İYON NİTRÜRLEME VE ÇELİĞİN ÖZELLİKLERİNE ETKİSİ



Benzer belgeler
GAZ KARIŞIMLARININ İYON NİTRÜRLEME ÜZERİNE ETKİSİNİN ARAŞTIRILMASI (THE INVESTIGATION OF THE EFFECT OF GAS MIXTURES ON ION NITRIDING)

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 2 s Mayıs 2004

PLAZMA NİTRÜRLENMİŞ X40CRMOV5-1 YÜKSEK ALAŞIMLI ÇELİĞİN AŞINMA DAVRANIŞININ İNCELENMESİ

Düşük Sıcaklık Plazma Nitrürleme (Nitrasyon) Uygulamaları

TEKNOLOJİK ARAŞTIRMALAR

PLAZMA NİTRÜRLEME PARAMETRELERİNİN DEĞİŞEN MALZEME ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİNİN İSTATİSTİKSEL ANALİZİ

PLAZMA (İYON) NİTRÜRLEME YÖNTEMİ VE MALZEME ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİ

TEKNOLOJİK ARAŞTIRMALAR

BÖLÜM 3 DİFÜZYON (YAYINIM)

1. Giriş 2. Yayınma Mekanizmaları 3. Kararlı Karasız Yayınma 4. Yayınmayı etkileyen faktörler 5. Yarı iletkenlerde yayınma 6. Diğer yayınma yolları

ÇÖKELME SERTLEŞTİRMESİ

Yüzey Sertleştirme 1

DENEYİN ADI: Jominy uçtan su verme ile sertleşebilirlik. AMACI: Çeliklerin sertleşme kabiliyetinin belirlenmesi.

YÜZEY MÜHENDİSLİĞİNDE YENİ BİR YAKLAŞIM; DUBLEKS YÜZEY İŞLEMİ

3. MALZEME PROFİLLERİ (MATERİALS PROFİLES) 3.1. METAL VE ALAŞIMLAR. Karbon çelikleri (carbon steels)

Isıl işlem, katı haldeki metal ve alaşımlarına belirli özellikler kazandırmak amacıyla bir veya daha çok sayıda, yerine göre birbiri peşine uygulanan

YÜZEY SERTLEŞTİRME İŞLEMLERİ

Ç l e i l k i l k e l r e e e Uyg u a l na n n n Yüz ü ey e y Ser Se tle l ş e t ş ir i me e İ şl ş e l m l r e i

Difüzyon (Atomsal Yayınım)

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 6 Sayı: 2 s Mayıs 2004

JOMINY DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ

ÜÇ FARKLI ÇELİĞE KATI BORLAMA İŞLEMİ YAPILMASININ İÇ YAPI VE SERTLİK ÜZERİNE ETKİSİNİN İNCELENMESİ ÖZET ABSTRACT

DENEYİN ADI: Çeliklerin Isıl İşlemi. AMACI: Çeliklerde ısıl işlem yoluyla mikroyapı ve mekanik özelliklerin değişiminin öğretilmesi.

PLAZMA NİTRÜRLENMİŞ AZ ALAŞIMLI BİR ÇELİĞİN AŞINMA DAVRANIŞININ İNCELENMESİ (INVESTIGATION OF WEAR BEHAVIOR OF A PLASMA NITRIDED LOW ALLOY STEEL)

Faz ( denge) diyagramları

MALZEMELERİN MUKAVEMETİNİ ARTIRICI İŞLEMLER

PLASTİK ŞEKİL VERME (PŞV) Plastik Şekil Vermenin Temelleri: Başlangıç iş parçasının şekline bağlı olarak PŞV iki gruba ayrılır.

Faz kavramı. Kristal yapılı malzemelerin iç yapılarında homojen ve belirli özellikler gösteren bölgelere faz (phase) adı verilir.

Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ 1

Borlama İşleminde Kullanılan Bor Tozu Tane Boyutunun Kaplama Tabakası Üzerine Etkisi

Borlama Süresinin Düşük Karbonlu Mikro Alaşımlı Çeliklerin Sertlik Değerleri Üzerine Etkisi

FZM 220. Malzeme Bilimine Giriş

KTÜ, Metalurji ve Malzeme Mühendisliği Bölümü

MMT440 Çeliklerin Isıl İşlemi 2 Sertleştirme Isıl İşlemi ve Sertleşebilirlik

TEKNOLOJİSİ--ITEKNOLOJİSİ. Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ

ÇELİKLERİN VE DÖKME DEMİRLERİN MİKROYAPILARI

MMM291 MALZEME BİLİMİ

Plazma nitrürlenmiş sert metal plaketlerde performans araştırması

MALZEME BİLGİSİ DERS 11 DR. FATİH AY.

FZM 220. Malzeme Bilimine Giriş

YÜZEY SERTLEŞTİRME İŞLEMLERİ. (Konu Devamı)

Isıl İşlemde Risk Analizi

Çift Fazlı Paslanmaz Çeliklerde Yaşlandırma Koşullarının Mikroyapı Özellikleri Üzerindeki Etkisinin İncelenmesi

MALZEME BİLİMİ (DERS NOTLARI)

FARKLI ÇELİKLERE UYGULANAN DEĞİŞEN ISITMA HIZLARININ MEKANİK ÖZELLİKLERE ETKİSİNİN İNCELENMESİ

Ekstrüzyon ve Ejeksiyon Vida-Kovanlarının İmalatında Kullanılan Çeliklerinin Seçimi ve Mukayesesi

Metallerde Özel Kırılganlıklar HASAR ANALİZİ

MALZEME BİLGİSİ DERS 7 DR. FATİH AY.

Boya eklenmesi Kısmen karışma Homojenleşme

Chapter 9: Faz Diyagramları

TERMOKİMYASAL YÜZEY KAPLAMA (BORLAMA)

Malzemeler yapılarının içerisinde, belli oranlarda farklı atomları çözebilirler. Bu durum katı çözeltiler olarak adlandırılır.

ÇELİKLERİN ISIL İŞLEMLERİ. (Devamı)

BÖHLER W303 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Sıcak iş Çeliklerinin Başlıca Özelliklerinin Karşılaştırılması

TIG GAZALTI KAYNAK YÖNTEMİNDE KULLANILAN GAZLAR VE ÖZELLİKLERİ PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ

Konu: Yüksek Hassasiyetli Yağ Keçelerinin Takviye Bilezik Kalıplarının Üretiminde Kullanılan Takım Çelikleri ve Üretim Prosesleri

LEVON JOZEF ÇAPAN PROFESÖR

YÜKSEK MUKAVEMETLİ ÇELİKLERİN ÜRETİMİ VE SINIFLANDIRILMASI Dr. Caner BATIGÜN

Faz dönüşümleri: mikroyapı oluşumu, faz dönüşüm kinetiği

PLAZMA TRANSFER ARK YÖNTEMİYLE FeCr/FeCr+C TOZUNUN DÜŞÜK KARBONLU ÇELİK YÜZEYİNE ALAŞIMLANMASI. Serkan ÖZEL, Bülent KURT, İlyas SOMUNKIRAN

ATOM HAREKETLERİ ve ATOMSAL YAYINIM

Ç8620 Ç4140. ÖLÇÜLEN SERTLİK DEĞERİ (HRc) ÖLÇÜLEN SERTLİK DEĞERİ (HRc) SERTLEŞTİRİLMİŞ UÇTAN MESAFE (mm) Ç1050 Ç1040. ÖLÇÜLEN SERTLİK DEĞERİ (HRc)

Karşılaştırmalı Mekanik Özellikler Tablosu

KAPLAMA TEKNİKLERİ DERS NOTLARI

6.WEEK BİYOMATERYALLER

İleri Teknoloji Bilimleri Dergisi Journal of Advanced Technology Sciences ISSN:

ÇÖKELME SERTLEŞTİRMESİ HOŞGELDİNİZ

2. Sertleştirme 3. Islah etme 4. Yüzey sertleştirme Karbürleme Nitrürleme Alevle yüzey sertleştirme İndüksiyonla sertleştirme

CALLİSTER FAZ DÖNÜŞÜMLERİ

BÖHLER W302. Sıcak iş Çeliklerinin Başlıca Özelliklerinin Karşılaştırılması

PLASTİK ŞEKİLLENDİRME YÖNTEMLERİ

Metal Yüzey Hazırlama ve Temizleme Fosfatlama (Metal Surface Preparation and Cleaning)

Paslanmaz Çelik Gövde. Yalıtım Sargısı. Katalizör Yüzey Tabakası. Egzoz Emisyonları: Su Karbondioksit Azot

Kobalt Esaslı Elektrotlarla Kaplanan Malzemelerin İç Yapı ve Mekanik Özelliklerinin İncelenmesi

Pratik olarak % 0.2 den az C içeren çeliklere su verilemez.

POTANSİYEL - ph diyagramları

BÖHLER K460 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca Çelik Özelliklerinin Karşılaştırılması

MMT209 Çeliklerde Malzeme Bilimi ve Son Gelişmeler 10 Yüksek mukavemetli yapı çelikleri. Yrd. Doç. Dr. Ersoy Erişir Güz Yarıyılı

Döküm Prensipleri. Yard.Doç.Dr. Derya Dışpınar. İstanbul Üniversitesi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. AISI D2 Yüzeyinde Oluşturulan TiN Kaplamanın Aşınma Özellikleri

Yüzey Sertleştirme Yöntemleri

Faz Dönüşümleri ve Faz (Denge) Diyagramları

Tozların Şekillendirilmesi ve Sinterleme Yrd. Doç. Dr. Rıdvan YAMANOĞLU

KAYNAK UYGULAMASI DİFÜZYON KAYNAĞI

şeklinde, katı ( ) fazın ağırlık oranı ise; şeklinde hesaplanır.

YÜZEY SERTLEŞTİRME YÖNTEMLERİ

MALZEME BİLİMİ. Difüzyon

Tozların Şekillendirilmesi ve Sinterleme. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

ÇÖKELME SERTLEŞMESİ (YAŞLANMA) DENEYİ

HORLAMANIN KAYNAK BÖLGESİNE ETKİSİNİN İNCELENMESİ

TEKNOLOJİK ARAŞTIRMALAR

KOROZYON DERS NOTU. Doç. Dr. A. Fatih YETİM 2015

Bu tablonun amacı, çelik seçimini kolaylaştırmaktır. Ancak, farklı uygulama tiplerinin getirdiği çeşitli baskı durumlarını hesaba katmamaktadır.

DEMİR KARBON FAZ DİYAGRAMI

BÖHLER K600 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca çelik özelliklerinin karşılaştırılması

BARTIN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı

OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ

BÖHLER K306 OSMANLI ALAŞIMLI ÇELİKLER SAN. VE TİC. LTD. ŞTİ. Başlıca çelik özelliklerinin kıyaslanması

Düşük Karbonlu Çeliklerin Borlanmasında Nikel İçeriğinin Borür Tabakası Özelliklerine Etkileri

Transkript:

PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 22 : 8 : 1 : 19-25 İYON NİTRÜRLEME VE ÇELİĞİN ÖZELLİKLERİNE ETKİSİ Handan BAYCIK Zonguldak Karaelmas Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, 671/Zonguldak Geliş Tarihi : 26.1.21 ÖZET Yüzeyin kimyasal bileşimini değiştirerek yapılan nitrürleme, termokimyasal bir yüzey sertleştirme yöntemidir. Yüzeyde ince, sert bir nitrür tabakası oluşur. Bu tabaka, iki kısımdan oluşur. Dıştaki tabakaya beyaz tabaka (bileşik tabaka), içtekine ise difüzyon tabakası denir. Nitrürleme yöntemleri, gaz, sıvı ve iyon nitrürleme olmak üzere üç grupta incelenir. Gaz nitrürleme işlemi amonyak kullanılarak yapılır. Amonyak gazından ayrışan azotun çeliğin demir ve alaşım elementleri ile reaksiyona girerek oluşturduğu nitrürler ince tanelidir. Sıvı nitrürleme, NaCN içeren tuz banyolarında yapılır. Siyanürdeki (CN) azot ve karbonun bir kısmı çeliğe yayınır. Yapıda nitrürlerden başka ε-karbonitrürü vardır. İyon nitrürlemede azot ve genellikle hidrojen gibi bir gaz karışımı kullanılır. Azot, çeliğin demir ve alaşım elemanları ile reaksiyona girer ve sertleşmeyi sağlayan nitrürler oluşur. Bu çalışmada, X4CrMoV51 sıcak iş takım çeliği kullanılmıştır. Çeliğe önce su verme ve temperleme, sonra iyon nitrürleme yapılmıştır. Daha sonra, bu çeliklerin sertlik değerleri ile X-ışını difraksiyon analizleri incelenmiştir. İyon nitrürlenmiş çeliğin yüzey sertliğinin, yalnızca su verilmiş ve temperlenmiş çeliğinkinden yaklaşık olarak iki kat daha fazla olduğu saptanmıştır. Anahtar Kelimeler : Nitrürleme, İyon nitrürleme, Sıcak iş takım çeliği, Sertlik ION NITRIDING AND THE INFLUENCE OF THE PROPERTIES OF THE STEEL ABSTRACT The nitriding performed to change the chemical composition of the surface is the method of a thermochemical surface hardening. Fine, hard nitrided case consist of two zones at the surface; The outer one white layer (compound layer), the inner one diffusion layer. The nitriding methods are determined at three groups as gas, salt and ion nitriding. Gas nitriding process is performed using ammonia. The nitrogen decompositing from the ammonia gas reacts with the iron and the alloy elements of the steel and nitrides that ensure have fine grain. Salt nitriding is performed at the salt bath that consists of NaCN. Part of the nitrogen and carbon of the siyanide is diffused to the steel. The structure consists not only of nitride but also ε-carbonitride. A gas mixture of nitrogen and hidrogen is usually used in the ion nitriding process. The nitrogen reacts with the iron and alloy elements of the steel and nitrides that ensure hardening exist. In this study, X4CrMoV51 hot work tool steel is used. First, the quenching and tempering, later the ion nitriding is performed to the steel. Then, hardness values and X-ray diffraction analyses of these steels are determined. It is found that the surface hardness of ion nitrided steel is approximately twice higher than that of quenched and tempered steel. Key Words : Nitriding, Ion nitriding, Hot work tool steel, Hardness 1. GİRİŞ Çalışmanın amacı, iyon nitrürleme işleminin çeliğin özelliklerine etkisinin araştırılmasıdır. Bu amaç ile önce işlem tanıtılmıştır (Kowacs and Russel, 1986). Daha sonra, işlem ile çelikte oluşan tabakalar ve bu tabakalardaki nitrür fazları incelenmiştir (Cho and Lee, 198; Kowacs and Russel, 1986; Spalvins, 1989; Li, 1989; Spalvins, 1993; Karamış ve 19

Gerçekçioğlu, 1993). Ayrıca nitrür fazlarını oluşturan alaşım elementleri açıklanmış ve bu alaşım elementlerinin çeliğin sertliğine, iyon nitrürleme tabaka derinliğine etkileri verilmiştir (Robino and İnal, 1983; Karamış ve Gerçekçioğlu, 1993; Sun and Bell, 1997). gazların malzemeye çarpmaları sonucunda da mor bir ışıma görülür. Buna mor akım - purple glow adı verilir. Vakum kabına malzeme katot (negatif kutup) olacak şekilde yerleştirilir. Malzeme ile kap arasında 1 Voltluk bir gerilim uygulanarak plazma oluşur. Çeliğin özelliklerini iyon nitrürleme faktörleri değiştirmektedir. Bundan dolayı, çalışmada işleme zaman ve sıcaklık etkisi araştırılmıştır (Cho and Lee, 198; Robino and İnal, 1983; Özbaysal et al., 1986; Peng, 1989; Sun and Bell, 1991; Duh and Lin, 1993; Karamış ve Gerçekçioğlu, 1993; Sun and Bell, 1997). Ayrıca, iyon nitrürlemede gaz akış debisi, basınç ve gaz bileşiminin etkileri araştırılmıştır (Cohen et al., 1986; Sun and Bell, 1991; Spalvins, 1993). Sonra, AISI H13 (DIN X4CrMoV51) (DIN 1.2344) sıcak iş takım çeliğine önce su verme ve temperleme işlemi yapılarak kimyasal analiz, X-ışını difraksiyonu ve mikrosertlik ölçümü; daha sonra aynı çeliğe iyon nitrürleme işlemi yapılarak X-ışını difraksiyonu ve mikrosertlik ölçümü yapılmıştır (Baycık, 1999). Çalışmada son olarak iyon nitrürleme işleminin uygulama örnekleri incelenmiştir (Kowacs and Russell, 1986; Lidster and Pigott, 1989; Karamış, 199; Tamer, 1996; Baycık, 1999). Sonuçlarda ise azot difüzyonu ve nitrür oluşumu irdelenerek sertlik etkisi araştırılmıştır (Özbaysal ve İnal, 1986; Stappen et al., 1991; Sun and Bell, 1991; Baycık, 1999). 2. İYON NİTRÜRLEME Şekil 1. İyon nitrürleme donanımının şematik görünüşü (Kowacs and Russell, 1986). 2. 1. İyon Nitrürleme ile Oluşan Faz Yapıları İyon nitrürleme yönteminde, yüzeyde iki tabaka oluşmaktadır. Dıştaki tabaka beyaz tabaka (compound layer), içteki tabaka ise difüzyon tabakasıdır (diffusion zone). Fe-N denge diyagramına göre, % 5.7-6.1N arasında YMK kafes yapısında Fe 4 N fazı; % 11-11.35N arasında hegzagonal kafes yapısında Fe 2-3 N fazı oluşur (Spalvins, 1993). Fe-N denge diyagramı Şekil 2 de görülmektedir (Stahlschlussel, 1983). İyon nitrürleme, metallerin yüzey sertleştirilmesinde kullanılan bir işlemdir. Şekil 1 de iyon nitrürleme donanımının şematik görünüşü verilmektedir (Kowacs and Russell, 1986). Nitrürlemeye başlamadan önce parça yüzeyinin temizlenmesi gereklidir. Bu amaçla, argon veya hidrojen gibi bir gaz kullanılır. İşlem, kap vakuma alındıktan sonra, işlem sıcaklığına ulaşılıncaya kadar, düşük basınç ve yüksek gerilimde parça yüzeyinde iyon bombardımanı oluşturarak yapılır. Bu işleme saçılma (sputtering) adı verilir. İşlemde gaz olarak azot ve genellikle hidrojen kullanılır. Bu karışım, yaklaşık 1.3 ile 13.3 Pa (1-1 Torr) basınç altındaki bir vakum kabında iyonlaşır. Yöntem, iyonlaşan gazların malzeme yüzeyine bombardıman edilmesidir. Azot ve hidrojen gazları vakum kabına verildiğinde malzeme yüzeyinde akım boşalımı (glow discharge) oluşur. İyonlaşmış Şekil 2. Fe-N denge diyagramı (Stahlschlussel, 1983) Mühendislik Bilimleri Dergisi 22 8 (1) 19-25 2 Journal of Engineering Sciences 22 8 (1) 19-25

İyon nitrürlemenin temel reaksiyon mekanizması, saçılan demirin azot atomları ile reksiyona girmesi ve kararlı olmayan FeN oluşturmasıdır (Spalvins, 1989). Bu mekanizma dört aşamada gerçekleşir (Kwon et al., 1986): 1.aşama : e N = N + + 2e 2.aşama : N + Katot Saçılan Fe 3.aşama : Saçılan Fe + N FeN 4.aşama : Katot yüzeyinde FeN oluşumu Oluşan FeN kararlı değildir ve Fe 2 N, Fe 3 N ve Fe 4 N olarak ortaya çıkar. Ayrıca, oluşan Fe 4 N metalde var olan Fe 3 C ile Fe 3 CFe 4 N haline, daha sonra seri reaksiyonlar ile beyaz tabaka, Fe 3 CFe 4 N Fe 3 CFe 3 N Fe 2-3 N haline gelebilir (%.35C li düşük alaşımlı çeliğe 5 o C sıcaklık altında 5 Torr basınçta 3 saat iyon nitrürleme yapılmıştır) (Cho and Lee, 198). Yüzey yakınındaki azot iyonlarının bazıları metale yayınır, kalanı ise dolaşan gaza geri döner. Genellikle % 5 den daha az azot ve hidrojen karışımında beyaz tabaka oluşmaz. % 15-3 azot ve hidrojen karışımında γ' fazı (Fe 4 N), yaklaşık olarak % 6-7 azot, % 1-3 metan ve hidrojen karışımında ise genellikle ε fazı (Fe 2-3 N) oluşur (Kovacs and Russell, 1986). γ'-fe 4 N tek fazı, ince kristal tanesine sahiptir. γ'- Fe 4 N de yüksek yoğunlukta dislokasyon, yığılma hataları ve ikiz alt yapısı vardır. Sürekli iyon bombardımanından dolayı, sürekli olarak büyük miktarda nokta hataları görülür ve grup nokta hataları daha büyük olduğundan bir dislokasyon boşluğuna toplanabilir. Bundan dolayı, kafes boşlukları, küçük dislokasyon boşlukları ve dislokasyon ağları oluşur (Li, 1989). ε + γ' çift faz tabakası ise, γ' kristalinin arasında dağılan paralel çizgi şeklindeki ε-fe 2-3 N den oluşur. Yüksek yoğunluklu kristal hataları, tek fazın dayanım ve tokluğunu artırır ve çift faza göre daha büyük dayanım-tokluk verir. İnce, γ'-fe 4 N faz yapısındaki tabaka diğerleri arasında en sünek olanıdır (Karamış ve Gerçekçioğlu, 1993). 2. 2. Nitrür Oluşturan Alaşım Elementleri ve Etkileri Çeliklerde kullanılan Al, Cr, Mo, V gibi alaşım elementleri nitrür oluşturmada en etkili elementlerdir. Mo ilave edildiğinde nitrürleme sıcaklığında kırılganlık riski azalır. Ni, Cu, Si ve Mn gibi diğer alaşım elementleri nitrürleme özellikleri üzerinde daha az etkiye sahiptirler. Al çok kuvvetli nitrür oluşturan bir elementtir. Bu etki özellikle Al içerikli çeliklerde (%.85-1.5Al) daha iyi görülür ve çok iyi nitrürleme sonuçları sağlar (Karamış ve Gerçekçioğlu, 1993). Ayrıca V, gerçekten güçlü bir nitrür yapıcıdır (Robino and İnal, 1983). Yüksek kromlu çeliklerde, CrN çökeltilerindeki azotun çoğunun nitrür tabakasında olduğu ve tabakadaki toplam azot için ferritte çözünen azot dağılımının ihmal edilecek şekilde küçük olduğu literatürde ifade edilmektedir (Sun and Bell, 1997). Alaşım elementi kromun yüzeyden mesafeye bağlı olarak çözeltideki toplam azot miktarına ve ferritteki azot miktarına etkisi Şekil 3 de görülmektedir. 56 o C, 1 saat Toplam azot miktarı (%) 1,4 1,2 1,8,6,4,2 %5Cr %3.2Cr %1Cr,2,4,6,8 1 a) Yüzeyden mesafe (mm) Ferritteki azot (%),15,12,9,6,3 %5Cr %3,2Cr %1Cr,2,4,6,8 1 b) Yüzeyden mesafe (mm) Şekil 3. a) Çözeltideki azot, b)çeşitli Cr-yatak çelikleri için hesaplanan toplam azot miktarları (Sun and Bell, 1997) Mühendislik Bilimleri Dergisi 22 8 (1) 19-25 21 Journal of Engineering Sciences 22 8 (1) 19-25

3. İYON NİTRÜRLEME FAKTÖRLERİNİN ÇELİĞİN ÖZELLİKLERİNE ETKİSİ 3. 1. Zaman ve Sıcaklık Etkisi İşlem zamanı ve işlem sıcaklığı arttıkça nitrür tabaka derinliği artmaktadır (Duh and Lin, 1993). İşlem zamanı arttıkça beyaz tabaka kalınlığı gaz nitrürlemede hızlı olarak artarken iyon nitrürlemede yaklaşık 1 saatten sonra sabit kalmaktadır (Karamış ve Gerçekçioğlu, 1993). Zamanın fonksiyonu olarak beyaz tabaka kalınlığının değişimi Şekil 4 de görülmektedir. BTK (Beyaz Tabaka Kalınlığı) m 6 5 4 3 2 1 Gaz Nitrürleme 2 4 6 8 Zaman (saat) İyon Nitrürleme Şekil 4. Zamanın fonksiyonu olarak beyaz tabaka kalınlığının değişimi (Nitralloy 135M çeliği - %.42 C,.64 Mn,.11P,.11 S,.36 Si, 1.6 Cr,.32 Mo, 1.18 Al) (Karamış ve Gerçekçioğlu, 1993) Sertlik eğrisi, işlem zamanına bağlı olarak farklı davranış gösterir. Nitrürlenmiş malzemenin sertliği nitrür tabaka kalınlığına ve tane boyutuna bağlıdır. İşlem zamanı çok uzun olursa, tane boyutu nispeten küçük ve nitrür tabakası nispeten kalın olduğunda, malzemeye ve işlem şartlarına bağlı olarak belirli bir sıcaklıkta (örneğin, yapılan çalışmada 45 o C de) maksimum sertlik elde edileceği düşünülmektedir (Cho and Lee, 198). İşlem sıcaklığı arttıkça yüzey sertliği artmakta, fakat belirli bir sıcaklık değerinden sonra sertlikte düşüşler ortaya çıkmaktadır (Robino and İnal, 1983; Sun and Bell, 1991). Nitrür boyutu ve dağılımı, kuru aşınma mekanizmasını etkiler. Nitrür yalnızca yüksek sertliğe sahip değil, aynı zamanda düşük sürtünme katsayısına sahiptir. İyon nitrürlenmiş deney parçalarında beyaz tabaka, plastik şekil değiştirmeye direnç gösterir. Sertlik arttıkça aşınma çok azalır. İyon nitrürleme işleminden sonra, nitrür boyutu ve dağılımı ince ve homojendir (Peng, 1989). Şekil 5 de X4CrMoV51 çeliğinin iyon nitrürleme zamanının fonksiyonu olarak farklı iyon nitrürleme sıcaklıklarında difüzyon tabakasının karesine etkisi görülmektedir. Şekilden anlaşıldığı gibi, zaman arttıkça difüzyon tabakası artmakta, sıcaklığa bağlı olarak da zaman ve sıcaklık arttıkça difüzyon tabakası daha fazla artmaktadır (Özbaysal ve İnal, 1986) Difüzyon tabaka kalınlığının karesi (µm 2 ) 4 36 32 28 24 2 16 12 8 4 48 o C 52 o C 44 o C 2 4 6 8 1 12 14 Zaman (saat) Şekil 5. X4CrMoV51 çeliğinde değişik iyon nitrürleme sıcaklıklarında zamanın difüzyon tabaka kalınlığının karesine etkisi (1 Torr, %5-25N 2 ) (Özbaysal ve İnal, 1986). Azot gazı ve saf metal arasındaki reaksiyonlardan oluşan nitrürler için çok fazla veri olduğu bilinmektedir (Sun and Bell, 1997). Bununla birlikte, literatürde, çözünen azot ve alaşım elementleri arasındaki reaksiyonlar hakkında çok az veri olduğu ifade edilmektedir. Bundan dolayı, azot gazı ve saf metal arasındaki reaksiyonun serbest enerjisinden, azot gazı ve çözünen alaşım elementleri arasındaki reaksiyon için serbest enerji (azot potansiyeli) tahmin edilmiştir. Şekil 6 da, sıcaklığın fonksiyonu olarak, azot gazı ve çözünen alaşım elementleri arasındaki çeşitli reaksiyonların serbest enerji eğrileri görülmektedir. Serbest enerji (kcal/mol) 4-4 -8-12 Fe+N 2=2(N) (%.1) 2Cr (%1)+N 2=2CrN 2V+N 2=2VN 2Al+N 2=2AlN -16 2 4 6 8 1 Sıcaklık ( o C) 8Fe+N 2=2Fe 4N 3/2Si+N 2=1/2Si 3N 4 2Ti+N 2=2TiN Şekil 6. Çeşitli nitrürlerin hesaplanan serbest enerji diyagramı (Sun and Bell, 1997) Mühendislik Bilimleri Dergisi 22 8 (1) 19-25 22 Journal of Engineering Sciences 22 8 (1) 19-25

3. 2. Gaz Akış Debisi, Basınç ve Gaz Bileşiminin Etkisi Gaz akış debisi arttıkça beyaz tabaka kalınlığı ve difüzyon tabaka kalınlığı artmaktadır. Basınç arttıkça difüzyon tabaka kalınlığı artmakta, beyaz tabaka kalınlığı ise azalmaktadır (Cohen et al., 1986). Gaz bileşimindeki N 2 oranının azalması demir nitrür tabaka kalınlığında önemli bir azalmaya neden olur. Bundan dolayı, yüksek kalitede ve istenilen kalınlıkta demir nitrür tabakası N 2 ve H 2 nin oranları ile sağlanabilir. Bununla beraber, demir nitrür tabaka kalınlığının artışının nitrürlemenin ilk bir kaç saati için zamana bağlılığı paraboliktir, daha sonra daha fazla bir artış göstermemiştir (Sun and Bell, 1991). 4. YAPILAN DENEYLER Yapılan çalışmada X4CrMoV51 sıcak iş takım çeliği kullanılmıştır. Çeliğe, 35-4 C de birinci ön ısıtma, 8-82 C de nötr ortamda ikinci ön ısıtma, 14 C de ostenitleme, 5-52 C de sıcak banyoda su verme ve 56 C de 3 kere 2 saat süreyle temperleme uygulanarak su verme ve temperleme işlemi yapılmıştır. Çeliğin kimyasal bileşim analizi için ARL 346 spektrometresi, iç yapı analizi için X-ışını difraksiyonu kullanılmıştır. Difraksiyon, 4kV gerilim, 2mA akım, CoK α ışını kullanarak 6-8 o arasında, 1 o /dak tarama hızı ile yapılmıştır. Kullanılan X-ışını difraksiyonu cihazı Rigaku 25/32 (RINT X-Ray Diffractometer) dir (Baycık, 1999). Su verme ve temperleme yapılmış çeliğin kimyasal bileşimi Tablo 1 de görülmektedir (Baycık, 1999). X-ışını difraksiyonunda ise α-fe, Fe 3 C ve Cr 7 C 3 saptanmıştır. Daha sonra, su verilmiş ve temperlenmiş çeliğe, 5 C sıcaklık, 13.3 Pa basınç, %25N 2 + %75H 2 gaz karışımı altında 1 saat süreyle iyon nitrürleme işlemi yapılmıştır. X-ışını difraksiyonunda, α-fe, Fe 3 C, Fe 2 N, Fe 3 N, Fe 2-3 N karışık fazı saptanmıştır. Su verme ve temperleme işleminden ve iyon nitrürleme işleminden sonra, çeliklerin yüzey sertlikleri ve yüzeyden içeri doğru sertlikleri ölçülmüştür (Şekil 7) (Baycık, 1999). Tablo 1. Su verme ve Temperleme Yapılmış X4CrMoV51 Çeliğinin Kimyasal Bileşimi (Baycık, 1999) Malzeme % C % Mn 2 % P % S % Si % Cu % Cr % Ni % Mo Su verilmiş ve temperlenmiş X4CrMoV51.375.3857.213.45.973.1159 4.95.2945 1.273 Malzeme % Sn % Al % As % Ca % Ta % V % W % Co % Fe+ Su verilmiş ve temperlenmiş X4CrMoV51.18.274.17.6.254.9494.656.182 9.53 Sertlik (HV.5 ) 14 12 1 8 6 4 İyon Nitrürlenmiş Su Verilmiş ve Temperlenmiş İyon Nitrürleme koşulları : P = 13.3 Pa %25N 2 + %75H 2 t = 1 saat T = 5 o C Su verme+temperleme koşulları : Ostenitleme : 14 o C Su verme (Sıcak banyo) : 5-52 o C Temperleme : 56 o C, 3x2 saat 2 5 1 15 2 25 Yüzeyden mesafe (µm) Şekil 7. X4CrMoV51 çeliğinin yüzeyden içeri doğru sertlik değişimi (Baycık, 1999) Mühendislik Bilimleri Dergisi 22 8 (1) 19-25 23 Journal of Engineering Sciences 22 8 (1) 19-25

5. İYON NİTRÜRLEMENİN UYGULAMA ÖRNEKLERİ Almanya, Fransa, Avusturya ve Japonya da üretilen plastik işleme makinalarının silindirleri ve helezonları iyon nitrürleme ile sertleştirilmektedir (Karamış, 199). Bu parçaların yapımında kullanılan çelikler 31CrMo12, 34CrAlMo5 veya X35CrMo17 gibi nitrürasyon çelikleri veya paslanmaz çeliklerdir. 53 C de 24 saat iyon nitrürleme ile bahsedilen helezonların ömrü, gaz atmosferinde yapılana göre dikkate değer bir şekilde, çelik tipine bağlı olarak 3-1 kere uzatılmıştır. Yine 31CrMo12 (En4B) çeliğinden yapılmış toz karıştırma helezonlarının 5 C de 3 saat iyon nitrürlenmesi ile yüzey sertliği 89 HV 3 a ulaşmış ve tozların sebep olduğu abrasif aşınmaya karşı ömrü arttırılmıştır. Sıcak dövme kalıbında kullanılan su verilmiş ve temperlenmiş X4CrMoV51 çeliğinin yüzey sertliği 621 HV.5 iken bu çeliğe 5 C sıcaklıkta 13.3 Pa basınç altında % 25N 2 + % 75H 2 gaz karışımı kullanarak 1 saat süreyle iyon nitrürleme yapıldığında çeliğin yüzey sertliği 13 HV.5 e yükselmiştir (Baycık, 1999). Nitrürlenmemiş X4CrMoV51 çeliğinden imal edilen sıcak dövme kalıpları ile yapılan ömür deneylerinde dövme sayısı 2 civarında iken 46-48 o C sıcaklıkta, 13.3 Pa basınç altında, % 2N 2 + %8H 2 gaz karışımında, 1 saat iyon nitrürleme yapılan kalıplarda aynı şartlarda ömür 18 civarına çıkmıştır. Bu, iyon nitrürlemenin kalıp ömrünü 9-1 kat artırdığını göstermektedir (Tamer, 1996). Enjeksiyon kalıp makinası endüstrisinde distribütör (42CrMo4), plastik kalıp endüstrisinde sıkıştırma kalıbı ve büyük enjeksiyon kalıbı (4CrMnNiMo864), basma endüstrisinde büyük çekme kalıpları (X155CrVMo12 2), dövme endüstrisinde sıcak iş kalıpları ve alüminyum ekstrüzyon endüstrisinde ekstrüder kalıbı (X4CrMoV51) yapımında kullanılır (Lidster and Pigott, 1989). Otomotiv endüstrisinde valf, krank mili, dişli, dövme kalıpları; savunma endüstrisinde silah namlusu, top kuyruk kaması, roket atış rayı; kağıt endüstrisinde kesme ve ayırma bıçağı, doktor bıçağı, kıvrım haddeleri yapımında kullanılır (Kovacs and Russell, 1986). 6. SONUÇLAR VE TARTIŞMA İyon nitrürleme faktörlerinin çeliğin özelliklerine etkisi önemli bir araştırma konusudur. Bir çalışmada, zaman ve sıcaklık arttıkça nitrür tabaka derinliğinin arttığı (Duh and Lin, 1993), başka bir çalışmada da belli bir süreden sonra tabaka kalınlığının artmadığı verilmiştir (Karamış ve Gerçekçioğlu, 1993). Diğer bir çalışmada, karbon miktarları değiştirilerek iyon nitrürleme yapılan çeliklerde, % C miktarı arttıkça sertliklerinin arttığı iddia edilmiştir (Sun and Bell, 1991). Bir çalışmada da, gaz akış debisinin artmasının nitrür tabaka derinliğini arttırdığı ifade edilmiştir (Cohen et al., 1986). Basıncın artması ise, difüzyon tabaka kalınlığını artırmakta, beyaz tabaka kalınlığını ise azaltmaktadır (Cohen et al., 1986). İyon nitrürleme işlemi ile çelikteki Al, Cr, Mo, V gibi bazı alaşım elementlerinin nitrür oluşturduğu bilinmektedir. Örneğin, alaşım elementi kromun yüzeyden mesafeye bağlı olarak çözeltideki toplam azot miktarına ve ferritteki azot miktarına etkisi literatürde verilmiştir (Sun and Bell, 1997). % Cr miktarının artması toplam azot miktarının artmasına, ferritteki azot miktarının ise azalmasına neden olduğu Şekil 3 de görülmektedir. Bununla birlikte, çözünen azot ve alaşım elementleri arasındaki reaksiyonlar hakkında çok az veri olduğu ifade edilmektedir (Sun and Bell, 1997). Sistemin minimum enerji ile kararlı yapıda olduğu dikkate alındığında, Şekil 6 da, AlN nin kararlı, VN ve CrN nin yarı kararlı, Fe 4 N nin ise kararsız yapıda olduğu söylenebilir. İyon nitrürlemede azot difüzyonu ve nitrür oluşumu en önemli konulardan bir tanesidir. Küçük tane boyutu ve yüksek dislokasyon yoğunluğuna sahip martenzit iğnecikleri çelikte yüksek azot difüzyonuna neden olur (Özbaysal ve İnal, 1986, Stappen et al., 1991). Ayrıca azot, nitrür difüzyon tabakasında karbon ile yer değiştirir (Sun and Bell, 1991). Bu yer değişiminin malzemenin yüzeyden mesafesinin bir fonksiyonu olduğu iddia edilmektedir (Şekil 8). Azot %) 1,5 1,,5, (N 2 ) (C),2,4 Yüzeyden mesafe (mm),3,25,2,15,1,5, Şekil 8. İyon nitrürlenmiş (52 o C, 1 saat) 31CrMo12 çeliğinin yüzeyden itibaren azot ve karbon miktarları (Sun and Bell, 1991) Karbon (%) Mühendislik Bilimleri Dergisi 22 8 (1) 19-25 24 Journal of Engineering Sciences 22 8 (1) 19-25

Bu bilginin ışığında, azot miktarının fazla olduğu yüzeyde sertliğin yüksek olması, yüzeyden içeri doğru gittikçe de azot miktarının azalması ve dolayısıyla sertliğin düşmesi gerekmektedir. Su verilmiş ve temperlenmiş X4CrMoV51 sıcak iş çeliğinin yüzey sertliği 621 HV.5, aynı çeliğe iyon nitrürleme yapıldığında ise yüzey sertliğinin 13 HV.5 e yükseldiği ve yüzeyden mesafe arttıkça sertliğin düştüğü, 175 µm derinlikte ise sertlik değerlerinin değişmediği Şekil 9 da görülmektedir. Şekil 7 ve Şekil 8 de verilen eğriler aynı dağılımı göstermektedir. Dolayısıyla, azot miktarının fazla olduğu yüzeyde sertliğin yüksek olduğu, yüzeyden içeri doğru gittikçe de azot miktarının azalması ile sertliğin düştüğü anlaşılmaktadır. Çeliklere iyon nitrürleme işlemi uygulandığında sertliklerinin önemli miktarda arttığı bilinmektedir. Bundan dolayı, sertliğin önemli olduğu iş parçalarında iyon nitrürleme yapılması ömür artışı için çok önemlidir. 6. KAYNAKLAR Baycık, H. 1999. İyon Nitrürlenmiş H13 Sıcak İş Çeliğinin Sıcaklık ve Zamana Bağlı Olarak Sertlik Değerlerinin Değişimi, Doktora tezi, İTÜ, İstanbul. Cho, K. S., Lee, C.O. 198. The effects of Carbon on İon-nitriding, Transactions of the ASME, Journal of the Engineering Materials and Technology, V.12, 229-233. Cohen, A., Boas, M. and Rosen, A. 1986. The İnfluence of İon Nitriding Parameters on the Hardness Layer of 15-5 ph Stainless Steel, Thin Solid Films,141, 53-58. Duh, J. G., Lin, S. C. 1993. Nitriding Behaviour in Fe-Al-Mn-Cr-C Alloys at 1-11 Degree C, Journal of Materials Science, V28, N22, 5975-598. Karamış, M. B. 199. İyon Nitrürleme Esasları ve Çeliklere Uygulanması, 4.Ulusal Makina Tasarım ve İmalat Kongresi,, ODTÜ, Ankara. Karamış, M. B., Gerçekçioğlu, E. 1993. Plazma Nitrürlenmiş Paslanmaz Çeliklerin Yüzey Tabaka Özellikleri, 5. Denizli Malzeme Sempozyumu, Denizli. Kowacs, W., Russell, W. 1986. An Introduction to Ion nitriding-what is it? Why is it Used? Where is it Used?, First Ion Nitriding International Conference, Cleveland-Ohio, USA, 9-17 Kwon, S.C., Lee, G.H. and Yoo, M. C. 1986. A Comparative Study Between Pulsed and D. C. Ion Nitriding Behaviour İn Specimens With Blind Holes, First Ion Nitriding International Conference, Cleveland-Ohio, USA, 15-17 September, 77-82. Li, F. 1989. On Micro-Structure Of Ion-Nitrided Layer, Proceedings of ASM s 2 nd International Conference on Ion Nitriding/Carburising, Cincinnati, Ohio, USA. Lidster, P.C., Pigott, G. 1989. Ion Nitriding Of Cold Forging Die Alloys, Proceedings of ASM s 2nd International Conference on Ion Nitriding/Carburising, Cincinnati, Ohio, USA. Özbaysal, K., İnal, O.T. 1986. Structure and Properties Of Ion-Nitrided Stainless Steels, Journal of Materials Science, 21, 4318-4326. Özbaysal, K., İnal, O.T. and Romig, A.D. 1986. Ion- Nitriding Behaviour Of Several Tool Steels, Materials Science & Engineering, 78, 179-191. Peng, Q. F. 1989. Improving Abrasion Wear By Surface Treatment, Wear, 129, 195-23. Robino, C. V., İnal, O. T. 1983. Ion Nitriding Behaviour Of Several Low Alloy Steels, Materials Science and Engineering, 59, 79-9 Spalvins, T. 1989. Advances and Directions Of Ion Nitriding/Carburizing, Proceedings of ASM s 2nd International Conference on Ion Nitriding/Carburising, Cincinnati, Ohio, USA. Spalvins, T. 1993. Triboligical and Microstructural Characteristics Of Ion-Nitrided Steels; Thin Solid Films, 18, 157-163 Stappen, M., Malliet, B., Stals, L., Schepper, L., Roos, J. R. and Celis, J. P. 1991. Characterization of TiN Coatings Deposited on Plasma Nitrided Tool Steel Surfaces, Materials Science and Engineering, A14, 554-562. Stahlschlussel, 1983. Foundations of Theoretical Mechanics, Springverlag, p. 185. Sun, Y., Bell, T. 1991. Plasma Surface Engineering of Low Alloy Steel, Materials Science and Engineering, A14, 419-434. Sun, Y., Bell, T. 1997. A Numerical Model of Plasma Nitriding of Low Alloy Steel, Materials Science and Engineering, A224, 33-47. Tamer, M. 1996. İyon Nitrürleme ile Sıcak Dövme Kalıplarının Ömrünün Artırılması, Doktora tezi, İTÜ, İstanbul. Mühendislik Bilimleri Dergisi 22 8 (1) 19-25 25 Journal of Engineering Sciences 22 8 (1) 19-25