri ve martensit dönüşüm sıcaklığının artan Co miktarı ile azaldığını bulmuşlardır. Co-Ni-Al alaşımları B2 (kübik) yapıdan, L1 0 (tetragonal c/a=0,816) yapıya termoelastik martensit geçiş göstermektedir [5]. β tabanlı Co- Ni-Al ferromanyetik şekil hatırlamalı alaşımlar sıcak-soğuk kullanılabilirliği ile geniş alanda dikkat çekmektedir. Bu alaşımların T c Curie sıcaklığı artan Co miktarı ile artmaktadır. T c sıcaklığı martensit dönüşüm sıcaklığından yüksek olduğu zaman, martensit faz dönüşümü manyetik alandan meydana gelir ve ferromanyetik şekil hatırlamalı alaşım üretilir. Co-Ni-Al klasik şekil hatırlamalı alaşımdır fakat bu alaşımın şekil değişimi sadece %0,06 dır [6]. Bu çalışmada, arc melter yöntemi ile üretilen CoNiAlSn alaşımının dönüşüm sıcaklığı, kristal yapısı, yüzey morflojisi ve manyetik özellikleri belirlendi. 2. Materyal ve Metot Ferromanyetik Co 38Ni 33Al 27Sn 2 alaşımı, yüksek vakumlu argon atmosferinde bakır pota içerisinde arc-melt fırınında birkaç kez yeniden eritilerek üretildi. Alaşımın homojenizasyonu için, ingot 1200 o C de 24 saat tavlandı ve tuzlubuzlu suda soğutuldu. Daha sonra alaşım, oda sıcaklığında martensit fazda olması için, 1350 o C de 4 saat ısıl işleme tabi tutularak yaşlandırılıp tuzlu-buzlu suda soğutuldu. LEO EVO 40 model taramalı elektron mikroskobunda enerji-ayırım x- ışını (EDX) spektrumları alınarak alaşım bileşenlerinin elementel atomik yüzdeleri %38,45±0,39 Co, %35,57±0,51 Ni, %25,09±0,55 Al ve %0,892±0,07 Sn olarak belirlendi. Alaşımın austenit martensit faz dönüşüm sıcaklıkları DSC (Differential Scanning Calorimeter) ile, Curie sıcaklığı ise TGA (Thermal Gravimetric Analysis) ölçümleri alınarak tespit edildi. Alaşımın kristaloğrafik faz analizi CuK α radyonu kullanılarak Bruker Discover D8 x-ışını difraktometresinde (XRD) gerçekleştirildi. Mikroyapısal karakterizasyonlar NIKON optik mikroskobu ile yapıldı. Kimyasal dağlama çözeltisi olarak 25 ml HCL+75 ml HNO 3 çözeltisi kullanıldı. Alaşım içerisindeki fazların Vickers mikrosertlik değerleri Emco Test DuraScan mikrosertlik test cihazında yapılan ölçümlerle 90 elde edildi. Alaşımın manyetik özellikleri oda sıcaklığında PPMS (Physical Property Measurement System) kullanılarak belirlenmiştir. 3. Bulgular Şekil 1-a, Co 38Ni 33Al 27Sn 2 alaşımının ısıtmasoğutma DSC eğrisini göstermektedir. 1350 o C de 4 saat gerçekleştirilen termal yaşlandırma işlemi alaşımın dönüşüm sıcaklıklarının beklendiği gibi pozitif sıcaklık bölgesine kaymasına neden olmuştur [7]. Isıtma ve soğutma eğrilerinden, alaşımın austenit martensit dönüşüm sıcaklıkları belirlenmiştir: austenit başlangıç sıcaklığı (A s) 130,2 o C, austenit pik sıcaklığı (A p) 152,4 o C, austenit bitiş sıcaklığı (A f) 178,9 o C, martensit başlangıç sıcaklığı (M s) 98,7 o C, martensit pik sıcaklığı (M p) 77 o C ve martensit bitiş sıcaklığı (M f) 56,3 o C. Buradan, Co 38Ni 33Al 27Sn 2 alaşımının oda sıcaklığında martensit fazda olduğu anlaşılmaktadır. Ferromanyetik Co 38Ni 33Al 27Sn 2 alaşımının Curie sıcaklığı (T c), numune haznesinin üst kısmına bir mıknatısın yerleştirilmesiyle gerçekleştirilen TGA ölçümünün alınmasıyla belirlendi [8,9]. Bu yöntemde, alaşım numunesi mıknatısın oluşturduğu manyetik alanın etkisiyle TGA cihazının içerisindeki numune terazisinde olduğundan daha hafif bir kütleye sahip gibi görünür. T c Curie sıcaklığında ferromanyetik paramanyetik faz dönüşümünün gerçekleşmesiyle numunenin manyetik davranışı değişir ve orijinal kütle değerine geri döner. Sonuç olarak, bu dönüşüm neticesinde TGA eğrisinde numune kütlesinde ani ve hızlı bir artış gözlenir. Co 38Ni 33Al 27Sn 2 alaşımının TGA eğrisi Şekil 1- b de gösterilmektedir. Alaşımın T c sıcaklığı 124,69 o C olarak belirlenmiştir. Şekil 2, Co 38Ni 33Al 27Sn 2 alaşımının XRD desenini göstermektedir. XRD deseninden, Co 38Ni 33Al 27Sn 2 alaşımının fcc γ fazı, martensit L 10 fazı olan βʹ fazı ve austenit β fazlarını içerdiği anlaşılmaktadır. İndislenen difraksiyon pikleri Şekil 2 üzerinde verilmektedir. Pik şiddetlerinden, alaşım içerisindeki baskın fazın martensit βʹ ve çökelti fazı olan γ olduğu görülmektedir. 1350 o C de gerçekleştirilen ısıl işlem neticesinde, alaşımda β βʹ martensit faz dönüşümü meydana gelmiştir. Bundan dolayı austenit β fazının pik şiddeti düşüktür. Sonuç olarak, XRD deseninden elde edilen sonuçlar,

CoNiAlSn Manyetik Şekil Hatırlamalı Alaşımının Üretilmesi ve Bazı Fiziksel Özelliklerinin İncelenmesi DSC eğrisinden elde edilen sonuçlar ile uyum içerisindedir. Şekil 1. Co 38Ni 33Al 27Sn 2 alaşımının (a) DSC, (b) TG/DTA eğrileri. Şekil 2. Co 38Ni 33Al 27Sn 2 alaşımının XRD deseni. 91 Co 38Ni 33Al 27Sn 2 alaşımının mikroyapısı Şekil 3 te gösterilmektedir. Isıl işlemin etkisiyle alaşımın mikroyapısı oldukça büyük boyutlu tanelerden oluşmaktadır. Birçok alanda bu büyük boyutlu taneler çıta morfolojisine sahip martensit plakalar (βʹ-fazı) içermektedir. Alaşımda ısıl işlem neticesinde meydana gelen martensit dönüşüm bu görüntüden net bir şekilde anlaşılmaktadır. βʹ martensit faz tanelerinin tane sınırlarında γ fazı çökeltileri bulunmaktadır ve bazı bölgelerde βʹ taneleri tamamıyla γ fazı çökeltileri tarafından sarılmıştır. Bununla birlikte, alaşımın tane boyutları ve βʹ martensit faz alanları ile mukayese edildiğinde, γ faz çökeltilerinin alaşım içerisindeki hacim kesirlerinin genel olarak oldukça düşük olduğu görülmektedir. Bazı tane sınırlarında hiç γ fazı bulunmamaktadır. Bu durum ısıl işlemin bir sonucudur ve γ fazı anafaz içerisinde çözünmüştür. Sonuç olarak bu da alaşımın martensit dönüşüm sıcaklığını artırmıştır [5,10]. Bundan dolayıdır ki, bizim alaşımımızın M s sıcaklığı 98,7 o C ile oda sıcaklığının üzerindedir. Zaten γ fazı, alaşımların martensit dönüşümlerini bastırarak onların şekil hafıza işlevselliklerini düşürmektedir [11]. Jia-jia ve arkadaşları [10] Co 38Ni 34Al 28-xSn x alaşımının mikroyapısal ve mikrosertlikleri üzerine Sn atomlarının içeriğinin ve ısıl işlem sıcaklığının etkisini inceledikleri çalışmalarında; Sn içeriğinin artmasıyla (Al içeriği azaldığı için) alaşımdaki γ faz içeriğinin azaldığını ve ayrıca yükseltilen ısıl işlem sıcaklıklarıyla da anafaz içerisinde γ faz çözünmesinin de arttığını gözlemlemişlerdir. Onlar en yüksek martensit faz miktarını %2 Sn içeren alaşımda elde etmişlerdir. Buradan, Co-Ni- Al alaşımında Al atomları yerine yapılan Sn ilavesinin ve de ilaveten yapılan ısıl işlemin alaşımın özellikle martensit dönüşüm özelliklerini doğrudan etkilediği görülmektedir. Şekil 3 teki görüntü dikkatlice incelendiğinde, büyük boyutlu tanelerin içlerinde bazı bölgelerde çukur şeklinde gözeneklerin bulunduğu görülmektedir. Biz bu yapıların alaşımlama hataları olduklarını düşünmekteyiz ve yapılan detaylı görüntüleme ve incelemelerden bu gözeneklerin içlerinde γ faz çökeltilerin çekirdeklendikleri tespit edilmiştir. Co 38Ni 33Al 27Sn 2 alaşımının mikrosertlik değeri Vickers mikrosertlik ölçümleri alınarak

Köksal Yıldız, Mediha Kök, Fethi Dağdelen belirlendi. Yalnız, alaşım oda sıcaklığında martensit fazda olduğu için, mikrosertlik ölçümleri βʹ martensit faz ve γ çökelti faz alanlarından ayrı ayrı alındı. βʹ martensit ve γ fazının Vickers mikrosertlik değerleri sırasıyla 404±10 HV 0,1 ve 130±9 HV 0,025 olarak hesaplandı. Beklendiği gibi γ fazının mikrosertlik değeri βʹ martensit fazınınkine göre oldukça düşük çıkmıştır. Hali hazırda γ fazının daha yumuşak bir faz olduğu ve sünekliği artırdığı bilinmektedir [11,12]. Şekil 3. Co 38Ni 33Al 27Sn 2 alaşımının yüzey morfolojisini ve yüzeyde yer alan fazları gösteren optik mikroskop görüntüsü. dış manyetik alan ile alaşım saturasyon değeri 44,5 emu/g dır. Bu değer literaturdeki CoNiAl alaşımlarıyla hemen hemen aynıdır [13]. Buradan, Sn elementinin CoNiAl alaşımının manyetik özelliği üzerine ciddi bir tesiri olmadığı anlaşılmaktadır. CoNiAlSn alaşımının koerzivite değeri yaklaşım 60 Oe olarak belirlenmiştir. Bu değere göre alaşım dar bir histerisiz sergiler (Şekil 4) ve alaşımın yumuşak manyetik özellik gösterdiği söylenebilir. CoNiAlSn alaşımının manyetik özelliğini daha iyi anlayabilmek için CoAl alaşımı ile kıyaslamanın uygun olduğunu düşüncesindeyiz. Co-%14Al manyetik şekil hatırlamalı alaşımın saturasyon değeri Omori ve arkadaşları tarafından 122 emu/g olarak bulunmuştur [14]. Bu değerin yüksek çıkmasının sebebi: yüksek manyetik moment değerine sahip Co ferromanyetik elementinin atomikçe yüzdesinin çok olması ve Co elementinin manyetik moment değerinin yaklaşık 1,6 μ B olmasıdır. CoAl alaşımına, nikel ve kalay katıldığında saturasyon değeri düşmüştür. Saturasyon değerinin düşmesi, manyetik olan Co elementi miktarının azalması yerine manyetik nikel elementi miktarının artmasıdır. Nikelin manyetik moment değeri 0,6 μ B dir. Co yerine manyetik moment değeri düşük bir ferromanyetik element katılınca saturasyon değerinin düştüğü görülmüştür. 4. Tartışma CoNiAlSn alaşımının üretilmesi ve fiziksel özelliklerinin incelenmesinden elde edilen sonuçlar aşağıda özetlenmiştir: Şekil 4. Co 38Ni 33Al 27Sn 2 alaşımının M-H eğrisi. CoNiAlSn alaşımının oda sıcaklığındaki manyetik özelliği 7 Tesla ile -7 Teslal ık dış manyetik alan içinde belirlenmiştir. Uygulanan CoAlNiSn şekil hatırlamalı alaşımının dönüşüm sıcaklığının, benzer orandaki CoAlNi alaşımlarında olduğu gibi 100 o C nin üzerinde olduğu tespit edilmiştir. CoNiAlSn alaşımının fcc γ fazı, martensit L 10 fazı olan βʹ fazı ve austenit β fazlarını içerdiği XRD sonuçlarında görülürken, aynı fazlara optik mikroskop görüntülerinde de rastlanmıştır. Ayrıca mikrosertlik değerlerine bakıldığında iki faz arasında sertlik değerlerinde ciddi bir fark göze çarpar. Manyetik ölçüm sonuçlarına göre alaşımın yumuşak manyetik malzeme özelliği sergilediği ve manyetik saturasyon değerinin CoAlNi alaşmına yakın bir değerde olduğu bulunmuştur. 92

CoNiAlSn Manyetik Şekil Hatırlamalı Alaşımının Üretilmesi ve Bazı Fiziksel Özelliklerinin İncelenmesi 5. Kaynaklar 1. Maziarz, W., (2008). Structure changes of Co-Ni- Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling, Jurnal of Alloys and Compounds, 448, 223-226 2. Moya, X., Mãnosa, L., Planes, A., Krenke, T., Acet, M. and Wassermann, E.F., (2006). Martensitic transition and magnetic properties in Ni-Mn-X alloys, Materials Science and Engineering: A, 438-440, 911-915. 3. Enami, K. and Nenno, S., (1971). Memory effect in Ni-36.8 At. Pct Al martensite, Metall. Trans. 2(5), 1487-1490. 4. Kainuma, R., Ise M., Jia, C.C., Ohtani, H. and Ishida, K., (1996). Microstructural evolution in ductile (B2)+γ Ni-Al-Fe alloys, Intermetallics 4, 37-45. 5. Karaca, H.E., Karaman, I., Lagoudas, D.C., Maier, H.J. and Chumlyakov, Y.I., (2003). Recorverable stres-induced martensitic transformation in a ferromagnetic CoNiAl alloy, Scripta Materialia., 49, 831-836. 6. Xu, G.F., Yin, Z.M, Luo, F.H., Muo, S.Z. and Oikawa, K, (2006). Martensitic and magnetic transformation of Co 41Ni 32Al 24Sb 3 and Co 41Ni 32Al 27 alloys, Transactions of Nonferrous Metals Society of China, 16, 776-782. 7. Tanaka, Y., Oikawa, K., Sutou, Y., Omori, T., Kainuma, R. and Ishida, K., (2006). Martensitic transition and superelasticity of Co-Ni-Al ferromagnetic shape memory alloys with β+γ two phase structure, Materials Science and Engineering A, 438-440, 1054-1060. 8. Brown E. M., (2004). Introduction to Thermal Analysis Techniques and Applications, Kluwer Academic, New York. 9. Kök, M. and Aydoğdu, Y., (2013). Electron concentration dependence of phase transition and magnetic properties in NiMnGa alloys, Journal of Superconductivity and Novel Magnetism, 26, 1691-1696. 10. Jia-jia, S., Zhi-wei, X. and Yuan-zheng, Y., (2012). Effect of Sn substitution and heat treatment on microstructure and microhardness of Co 38Ni 34Al 28-xSn x magnetic shape memory alloys, Transactions of Nonferrous Metals Society of China, 22, 2158-2163. 11. Liu, Z., Yu, S., Yang, H., Wu, G. and Liu, Y., (2008). Phase separation and magnetic properties of Co-Ni-A1 ferromagnetic shape memory alloys, Intermatallics, 16, 447-452. 12. Ishida, K., Kainuma, R., Uneo, N. and Nishizawa, T., (1991). Ductility enhancement in NiAl (B2)- 93 base alloys by microstructural control, Metallurgical Transactions A, 22, 441-446. 13. Liu, Z.H., Dai, X.F., Zhu, Z.Y., Hu, H.N., Chen, J.L., Liu, G.D. and Wu, G.H., (2004). Martensitic transformation and magnetic properties of Co-Ni- Al shape memory alloy ribbons, Journal of Physics D: Applied Physics, 37, 2643-2647. 14. Omori, T., Sutou, Y., Oikawa, K., Kainuma, R. and Ishida, K., (2006). Shape memory and magnetic properties Co-Al ferromagnetic shape memory alloys, Materials Science and Engineering: A, 438-440, 1045-1049.