Yarıiletken Yapılar 2009 HSarı 1
Ders İçeriği Yarıiletken klemler» Homo klemler» Hetero klemler Optoelektronik Malzemeler Optoelektronik Üretim Teknolojisi 2009 HSarı 2
Kaynaklar: 1) Solid State lectronics Devices, B. G. Streetmann, Prentice Hall, 1995 2) The Physics of Semiconductors with applications to Optoelectronic Devices Kevin F. Brennan, Cambridge University Press, 1999 3) Quantum Semiconductor Structures, Fundamentals and Applications, C. Weisbuch, Borge Vinter, Academic Press Inc. 1991 4) http://www.semiconductors.co.uk/ 5) http://www.tf.unikiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html 2009 HSarı 3
Yarıiletken klemler Yarıieltkenlerden yararlanma bunlardan farklı tip katkılanmış olanlarını biraraya getirerek eklemler oluşturmak ile gerçekleştirilir İki farklı eklemlerden bahsedebiliriz: i) Aynı tür eklemler (Homojunction): Aynı tür yarıiletkenden oluşturulmuş n ve ptipi yarıiletkeni birleştirerek oluşturulan eklemler (örneğin Si:Si, Ge:Ge) n p Si Si n p ii) Farklı tür eklemler (Heterojuction): Farklı tür yarıiletkenleri birleştirerek oluşturulan eklemler (örneğin Si:Ge, GaAs:) Si Ge n p n GaAs p 2009 HSarı n p 4
Aynı Türden klemler (Homojunction) Silikondan yapılmış ntipi ve ptipi katkılanmış yarıiletken malzemeyi düşünelim Malzemeler aynı olduğu için (silikon) n ve p tipi malzemenin bant aralığı da aynı olacaktır ntipi ptipi lektron Deşik (hole) Atom qφ qχ qφ qχ =0 Boşluk f f qφ (iş fonksiyonu): Bir elektronu Fermi seviyesinden ( f ) boşluğa (=0) götürmek için gereken enerji qχ (elektron affinity): Bir elektronu iletim bandından ( ) boşluğa (=0) götürmek için gereken enerji 2009 HSarı 5
Yarıiletken klemler lektron Deşik (hole) Atom ntip ptip f f d 2 d 1 2εVo N A = ( ) q ND ( N A ND ) 2εVo N D = ( ) q N A( N A N D ) 1/ 2 1/ 2 V b : yapısal (buildin) potansiyel d : tüketim (deplition) bölgesi d V b I V n p A f 2009 HSarı 2εV 1 1 6 o d = d d = ( ) 1 d2 q N A N D 1/ 2
MetalYarıiletken klemler lektron Deşik (hole) Atom Metal pveya ntipi yarıiletken pn eklemlerinin birçok kullanışlı özelliği sadece metalyarıiletken eklem yapılarak da oluşturulabilir 2009 HSarı 7
IV ğrileri V n p I qv kt I( V ) = I ( e 1) k I I k =karanlık akım Dp Dn Ik = qa( pn np ) L L p n I k V 2009 HSarı 8
IV ğrileriters Besleme n p V A n d p qv kt I( V ) = I ( e 1) I k V b V f Ters besleme V= V Difüzyon ve drift akımlar Ters besleme Karanlık akım 2009 HSarı Çığ etkisi 9
IV ğrileriileri besleme n d p qv kt I( V ) = I ( e 1) k n p V A I V b V f İleri besleme V= V 2009 HSarı İleri besleme 10
Yarıiletken klemler: IV ğrileri n V p I Aydınlatma Yok qv kt I( V ) = I ( e 1) k I k =karanlık akım Dp Dn Ik = qa( pn np ) L L p n n p I n p VV o VV o F V b I k V F n p n p V b V o F çığ bölgesi V o F V b =Kırılma gerilimi (breakdown voltage) 2009 HSarı 11
Farklı Türden klemlerhetero Yapılar Farklı yarıiletkenden yapılmış ntipi ve ptipi katkılanmış yarıiletken malzemeyi düşünelim Malzemeler farklı olduğu için bant aralıkları da farklı olacaktır Si: ntip Ge: ptip lektron Deşik (hole) Atom qφ qφ =0 Boşluk f g =1,2 ev g =0,6 ev f 2009 HSarı 12
Hetero Yapılar Si: ntip Ge: ptip lektron Deşik (hole) Atom φ φ =0 Boşluk f g =1,2 ev g =0,6 ev f f f 2009 HSarı 13 Üçgen Kuantum Çukuru
Hetero YapılarÜstünlükleri Denge durumu (V=0) x z n p f f y F 2009 HSarı 14
Farklı Türden klemlerüstünlükleri v y = yüksek devingenlik x y x=l y z F V 0 yük modülasyonu V 0 yüksek devingenlik L lektronlar, yüklü iyonlardan ayrılarak devingenliklerinin daha büyük olduğu bölgede hareket ederler Kuantum çukur içersindeki elektron yoğunluğu dış elektrik alan ile değiştirilebilir (yük modülasyonu) Kuantum çukurunun genişliği (zdoğrultusu) elektronların de Broglie dalgaboyu mertebesinde olduğu için kuantum etkileri görülür Yükler, uzayın belli bir bölgesine sınırlandırıldığı için elektrondeşik birleşmesi çok verimlidir Farklı malzemeler kullanıldığı için (farklı kırılma indisleri) fotonlar uzayın belli bir bölgesinde hapsedilir, optik verim artar Kuantum çukurunun genişliği ayarlanarak (katkı atom konsantrasyonu) enerji seviyeleri, dolayısı ile yayınlanacak ışığın frekansı ayarlanabilir 2009 HSarı 15
Yüksek Devingenlik 10 6 Piezoelektrik (akustik fonon) Devingenlik (cm 2 /Vs) Devingenlik (cm 2 /Vs) T (K) 10 1 10 2 Fonon etkileşimi (kristal titreşimi) İyonlaşmış katkı atomları (saçılma) 10 5 GaAs 101 10 2 T (K) Fonon etkileşimi (kristal titreşimi) 10 6 Piezoelektrik (akustik fonon) GaAs/ 10 5 2009 HSarı 16
Yük Modülasyonu V Ters besleme V < 0 I n p z x y z F F 2009 HSarı 17
Yük modülasyonu V İleri besleme V > 0 I n p z x z F y F 2009 HSarı V > 0 18
Yük modülasyonu Vm V d I V > 0 V y x z F I n p F 2009 HSarı 19
Kuantum Çukuru GaAs yarıiletkenine Al ekleyerek yarıiletkeni oluşturulabilir. nin band aralığı ( g ) içindeki Al atomlarının yüzdesine bağlı olarak GaAs nin band aralığı olan g =1,42 ev ile AlAs nin band aralığı olan g =2,2 ev arasındaki değerleri alabilir Ga x Al (1x) As GaAs Ga x Al (1x) As =0 Boşluk f f Kuantum Çukuru g g 2009 HSarı 20 GaAs
Kuantum Çukuru V= lektron için Schrödinger Denklemi 2 d ψ dx ( x) 2m e 2 2 [ ] V ( x) ψ ( x) = 0 ħ 3 n=3 L λ e x d 2 ψ ( x ) 2 m ψ x 2 2 dx k = Dalga fonksiyonu ( ) = 0 ħ 2m e ħ ψ(x)= 0 ( ) 2 sin( nπ ψ ) n x = x L L (V= ) 0 < x < L (V= 0) 0 < x < L n=1, 2, 3... 2 1 L L λ e n=2 n=1 x nerji n = 2 2 π ħ 2m L e 2 n 2 n=1, 2, 3... T=0 K T=0 K Ödev1: Potansiyel Ödev2: Üçgen kuantum çukurunun sonlu çukuru olduğu durumda olduğu durumda enerji enerji değerleri nasıl değerleri nasıl olur? 2009 HSarı olur? 21
Düşük Boyutlu Sistemler Yasak bant g (Al)=1.432.16 ev y x z nerji ( g ) GaAs g =1.43eV L x Ly g (Al)=1.432.16 ev L z x L x L x L x L x L y L y Ly L y L z L z L z L z 3 Boyutlu yapı (3B) Yığınsal (bulk) yapılar 2 Boyutlu yapı (2B) (kuantum çukurları) 1 Boyutlu yapı (1B) (kuantum teller) 0 Boyutlu yapı (0B) (kuantum noktalar) L x >> λ e L x λ e L x λ e L x λ e L y >> λ e L y >> λ e L y >> λ L y λ e e 2009 HSarı 22 L z >> λ e L z >> λ e L z λ e L z λ e
YığınsalKuantumluluğa Karşı L x x z y Yığınsal (bulk) Yapı L x >> λ e Kuantum Çukuru L x λ e L x L x GaAs x GaAs x g() g() g() e 2 e 1 g() enerji g(gaas) GaAs e 2 2 ħ k = = 2m e C h ω 2 2 ħ k = = 2m ( ) g ω = = ħ ħ h GaAs 2009 HSarı g n n frekans frekans 23 C V V e n g(gaas) 1 h 2 h 2 ħ nπ = g 2me Lx 2 h n 2 ħ nπ = 2mh Lx e h ( ) ω = ħ 2 ω n=1, 2, 3..
Düşük Boyutlu Sistemlerin Üstünlükleri Taşıyıcıları (elektron ve deşik) uzayın belli noktasında hapsetmek taşıyıcıların dalga fonksiyonlarının örtüşmesini arttırır. Bu örtüşme, ed çiftlerinin verimli bir şekilde birleşmesini başka bir ifade ile yayınlanan ışığın kuantum verimliliğinin artmasını sağlar Durum yoğunluğunun kesikli olması taşıyıcıların bant içinde ısıl enerjilerinin genişlemesini engellediğinden bantgenişliği azalır, tek renkliliğe daha çok yaklaşılır Yukarıdaki durumların sonucu olarak, ışık üretiminde kullanılan düşük boyutlu sistemler eşik akımın düşmesine ve yüksek kuantum verimliliğine yol açar. Durum Yoğunluğu 0B 2B 3B 2009 HSarı ( 24 g )
Hetero YapılarUygulama Alanları Farklı türden yarıiletkenler ile yapılan eklemler sayesinde düşük kuantum boyutlara inmek mümkün. Farklı türden yarıiletkenler ile yapılan eklemler elektronikte ve optoelektronikte oldukça yaygın olarak kullanılmaktadır lektronikte, Hızlı transistörlerin yapımında Modulation Doped Field ffect Transistor(MODFT veya HMT) Hetorojunction Bipolar Transistör (HBT) Optoelektronikte, Kuantum çukurlu lazerlerin yapımında Verimli güneş pillerinde Işığın modülasyonunda Dalga klavuzlarında DBR ayna yapımında 2009 HSarı 25
Optoelektronik Malzemeler 2009 HSarı 26
Optoelektronik Malzemeler1 Işık üretimi için dolaysız (direk) bant aralığına sahip yarıiletkenler kullanılmalıdır Genellikle bileşik yarıiletkenler dolaysız bant aralığına sahip oldukları için optoelektronik teknolojisinde çok yaygın olarak kullanılır (GaAs, ) Verimli ışık aletlerinin yapılabilmesi için kristal kusurlarının en az olması gerekir g k Bant aralığının, istenilen dalgaboyunda ışık elde edecek (algılayacak) şekilde ayarlanabilmesi arzulanır Bileşik yarıiletkenlerde atom konsantrasyonu değiştirilerek bant aralığı ( g ) değiştirilebilir. Böylece istenilen bant aralığına sahip yarıiletken malzemeler elde edilebilir. Buna bant aralığı mühendisliği (Band Gap ngineering) denir Benzer şekilde kırılma indisi de konsantrasyona bağlı olarak değişir (Selmineer Denklemi) Örneğin: Al x Ga 1x As komposizyona bağlı bant aralığı ( g )( 293 o K sıcaklıkta), x =0 ile 0.44 aralığında g (x) = g (GaAs) (1.429eV)x (0.14eV)x 2 x > 0.44 için AlGaAs indirek bant aralığına sahip olmaktadır kırılma indisi de konsantrasyona bağlıdır (Selmineer Denklemi) B n λ 2 2 ( x) = A( x) D( x) 2 o λo C( x) 2009 HSarı Selmineer Denklemi 27
g () g (GaAs) g (GaAs) g () d (nm) GaAs ngaas n n () n (GaAs) d 2009 HSarı 28
film (AlAs) Altaş (GaAs) Optoelektronik Malzemeler3 Farklı türden bileşik yarıiletkenleri büyütmek için uygun bir alttaşın bulunması gerekmektedir a b Alttaşın ve üzerinde büyütülecek filmin kristal örgü sabitleri arasındaki fark çok küçük olmalıdır b a a < %1 Örgü sabitleri arasındaki fark ne kadar büyük olursa alttaş üzerinde büyütülecek filmin kalınlığı da o kadar çok azalır t d 2009 HSarı 29 http://www.tf.unikiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html
Optoelektronik Malzemeler4 Bileşik Yarıiletkenlerde kristal sabiti ve enerji 2009 HSarı 30 http://www.tf.unikiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html
Tek Atomlu Yarıiletkenler Optoelektronik Malzemeler5 III IV V VI VII silikon (Si), germanyum (Ge), karbon (C)! II Işık Kaynakları I II V V Işık Algılayıcıları I Güneş pilleri Dolaylı Bant yapısı (Si) Bileşik Yarıiletkenler IIIV İkili (Ternary) => GaAs, AlAs, InAs, InP Üçlü (Quaternary) => Ga x Al (1x) As, In x Al (1x) As V I I Işık Kaynakları V IIVI Işık Algılayıcıları Güneş pilleri İkili (Ternary) => HgTe, CdTe I Üçlü (Quaternary) => Cd x Hg (1x) Te 2009 HSarı Dolaysız (direk) Bant yapısı (GaAs) 31
Optoelektronik Malzemeler Al x Ga 1x As için bant aralığı (293 o K) g (x) = g (GaAs) (1.429eV)x (0.14eV)x 2 x > 0.44, için AlGaAs indirek bant aralığına sahiptir n Kırılma indisi 2 2 ( x) = A( x) D( x) λ 2 o λo C( x) B 2009 HSarı 32 http://www.tf.unikiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html
Optoelektronik MalzemelerInGaAs In x Ga 1x As için bant aralığı (300 o K) g (x) = 1.425eV (1.501eV)x (0.436eV)*x 2 Bütün x değerleri için InGaAs direk bant aralığına sahiptir 2009 HSarı 33 http://www.tf.unikiel.de/matwis/amat/semi_en/kap_5/backbone/r5_1_4.html
Optoelektronik Yapılar Bileşik yarıiletken yapılar MB, MOCVD gibi tekniklerle üretilir g (InP) g (In 0,53 Ga 0,47 As) g () g (GaAs) g () g (GaAs) In 0,53 Ga 0,47 As ninp ninp GaAs ngaas GaAs GaAs GaAs ngaas Basit Heteroyapılar Kuantum Çukurları Çoklu Kuantum Çukurları 2009 HSarı 34
Hetero Yapılar In 0,53 Ga 0,47 As ninp ninp g (InP) g (In 0,53 Ga 0,47 As) Basit Heteroyapılar f f Üçgen Kuantum Çukuru 2009 HSarı 35
Kuantum Çukurlar Düşük bant aralığına sahip (örneğin GaAs), yüksek bant aralığına sahip başka bir malzeme ile (örneğin ) sandiviç yapıda büyütüldüğü takdirde düşük bant aralığına sahip malzemenin iletim bandı elektronlar için, değerlik bandı ise deşikler için kuantum çukuru oluşturur. d kalınlığı eksiton yarıçapı mertebesinde d (nm) GaAs ngaas g () g (GaAs) Kuantum Çukurları d (nm) 2009 HSarı 36
Çoklu Kuantum Çukurlar Çoklu kuantum çukurlarda kuantum çukurları arasındaki mesafe uzak olduğu durum GaAs GaAs GaAs ngaas g () g (GaAs) Çoklu Kuantum Çukurları Her bir katmanın kalınlığı kullanılan ışığın belli dalgaboylarına göre ayarlanarak DBR aynaları yapılabilir. 2009 HSarı 37
Çoklu Kuantum ÇukurlarSüper Örgüler Çoklu kuantum çukurlarda kuantum çukurları arasındaki mesafe yakın olduğu durumda kuantum çukurları etkileşerek taşıyıcılar çukurlar arasında tünelleme ile geçebilmektedir GaAs GaAs GaAs ngaas g () g (GaAs) Çoklu Kuantum Çukurları Her bir katmanın kalınlığı kullanılan ışığın belli dalgaboylarına göre ayarlanarak DBR aynaları yapılabilir. 2009 HSarı 38
Optoelektronik Malzeme Üretim Teknikleri Optoelektronik malzemeler (heteroyapılar) çoğunlukla epitaksi kristal büyütme teknikleri ile üretilirler pitaksi, kelime anlamı ile alttaşın kristal yapı ve doğrultusunu koruyarak yapılan büyütme işlemine denir (100) Yaygın optoelektronik malzeme üretim teknikleri: Sıvı Fazı pitaksi (Liquid Phase pitaxy, LP) Buhar Fazı pitaksi (Vapor Phase pitaxy, VP) Organik Metal Kimyasal Faz ptaksi (Metalorganic Chemical Vapor Deposition, MOVP) Organik Metal Kimyasal Buhar pitaksi (Metalorganic Chemical Vapor Deposition, MOCVD) Moleküler Demet pitaksi (Molecular Beam pitaxy, MB) 2009 HSarı 39
Molekül Demeti Yöntemi (MB) Çok yüksek vakum (< 10 10 mbar) altında gerçekleştirilen epitaksiyel büyütme yöntemidir Genellikle IIIV bileşik yarıiletken yapılar (, InAlAs vs) büyütülmektedir shutter elektron tabancası In Al büyütme odası transfer (tampon) vakum bölgesi örnek girişi As Si alttaş örnek hazırlama odası örnek transfer çubuğu Ga yüksek vakum pompaları kaynaklar fosforlu ekran yüksek vakum pompaları karakterizasyon odası Üstünlükleri: Atomik mertebede kalınlık kontrolü Saflık derecesi çok iyi olan malzemeler üretilebilir Büyütme sırasında çok iyi katkılanma kontrolü sağlanabilir Lazer, dedektör ve modülatör gibi heteroyapılar için ideal Olumsuzlukları: Kristal büyütme hızı yavaş < 1 µm/sa Seri üretime uygun değil Oldukça pahalı (Million Buck pitaxy) 2009 HSarı 40
Yarıiletken TeknolojisiDiyot Fabrikasyonu Al Metali SiO 2 nsi 1 nsi 5 nsi 9 Fotoresist (PR) SiO 2 yi aşındıracak kimyasal işlem Al nsi 2 nsi 6 nsi 10 Maske 3 nsi nsi 7 UV ışık 4 Boron Difüzyonu 8 nsi 11 nsi nsi 2009 HSarı 41 psi
Yarıiletken TeknolojisiLazer Fabrikasyonu Optoelektronik devre elemanları daha çok heteroyapılar ile yapıldığı için bunların imal edilmesi daha karmaşıktır Optoelektronik devre elemanları daha çok birleşik yarıiletkenlerden (hetoroyapılar) yapıldığı için MB, MOCVD gibi pahalı teknikler kullanılır Alttaş n GaAs pitaksiyel büyütme Oksit Tabaka GaAs ngaas processing GaAs ngaas 2009 HSarı 42
Teşekkürler 2009 HSarı 43
Teşekkürler 2009 HSarı 44