Chapter 1 ANAHTARLAMALI GÜÇ KAYNAKLARININ TEMELLERİ. Şekil 1.1



Benzer belgeler
BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

AREL ÜNİVERSİTESİ DEVRE ANALİZİ

2. Bölüm: Diyot Uygulamaları. Doç. Dr. Ersan KABALCI

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Power Electronic Circuits (Güç Elektroniği Devreleri)

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

DENEY 21 IC Zamanlayıcı Devre

Şekil 5-1 Frekans modülasyonunun gösterimi

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

KIRIKKALE ÜNİVERSİTESİ

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

DC DC DÖNÜŞTÜRÜCÜLER

DENEY 16 Sıcaklık Kontrolü

Deney 1: Saat darbesi üretici devresi

6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1

DC motorların sürülmesi ve sürücü devreleri

ZENER DİYOTLAR. Hedefler

Şekil Sönümün Tesiri

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

SCHMITT TETİKLEME DEVRESİ

ZM-2H606 İki Faz Step. Motor Sürücüsü. Özet

BÖLÜM 3 OSİLASYON KRİTERLERİ

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

RF MİKROELEKTRONİK GÜRÜLTÜ

Şekil 3-1 Ses ve PWM işaretleri arasındaki ilişki

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

DENEY NO : 4 DENEY ADI : Darbe Genişlik Demodülatörleri

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

NES DC.DRV.200 Tanıtım Dokümanı

İNVERTER ENTEGRELİ MOTORLAR

DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI

DENEY NO : 2 DENEY ADI : Sayısal Sinyallerin Analog Sinyallere Dönüştürülmesi

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

Yükseltici DA Kıyıcılar, Gerilim beslemeli invertörler / 12. Hafta

Şekil 1. Darbe örnekleri

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

Deney 2: FARK YÜKSELTEÇ

Deney 4: 555 Entegresi Uygulamaları

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı

Bölüm 1 Güç Elektroniği Sistemleri

GERİ DÖNÜŞLÜ GÜÇ KAYNAKLARININ TASARIMI 2

DENEY 4a- Schmitt Kapı Devresi

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

GERİLİM REGÜLATÖRLERİ DENEYİ

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

T.C. KOCAELİ ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

ZM-2H2080 İki Faz Step. Motor Sürücüsü. Özet

ZM-2H504 İki Faz Step. Motor Sürücüsü. Özet

Elektrik Devre Lab

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

Çukurova Üniversitesi Biyomedikal Mühendisliği

İNDEKS. Cuk Türü İzolesiz Dönüştürücü, 219 Cuk Türü İzoleli Dönüştürücü, 228. Çalışma Bölgeleri, 107, 108, 109, 162, 177, 197, 200, 203, 240, 308

MOSFET. MOSFET 'lerin Yapısı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

DENEY 12 SCR ile İki yönlü DC Motor Kontrolü

ALAN ETKİLİ TRANSİSTÖR

ÜNİTE 5 TEST SORU BANKASI (TEMEL ELEKTRONİK)

GERİ DÖNÜŞLÜ GÜÇ KAYNAKLARININ TASARIMI 1

Güç Elektroniği Ders notları Prof. Dr. Çetin ELMAS

Geçmiş yıllardaki vize sorularından örnekler

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

DENEY 7 DALGALI GERİLİM ÖLÇÜMLERİ - OSİLOSKOP

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:

ÜÇ-FAZLI TAM DALGA YARI KONTROLLÜ DOĞRULTUCU VE ÜÇ-FAZLI EVİRİCİ

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

6 İşlemsel Kuvvetlendiricilerin Lineer Olmayan Uygulamaları deneyi

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

TEK FAZLI KONTROLLÜ (TRĠSTÖRLÜ) DOĞRULTUCULAR

8. FET İN İNCELENMESİ

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

6. TRANSİSTÖRÜN İNCELENMESİ

Bölüm 14 FSK Demodülatörleri

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

Yarım Dalga Doğrultma

BLM1612 DEVRE TEORİSİ

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

DOĞRULTUCULAR VE REGÜLATÖRLER

Öğrenci No Ad ve Soyad İmza DENEY 3. Tümleşik Devre Ortak Source Yükselteci

BESLEME KARTI RF ALICI KARTI

ANALOG FİLTRELEME DENEYİ

FAZ KİLİTLEMELİ ÇEVRİM (PLL)

Op-Amp Uygulama Devreleri

Anahtarlama Modlu DA-AA Evirici

Statik güç eviricilerinin temel görevi, bir DA güç kaynağı kullanarak çıkışta AA dalga şekli üretmektir.

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ

Bölüm 7 FM Modülatörleri

ELEKTRONİK-2 DERSİ LABORATUVARI DENEY 1: Doğrultucu Deneyleri

Transkript:

GİRİŞ Modern elektronik aletler genellikle bir yada daha fazla da güç kaynaklarına ihtiyaç duyar. Günlük işlerimizi yaparken farkında olmadan kullandığımız güç kaynakları karşımıza bazen cep telefonumuzu şarj ederken bazen teyp dinlerken bazen de bilgisayarımızı kullanırken çıkar. İhtiyaç duyuldukları alanlara göre farklı boyutlarda, güçlerde olabilirler. Kimisi basit anlamda birkaç diyot ve kapasite içerirken kimisi de daha kararlı olması istendiğinden daha karmaşık olabilir. Hatta kimi işlevler için bazı entegre devreler içermektedirler. DC güç kaynakları genellikle iki tipe ayrılır. Liner regulatorler veya anahtarlamalı regulatorler Ve biz burada anahtarlamalı güç kaynağı (SMPS-Switching Mode- Power -Supplies) dediğimiz bu devreleri inceleyeceğiz.

Chapter 1 ANAHTARLAMALI GÜÇ KAYNAKLARININ TEMELLERİ Şekil 1.1 Şekil 1.1 de görüldüğü gibi herhangi bir liner güç kaynağında negatif geri besleme ile çıkışın sürekli denetim altında tutulup çıkış gerilimi istenilen seviyede olması sağlanabilir. Güç Anahtarı Diyot Filtre Osc. Duty-cycle Kontrolü Örnekleme Devresi Şekil 1.2 Şekil 1.2 ise temel anahtarlamalı regülatörün blok diagramını göstermektedir. Bu devrenin fonksiyonu regüle edilmemiş DC akımı regüle edilmiş DC haline getirmektir. Bu sebepten ötürü anahtarlama regülatörleri sıklıkla DC-DC çeviriciler olarak anılır. Bir anahtarlama regülatöründe güç transistörü liner modunda değil daha ziyade bir anahtarlama modunda kullanılır. Yani transistor ya on ya da off konumundadır. Sonuç olarak da liner regülatörlerin 2 katından daha fazla ( %70-%95 )verim elde edilir. Anahtarlamalı regulatorlerde verimin artmasının yanısıra arzu edilirse girişten daha büyük çıkış etmek mümkündür. Liner regülatörlerde ise çıkış daima girişten büyük olmak zorundadır. Ayrıca anahtarlamalı regülatörler geleneksel liner regülatörlerin tersine girişi çevirebilirler de (mesela negatif bir giriş için pozitif çıkış gibi ). Anahtarlamalı regülatörler yüksek güçlerde liner regülatörlerden daha az boyutta ve ağırlıkta ve de daha verimli bir biçimde çalışabilmektedirler.

1.1.1 ANAHTARLAMALI REGULATORLERİN PROBLEMLERİ Anahtarlamalı regülatörlerin de bazı özel sorunları vardır. Daha fazla karmaşık devrelere ihtiyaç duyulmasına ilaveten anahtarlamalı regülatörler elektromagnetik girişim (EMI-Electromagnetic Inteference ) üretir. Bununla beraber uygun bir tasarımla EMI makul seviyelere indirebilinir. Bu gibi tasarım teknikleri transformatörler için düşük kayıplı ferrit çekirdekleri kullanımı gerektirmektedir. 1.1.2 ANAHTARLAMA DUTY_CYLE Şekil 1.2 deki devre transistörün anahtarlanmasıyla ile çalışır. Seri transistorün dutycycle ı ortalama DC çıkışını belirler. Sıra ile, DC çıkış ve bir referans voltajı arasındaki farkla orantılı bir geribeslemeye göre duty-cycle ayarlanır. 1.1.3 ANAHTARLAMA FREKANSI Anahtarlama genellikle işitilebilir aralığın biraz üstünde sabit bir frekanstadır. Bazı anahtarlamalı regulatorler ise farklı yük ve hat ile değişken bir frekans kullanır. Bazı anahtarlamalı regulator IC lerinde anahtarlama frekansını sabitlemek yada değiştirmek harici bir kapasite ile mümkündür. Fakat burada kullanılan frekansın yüksek olması transistorun anahtarlama kayıpları ve ferrit kayıpları artar bu da verimin düşük olamasına sebep olur. Buna karşın düşük anahtarlama frekansları ise bazı komponentlerin çınlamasına sebep olabilir yada regulatorun beslediği audio devrelerinde girişime neden olabilir. 1.2 TİPİK ANAHTARLAMALI REGÜLATÖR DEVRELERİ Şekil 1.3 4 adet tipik PNP/NPN anahtarlamalı regulator devresi göstermektediri. Tüm bu devrelerin ortak elemanları : anahtarlama transistoru, clamp diyodu, LC filtresi ve bir lojik kontrol bloğudur. Genellikle tercih edilen toprk çevrelerinin azaltmak için en az giriş ve çıkışla ortak olan bir hattın olmasıdır. Bu tek hattlı yaklaşım aynı zamanda çıkış voltajının negatif yada pozitif olup kabul edilip edilmeyeceğini belirler. Şekil 1.3 (a) ve 1.3 (b) deki devrelerde lojik yük voltajından çalışır. Bu gibi devreler kendinden çalışmaya başlayamazlar. Ve bu yüzden devrenin başlangıç anında yada kısa devre durumlarında hattan çalışmasını sağlayacak şekilde bazı önlemler alınmalıdır. Şekil 1.3 (c) ve (d) deki devrelerde lojik devamlı olarak hattan çalışır. Ve yük voltajından izole edilmiştir. Geribesleme elemanları da elektriksel olarak izole edilmelidirler. Şekil 1.3 (b) ve 1.3 (d) deki devrelerde in-line operated suppllies kullanılır. Çünkü dfdsfdsdsfdsfdsffffffffffffffffffffffffffffffshhhhhhhhhhhhhhhhhhtrrryhhrrthhklşjhlşgjdşflgj lşgdjgj gljdfslj şfld jfdlgjş gjgjfdşgjkljrewıour oj lkjt krjt şş klnrtn tnrtn krj kjk lj lkt j kjşlj tj kj j kjk jk jlkşj jj kjtkljwt kejwjkwj k rwrwqqqqqqqqqqqqqqqqqqq ( a ) ( b ) sayfa 4

Negative out İsolated logic end load pozitive out ( c ) ( d ) sayfa 4 Şekil 1.3 3 tipik MOSFET anahtarlamalı regulatör devresi 3 temel konfigurasyon sunar ; buck, boost ve buck-boost.her 3 konfigurasyon kısmi bir ihtiyaca karşılık gelir. Çıkış voltajı girişten büyük olduğu zaman devre olarak genellikle pozitif voltaj-boost (step-up converter ) modeli ile çalıştırılır. Buck devresi ( Step-up converter ) ise giriş voltajı arzu edilen çıkış voltajında her zaman daha büyük ise kullanılır. Buck- boost ( inverter )devresi de giriş voltajını invert eder ve arzu edilen çıkıştan daha büyük yada düşük olan giriş voltajı ile kullanılabilir. BOOST CONVERTER SAYFA 5 BUCK CONVERTER SAYFA 5

BUCK-BOOST CONVERTER SAYFA 5 ANAHTARLAMALI REGULATÖR TEORİSİ SAYFA 6

Şekil 1.5 teorik bir anahtarlamalı regulatör devresi ( örnek olarak buck konfigurasyonu verilmiştir. ) ve ona ait dalga şekillerini göstermektedir. Anahtarlamalı regülatörlerin yüksek verimliliğin sebebi seri bir transistörun anahtarlamalı modda çalışmasıdır. Transistör kapalı duruma getirilirse tüm giriş voltajı LC filtreye uygulanır. Transistor açık durumuna getirilirse giriş voltajı 0 dır. Eğer duty cycle %50 ise DC yük gerilimini giriş geriliminin yarısıdır. Vo çıkış gerilimi daima giriş geriliminin duty-cycle ile çarpımı ile orantılıdır. Vo= D x Vin olur. Duty-cycle ı değiştirmek giriş voltajındaki değişlikleri telafi eder. Bu teknik regüle edilmiş çıkış voltajı üretmek için kullanılır. Anahtarlama transistörünün sabit bir duty-cyle da tekrarlı çalışması şekil 1.5. de sürekli hal dalga şeklini verir. Anahtar kapalı iken bobin akımı Il Vin giriş geriliminden yüke akar. Giriş ve çıkış voltajı arasındaki fark (Vin-Vo ) bobin üzerine uygulanır. Bu sebepten anahtar kapalı iken Il akımı artar. Anahtarın açılmasıyla bobinde biriken enerji Il yi diyot, bobin ve kapasite çevrimi üzerinden akmasına sebep olur. Bobin üzerindeki voltaj daha sonra anahtar açık olması esnasında azalır ve bobin voltajı yaklaşık Vo a eşit olur. Il ise anahtar açık iken azalır. Bobin üzerinden geçen ortalama akım yük akımına eşittir. Çünkü kapasite Vo ı sabit tutar. Tabiki Io yük akımı da sabittir. Il Io dan daha yükseğe çıkarsa kapasite şarj olur, Il Io dan daha düşük olursa kapasite deşarj olur. PWM VS PFM Anahtarlamalı regulatörler çıkış voltajını nasıl kontrol ettiklerine göre de sınıflandırılır. En yaygın iki yaklaşım Pulse Width Mod Pulse Freq moddur. İki yaklaşım da çıkışı değişen duty-cycle ile kontrol eder. PWM regulatörlerde frekans sabit tutulur. Herbir pulse ın genişliği değiştirilir. PWM regulatörler yüksek güçlü anahtarlamalı kaynaklarda kabul görmüştür. PFM de ise darbe süresi sabit tutulur ve duty cycle darbe tekrarının değişimi ile kontrol edilir. YAYGIN ANAHTARLAMALI REGULATÖR CONFİGLERİ Birçok mümkün anahtarlamalı reg config vardır. Hangi config kullanılacağının seçimi genellikle voltaj polaritesi, voltaj oranı ve hata durumu gibi faktörlerce kısıtlanır. Mesela çıkış voltajı girişten daha büyük olmalı ise buck converter kullanılamaz. Eğer giriş voltajı negatif ve çıkşın da pozitif olması gerekiyor ise bazı inverter formları gerekir. Eğer regulatör akım sınırlı olması gerekiyorsa temel boost devresinin değeri yoktur. Böyle belli limitlere rağmen hala pekçok uygulama için çeşitli config seçenekleri vardır. Mesela + 28 V dan + 5 V a çevirmek için buck, flyback forward ve current boosted configleri kullanılabilir. BOOST VEYA STEP UP TEORİK BOOST

PRATİK DEVRE DALGA ŞEKLİ Şekil 1.6. teorik boost veya step-up göstermektedir. Şekil 1.7. tipik bir IC anahtarlamalı regulatorü göstermektedir. Burada ( Raytheon RC 4190 ) pratik bir step up converter olarak konfigire edilmiştir. Şekil 1.8. buna karşılık gelen dalga şeklini göstermektedir. Teorik çizimdeki S anahtarı, D diyodu, C kapasitesi, L bobini sırasıyla Q1 transistörü, D1 Diyodu, C1 kapasitesi ve Lx bobini olarak kullanılmıştır.

Şekil 1.6. da gösterildiği gibi S anahtarı kapalı iken L bobini üzerinden batarya voltajı uygulanır. Şarj akımı bobin üzerinden akar. Ve S anahtarı kapalı tutulduğu süre boyunca akan akım bir magnetik alan oluşturur. S kapalı iken D diyodu açık devredir. Ve akım yüke C kapasitesinden sağlanır. S anahtarı açılıncaya kadar L bobini üzerinden akan akım batarya voltajı, bobin değeri ve anahtarın kapalı kalma süresi tarafından belirlenen maksimum değere kadar liner olarak artar. Ipeak= Vbat / ( L x Ton ) S anahtarı açıldığında magnetik alan birden azalmaya başlar. Ve magnetik alanda depo edilen enerji L üzerinden akan bir boşalma akımına çevrilir. Bu akım şarj akımı ile aynı yöndedir. Çünkü akımın S üzerinden akması için bir yol yoktur. Akım yükü beslemek ve çıkış kapasitesini şarj etmek için D üzerinden akmalıdır. Eğer anahtar sırasıyla açılır ve kapatılır ise ( RC sabitinden büyük hızda olmak şartıyla ) o zaman çıkışta sabit bir DC voltaj üretilmiş olur. Giriş voltajından daha büyük bir çıkış voltajı mümkündür. Bobindeki hızlı değişen akımın ürettiği yüksek voltaj yüzünden S açıldığında bobin voltajı aniden yükselir ve batarya voltajına bunu ekler Şekil 1.7. deki IC devreye ilk kez güç verildiğinde R1 deki akım IC nin 6 nolu ucuna bias akımı sağlar. Bu akım birim kazançlı bir akım kaynağı tarafından stabilize edilir. Ve 1,31 V referans için bir bias akımı olarak kullanılır. Stabil bias akımı referans tarafından üretilir ve IC komponenetlerin geri kalanı için kullanılır. IC nin çalışmaya başlaması ile aynı zamanda akım Lx ve D1 Üzerinden C1 i şarj etmek için akar. Ve D1 üzerine gelenden daha az voltajla karşılaşacaktır ( Vbat-Vd). Bu noktada geri besleme ( 7 nolu uç ) Vout çıkış voltajının çok düşük olduğunu, çıkışın belli bir kısmı ile 1,31 volt referans ile karşılaştırarak hisseder. Eğer Vout çok düşük ise karşılaştırıcı çıkışı lojik 0 a değişir. NOR kapısı komparatörün çıkışı ile osilatörün kare dalgasıyla birleşir. Eğer komparatör çıkışı 0 ise ve osilatör çıkışı da 0 ise NOR çıkışı yüksek olur ve Q1 transistörünü anahtarlar.osilatör yüksek olursa NOR çıkışı 0 olur ve Q transistorü kapalı kalır. Q1 transistorunun açılıp kapanması şekil 1.6. daki S anahtarının açılıp kapanmasıyla aynı fonksiyonu sağlar. Şöyle ki enerji bobinde on-time iken saklanır. Off-time da ise C1 kapasitesine doğru serbest bırakılır. Komparatör, geribesleme voltajı 1,31 V un üzerine yükselinceye kadar osilatörün Q1 transistorünü açıp kapamasına izin verir. İlk başta geribesleme voltajı referansdan yüksektir. Geribesleme sistemi şekil 1.8. deki dalga şekillerinde gösterildiği gibi yük akımında veya batarya voltajındaki değişikliklere göre on-time kalma süresini değiştirir. Eğer yük akımı artarsa (C) Q1 osilator saykılının uzun bir süresince on konumunda kalır. Böylece bobin akımının daha yüksek bir peak değerine izin verir (E). Duty-cycle hem yükteki hemde hattaki değişikliklere cevap olarak değişir. Herhangibir anahtarlamalı regulatorde bobin değeri ve osilator frekansı dikkatlice hesaplanmalıdır. Regulatorler batarya voltajına, çıkış akımına ve uygulamanın dalgalanma ihtiyaçlarına göre belirlenir. Kısaca özetlersek bobin değeri veya osilator frekansı çok yüksek ise bobin akımı hiçbir zaman yük akımı draini karşılayacak yüksek bir değere ulaşmaz ve çıkış voltajı düşer. Eğer bobin değeri veya osilator frekansı çok düşükse bobin akımı çok yükselir belki zararlı bile olabilir. SÜREKLİ VE SÜREKLİ OLMAYAN MOD Anahtarlamalı regulatorlerin çalışmaları sürekli veya ayrık olabilir. Sürekli çalışmada off durumunda bobin üzerinden akan akım hiçbir zaman 0 a düşmez. Sürekli olmayan çalışma modunda eğer yük akımının yüksek olması gerekmiyorsa bobin akımı 0 a düşebilir.

Ip primary current discontinuous mode Is seconday current Tdt Figure 2-a: Primary and secondary currents in discontinuous mode Ip primary current continuous mode Is seconday current Figure 2-b: Primary and secondary currents in continuous mode BUCK-BOOST veya Inverting TEORİK INVERTER PRATİK DEVRE INVERTER

DALGA ŞEKLİ INVERTER Şekil 1.9 teorik buck-boost konfigurasyonu gösterir. Şekil 1.10 tipik bir IC anahtarlamalı regulatorun pratik bir devrede inverter olarak kullanılmış bir biçimi gösterilmiştir. Şekil 1.11 ise buna karşı gelen dalga şekillerini göstermektedir. Şekil 1.9 da gösterildiği gibi S anahtarı kapalı iken bataryadan gelen şarj akımı L üzerinden akarak kapalı kaldığı süre boyunca magnetik alanı yükseltir. Anahtar açıldığında ise magnetik alan düşer ve magnetik alanda depolanan enerji bir akıma dönüşür. Bu akım L üzerinden akar ve şarj akımı ile aynı yöndedir. Çünkü akımın anahtar üzerinden akması mümkün değildir. Akım diyot üzerinden C yi şarj edecek şekilde akar. Bu dönüşümün püf noktası bobinin şarj akımı kaldırıldığı zaman bir kaynak gibi davranabilmesidir. Şekil 1.10 daki pratik devrede geribesleme devresi ve çıkış kapasitesi çıkış voltajını regule edilmiş sabit bir değere indirir. Güç ilk kez uygulandığında ground sensing komparatörü ( pin 8) çıkış voltajını 1,25 V ile karşılaştırır. Çünkü Cf ilk anda boştur. Komparatöre pozitif bir voltaj uygulanır ve bu komparatorun çıkışı kare dalga osilatorunu tetikler. Tetiklenmiş edilmiş kare dalga sinyali anahtarlama transistoru Q1 i on-off yapar. Transistorun on-off olması şekil 1.9. daki anahtar ile aynı işi görür. On-time iken bobinde enerji depo edilir ve off time da ise çıkış kapasitesi Cf e serbest bırakılır. Komparator osilatorun kare dalgası ile Q1 i anahtarlamaya devam eder. Taki Cf de biriken enerji komparator giriş voltajını 0 V dan daha aza düşürene kadar. Komparatore uygulanan voltaj çıkış voltajı referans voltajı ve R1 in R2 ye oranı ile ayarlanır. 154 BUCK VEYA STEP DOWN TEORİK BUCK

PRATİK DEVRE BUCK DALGA ŞEKİLLERİ Şekil 1.12 teorik buck yada step-down konfigurasyonunu gösterir. Şekil 1.13 de tipik bir IC anahtarlamalı regulatorun pratik bir step down converter olarak kullanılmış halini gösterir. Burada IC nin toprak ucu ( pin4 ) devrenin toprağına bağlanmamıştır. Bunun yerine pin4 çıkış voltajına bağlanmıştır. Bu geribeslemenin yeniden düzenlenmesinin kullanımıyla negatif olmayan bir çıkış voltajı regule etmek mümkündür. ( geribesleme sistemi voltajı toprakta daha negatif hisseder. )

Şekil 1.12 gösterildiği gibi S anahtarı kapalı iken bataryadan gelen akım L üzerinden akar ve yük direnci üzerinde toprağa akar. S açıldıktan sonra L de biriken enerji yük üzerinden akan bir akıma neden olur. Devre catch D diyodu ile tamamlanır. Çünkü akım hem şarjda hem de deşarj da bile yüke doğru akar. Ortalama yük akımı bir inverting devresininkinden daha büyüktür. Burada önemli olan eşit yük akımları için step-down devresinin bobini inverting için olandan daha küçük olabilir. Ve bir step-down IC içerisindeki anahtarlama transistorü denk yük akımları için fazlaca zorlanmaz. Pratik devrede çıkış kapasitesi Cf boştur. Demek ki toprak ucu ( pin4 ) 0 V dan başlar. Referans sinyali 1,25 V a toprağın üzerine zorlanır. Peki bu nasıl olur? Geri besleme ucunu ( pin8 ) topraktan daha pozitife doğru çekerek olur. Bu pozitif voltaj kontrol lojinin çıkış transistorunu anahtarlama yapmasını zorlar. Anahtarlama hareketi çıkış voltajını yükseltir, ground lead çıkışla beraber yükselir ta ki ground lead deki voltaj geribesleme voltajına eşit oluncaya kadar. Bu noktada kontrol lojiği çıkışı sabit tutmak için anahtarın on-time olduğu süreyi azaltır. 1.5.5. FLYBACK Flyback anahtarlama regulatorleri ve voltaj dönüştürücüleri iki aşamada (two-cycle ) enerji transferine dayanır. İlk önce enerji bir bobinde depo edilir. İkincide ise enerji bir yük kapasitesine transfer edilir. Bazı flyback converterların sadece bir basit bobin kullanmalarına rağmen genellikle bir transformator daha yaygındır. Şekil 1.15 ve 1.16 teorik flyback konfiglerinin hem bobin hem de transformator kullanılmışlarını gösterir. Şekil 1.17 de ise tipik bir IC anahtarlamalı regulatorunun pratik bir flyback kofig u biçiminde bağlantılarını görüyoruz. Aşağıdaki paragraflar hem teorik hem de pratik fonksiyonların nasıl işletildiğini ve pratik fonksiyonlarla teorik arasında nasıl bağlantı olduğunu anlatmaktadır. Teorik devredeki S1 anahtarının harici bir M1 transistoru ile yer değiştirildiğine dikkat edelim. Ayrıca M1 toprağa bağlamıştır, negatif kaynak girişine değil.sonuç olarak basit bir bobin pratik bir devrede pozitif bir çıkış elde etmek için kullanılamaz. Şekil 1.15 deki L1 i bir transformatr ile yerdeğiştirmekle (fig116ve 117) pozitif bir çıkış ( Vout ) negatif bir çıkış ile üretilebilir. Böylece flyback configi bir inverter olarak kullanılabilir.( section 1.5.3) Transformatorler 2 giriş çıkış modunda kullanılabilirler. Giriş akımı ve çıkış akımı alternatif olarak -dönüşümlü- sırayla akarsa bu fonksiyon gerçek bir flyback işlemidir. Eğer giriş ve çıkış akımları aynı anda meydana geliyorsa buna feed forward yada kısaca forward converter denir. Şekil 1.5. deki basit flyback convertinda gösterildiği gibi S1 anahtarı kapalı iken şarj akımı bataryadan L1 bobinine akar ve S1 anahtarı kapalı tutulduğu sürece artan bir magnetik alan oluşturur. S1 anahtarı açıldığı vakit magnetik alan azalır (hızla ) ve depo edilmiş olan enerji (magnetik alanda) şarj akımı ile aynı yönde olan ve L1 üzerinden akan bir akıma dönüşür. Çünkü bu akım için D1 üzerinden akmak zorundadır. Bir flyback devresindeki dönüşümün anahtarı bobinin şarj akımının kaldırıldığı zaman bir kaynak oluşturabilmesidir. (Bu inverting veya buck boost configi ile aynıdır. ) Deşarj sırasında L1 bobinindeki akım azalır. Akım 0 a ulaştığında D1 diyodu iletimi durdurur. Burada bobindeki akımın zamana göre değişimi bobin voltajıyla doğru orantılı ve indüktansla ters orantılıdır. Ayrıca yük voltajı ve/veya akımı S1 anahtarının on-time ının kontrolu ile regule edilebilir. Diğer regulatorlerdeki gibi C1 yük kapasitesi enerjiyi sonuuncusu(taumamını) yük tarafından kullanılıncaya kadar depo eder.

Şekil1.16 daki transformatorlü flyback konfignu bobinli basit flyback konfig ile aynıdır.( Dalga şekillerinin esasen farklı olmasına rağmen ). Gerçekte T1 flayback transformatoru enerjiyi bir sarımı ile depo eder ve diğer sarımı ile gönderir. İlk cycle S1 in kapanmasıyla başlar. Bu negatiften toprağa çeker. Akım 0 dan başlar ve N1 sarımında şaha kalkar. Ve bu enrjiyi transformatorun çekirdeğindeki magnetik akısında saklar. Bir süre sonra S1 açılır. Ve enerji çekirdekten N2 sekondere transfer edilir, sonrada çıkışa transfer edilir. Pratik IC flyback regulator devresi diğer anahtarlamalı regulatorlerle benzerdir. Bir osilator, komparator, hata kuvvetlendiricisi, referans ve kontrol lojiği bulunmaktadır. Bununla beraber IC ye harici olan devreler biraz daha komlex dir. Aşağıda kısaca IC ve harici komponentler ve fonksiyonları anlatılmıştır. Pin 1 deki osilator pin 6 daki pulseleri sürmek için bir time base üretir ( clock ). osilator frekansı pin1 e bağlanmış harici Cx kapasitesi ile ayarlanır. Hata kuvvetlendiricisi geribesleme ve referans sinyallerini karşılaştırır. ( 2 ve3 nolu pinler ) ve girişteki farkla orantılı olarak kuvvetlendirilmiş bir hata sinyali üretir.akım komparatorü hata kuvvetlendiricisinin çıkışı ile ( R4 üzerindeki voltajla ölçülen ) transformatordeki akımla orantılı bir sinyalle karşılaştırılır. Eğer pin7 deki geribesleme sinyali hata sinyalinden büyükse kontrol lojiği ( bir ff ve çıkış sürücüsü) M1 transistorunu turn off yapar. Kontrol lojiği M1 in herbir osilator cyclında sadece bir pulse alması için bir FF kullanır. Çıkış sürücüsü M1 e hızlı bir anahtarlama sinyali sağlamak için FF çıkışını kuvvetlendirir. Pin 4 deki referans voltajı IC komponentleri için 5 VOLlT sağlar. Hem de hata kuvvetlendiricisi için bir referans olur. Pin 5 deki paralel regulator IC yi kenetlemek için bir zener gibi davranır. Böylece kaynak güvenli sınırlarda önceden regule edilir. Güç ilk uygulandığında hata kuvvetlendiricisi çıkış voltajının istenilenden daha az olduğunu hisseder. Ve kontrol lojiğine akım komparatorü üzerinden bir hata sinyali yollar. Sıra ile kontrol lojiği çıkış voltajını yükseltmek için M1 e darbe yollar. Çıkış voltajı arzu edilen değere ulaştığında kontrol lojiği M1 sürücüsünü değiştirir,böylece transformator akımı sabit bir seviyede tutulur. R1 ve R2 nin oranı Vout değerini tayin eder. Tipik olarak bu kombinasyonun rezistans değerleri 25-100k aralığında olmalıdır. Bu input-bias akımını ve input noise errorlarını minimize eder. R3 değerinin değeri şönt regulator (pin6) akımını ayarlar. R4 ün değeri ise max M1 üzerinden akan akım max anahtarlama akımını ayarlar. R5 direnci M! İ off konumunda tutar. (başlangıçta yada IC aktif olmadığı anda ) R6 direnci M1 e gelen kapı sürücüsünde bir sinyal kaybı oluşturur. Böylece mümkün osilasyonları önler. R7 direnci hata kuvvetlendirircrrrisi girişindeki input bias current hatalarını engeller. R8 direnci,c3 kapasitesi ve D1 diyodu scrubber şeklini alır. Öyleki M1 drain i ve T1 primerinde çınlamayı bastırır. Böylece M1 e zarar verme tehlikesi(potaansiyel) olan voltaj spikes( çıkmalarını) azaltır. R8/C3 kombinasyonu M1 in tipine göre ihmal edilebilinir. Supply voltajına ve T1 karakteristiğine bağlı olarak. C2 kapasitesi geribesleme sinyali için olan bir filtre gibi iş görür. C4 ve C5 kapasiteleri şönt regulatoe ( pin5 ) voltajını filtreler. Eğer şönt akımı IC yi gereğince beslsmek için çok düşük kalırsa çıkış sırasıyla shut down olur ve düşük bir frekansta turn on olur (motor boating ) Bu frekansı da C5 belirler. C4 kapasitesi anahtarlama gürültüsünü yüksek frekanslarda filtrelemek için düşük bir empedansa sahip olmalıdır. C6 ve C7 kapasiteleri çıkış voltajını filtreler. D2 diyodu çıkış voltajını doğrultur. Çıkış yükü gücünün temel limitini bir devre belirler. Bu devre M1 in gate to drain kapasitesi tarafından belirlenir. Her ne kadar kapasitif yükleri sürmek için özgün olarak dizayn edilse bile pin 6 daki sürücü çıkışı büyük FET leri anahtarlamayacaktır.

Herhangi bir flyback converter yada regulatorun bir dezavantajı enerjinin büyük bir miktarının transformatorun sarımlarında DC akım formunda depo edilmesinin zorunluluğudur. Bu ise sarımlardaki çekirdeklerin sadece AC kullanımındakinden daha büyük olmasını gerektirir. Bu problemin üstesinden forward ile gelinebilinir. ANAHTARLAMALI GÜÇ KAYNAKLARI İÇİN BOBİN VE TRANSFORMATOR SEÇİMİ Anahtarlamalı güç kaynakları için magnetik elemanların her zaman için tasarım problemlerinin en büyük kaynağını oluşturur. BOBİN TASARIM TEMELLERİ Aşağıda boost konfigurasyonu olarak bağlantısı yapılmış bir devre görülmektedir.

Devredeki bobinin yedi elektriksel kriteri taşımalıdır : 1. Değer : İndüktans değeri en az giriş voltajında bile yeterince enerji edebilmelidir. Fakat yüksek akım geçmesine neden olmayacak kadar yüksek olmalıdır. 2. Doyum : Çekirdek en yüksek tepe akımlarında bile doğru indüktans değeri göstermelidir. 3. Dielektrik Dayanıklılığı : Sarımların izolasyonu bobinin flyback voltajına dayanabilmelidir. 4. DC Direnci : Sarım direnci aşırı ısınmalar sebep olmamalıdır. 5. Yeterli Q Değeri : Bobin çekirdek kayıpları düşük verimliliğe yada aşırı ısınmaya sebep olmamalıdır. 6. Elektromagnetik Girişim ( EMI ) : EMI regulator IC lerini yada yakın devreleri bozmamalıdır. 7. Rasgele Kapasite : Bobinin kendi rezonans frekansı ( Self Resonant Frequency - SRF ) anahtarlama frekansından 5-10 kez den büyük olmak zorundadır. BOBİN DEĞERİNİN HESAPLANMASI Doğru indüktans değeri anahtarlama frekansına ve bobine uygulanan voltaja bağlıdır. Her ikisi de bobin akımının tepe değerini bulmaya yarar. Yanlış bobin değeri yetersiz enerji depolanmasına yada transistorde aşırı akımlara neden olur. Sırasıyla yetersiz enerji depo edilmesi yavaş açılışa ve yavaş geçici cevap süresine neden olur. PFM regulatorlerde yetrsi enerji depo edilmesi kötü yük regulasyonuna da sebep olur. Kaynak akımı ve indüktans değeri bobin üzerinden geçen akımın yükselme eğilimini belirler. Eğer sürekli olmayan modda çalışıyorsa ortalama yük akımı bobin üzerinden geçen akımın tepe değeri ile doğru orantılıdır. Sırasıyla akımın tepe değeri akımın eğimine, akımın eğimi indüktans değerine bağlıdır. Vout= çıkış voltajı, Vın = kaynak voltajı, Vsw= transistorun doyma gerilimi Vd= diyot üzerinde düşen gerilim Not: Burada duty-cycle %50 alınmıştır ( bu sebepten formulde 4 katsayısı gelir. )

Anahtarın açık olduğu süre boyunca bobin üzerindeki akım IPK değerine kadar artar. Bu süre boyunca bobine uygulanan gerilime Vartma denir. Anahtarın kapatılmasıyla bobin üzerinden geçen akım azalır ve bobinin bu süre boyunca maruz kaldığı gerilime V azalma denir. di V L = L dt V = L I PK L( artma) (1) tartma V = L I PK L( azalma) ( 2) tazalma I LOAD = t azalma I PK 2T T = 2t on I LOAD t = azalma 4t I on PK t artma = t on t t V azalma artma artma V artma = (denklem 1 ve 2 den elde edilir ) V azalama = VIN VSW Vazalma = Vout + VD VIN I PK VOUT + VD V = V V IN SW IN ( 4I LOAD ) Bobine ait genel gerilim-akım denkleminden L indüktansı kolayca hesaplanır. V L = IN V I PK SW ( t on ) UYGUN İNDUKTANS DEĞERİ En uygun induktans değerinin bulunmasını bir örnek ile gösterebiliriz. Şekil xx deki devreyi bu amaçla kullanabiliriz.giriş voltajının 5 V 4- %10 olduğunu çıkışın 15 V olması gerektiğini kullanılan 1N5817 diyodunu Vd=0,4 V olduğunu, MAX641 regulator entegre devresinin %10 toleransla 50 khz ve %50 duty-cycle ile çalıştığını düşünürsek max ve min L değerleri ne olmalıdır. Maksimum bobin değerini bulmak için minimum giriş voltajı (VIN=4,5), maksimum doyma gerilimi ( VSW=0,75) ve minimum on-time süresi (ton = 9 µ s) kullanılır.

15 + 0,4 4,5 I PK = (15)(4) = 174mA (4,5 0,75) 4,5 0,75 L = (9) = 194µH 174 Minimum bobin değerini bulmak için MAX641 IC devresinin müsade ettiği maksimum akım değeri ( IPK = 450 ma), maksimum on-time süresi ( ton = 11 µ s) ve minumum doyma voltajı ( VSW=0,25) kullanılır. 5,5 0,25 L = (11) = 128µH 450

TOP 412/414 TOPSwitch Ailesi ÜçTerminalli DC den DC ye PWM Switch Ürünün Göze Çarpan Noktaları Ayrı Anahtarlayıcılar için düşük fiyat yerdeğiştirme - 15 den daha az komponent için fiyatı düşürür,güvenliği arttırır. - Daha küçük ve kesin bir sonuca 12 mm yüksekliğinden daha az ve tüm yüzeye monte edilen komponentlere izin verir Flyback Topolojisinde %80 den fazla verimlilik - built in start-up ve akım sınırı Dc kayıpları azaltır - düşük kapasitans MOSFET anahtarlama kaybı azaltır - CMOS kontroller/gate sürücü sadece 7mW tüketir - %70 maksimum duty cycle iletim kayıplarını azaltır. Tasarımı Basitleştirir time to market zamanını azaltır - entegre PWM kontroller ve yüksek güç MOSFEti - kompanzasyon,bypass ve start-up /auto start fonksiyonları için sadece bir harici kapasite gerektirir Sistem Seviye Hata Koruma Özellikleri - auto-restart ve cycle by cycle akım sınır fonksiyonları hem primer hem de sekonder hatalarını tutar - on-chip latching termal shut down tüm sistemi aşırı yüke karşı korur. Geniş Farklı kullanım Alanı - buck, boost flyback yada forward topolojisini tamamlar - hem opto hemde primer geribesleme ile kolayca arabirim kurar - sürekli olan yada olmayan çalışma modlarını destekler - 16 VDC girişine kadar çalışmalar için açıkça belirtilmiştir

Tanım TOPSwitch bir DC den DC ye çevrim için gerekli tüm fonksiyonları sadece 3 uçla tamamlar. Turn-on gate sürücüsü ile kontrol edilen yüksek voltaj N-kanallı güç MOSFET i, 120 khzlik osc ile entegre ile entegre edilmiş voltaj mode Pwm kontroller, yüksek voltaj start-up bias devresi, bandgap referenced türetilmiş, çevrim kompanzasyonu ve hata koruma devresi için bias şönt regulator/hata kuvvetlendiricisi içermektedir. Ayrık MOSFET ve kontroller yada self osilating ( RCC) anahtarlamalı çevirici çözümleriyle karşılaştırıldığında, TOPSwitch entegre devresinin toplam maliyeti, komponent sayısını ve boyutunu azaltır aynı anda verimliliği ve sistem güvenliğini arttırır. Bu devre Telecom, Cablecom ve diğer DC den DC ye çevrim uygulamaları için uygundur. 21 W lık çıkış gücü vardır. İçten,SMD-8 paketinin lead frame i 6 tane pinini cipteki ısıyı boarda doğrudan aktarmada kullanılır. Böylece soğutucu maliyetini azaltır. Bu bölümün sonunda devrenin bu amaçla kullanımı için bir örnek vardır. Pinlerin Fonksiyonel Tanımı DRAİN PİNİ Çıkış MOSFET inin drain bağlantısıdır. Start-up işlemi sırasında dahili bir anahtarlanmış-voltaj akım kaynağı üzerinden dahili bias akımı sağlar. Dahili akım hissetme noktası

KONTROL PİNİ Duty cycle kontrolu için hata kuvvetlendiricisi ve geribeslem akım girişidir. Normal çalışma süresince dahili bias akımını dahili şönt regulator bağlantısıdır. Latching shut-down için trigger girişi. bu ayrıca supply bypass ve auto restart /kompanzasyon kapasite bağlantı noktası. SOURCE PİNİ Çıkış MOSFET inin source bağlantısıdır. Primer tarafı devre common, power returnu ve referans noktasıdır. TOPSwitch Ailesi Fonksiyonel Tanımı TOPSwitch, açık-drain çıkışlı kendinden biased ve korumalı liner kontrol current toduty cycle dönüştürücüdür. Mümkün fonksiyonların maksimum sayıda entegrasyonu ve CMOS un kullanımıyla yüksek verimlilik sağlanır. CMOS, bipolar yada ayrık çözümlerle karşılaştırıldığında bias akımlarını önemli ölçüde azaltır. Entegrasyon, akım hissetmesi ve /veya başlangıç start-up bias akımı için kullanılan harici güç dirençlerini azaltır,yok eder. Normal çalışma esnasında, dahili çıkış MOSFET duty-cycle ı, şekil 4 de gösterildiği üzere Kontrol pini akımının arttırılmasıyla liner olarak azalır. Tüm gerekli kontrol, bias ve koruma fonksiyonlarını tamamlamak için DRAİN ve KONTROL pinlerinin herbiri aşağıda tanımlandığı üzere birçok fonksiyonları çalıştırır. TOPSwitch entegre devresinin zamanlama ve voltaj dalga şekilleri için Figure 6, bir blok diagram için Figure 2 ye bak. KONTROL Voltaj Kaynağı Vc Kontrol pini voltajı kontroller ve sürücü devresi için bir kaynak yada bir bias gerilimidir. Kontrol ve SOURCE pinleri arasına yakın olarak bağlanmış bir harici bypass kapasitesi gate sürücü akımına kayank sağlamak için gereklidir. Bu pine bağlanan kapasitansın toplam değeri ( CT), konrol çevrim kompanzasyonu gibi auto-restart zamanlamasını ayarlar. Ve iki çalışma modunda da regule edilir. histeriitik regulasyon başlangıcın start-up ve aşırı yük çalışmaları için kullanılır. Şönt regulasyonu,duty cycle error sinyalini kontrol devre kaynak akımından ayırmak için kullanılır. Start-up sırasında,vc akımı, DRAIN ve KONTROL pinleri arasına harici olarak yerleştirilmiş bir yüksek voltaj anahtarnmış akım kaynağı tarafından sağlanır. Akım kaynağı, toplam harici kapasitesi (CT) gibi kontrol devresine kaynak sağlamak için yeterli akımı sağlar.