Şarj Dengeleme Sistemleri İçin Çift Yönlü Flyback Devresi Tasarımı



Benzer belgeler
ELEKTRİKLİ TAŞITLAR BATARYA YÖNETİM SİSTEMLERİ

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.

Rev MANYETİK AKI VE ENERJİ TRANSFERİ

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOULU

DC DC DÖNÜŞTÜRÜCÜLER

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Transformatörün İncelenmesi

Arttıran tip DC kıyıcı çalışması (rezistif yükte);

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

Geliştirilmiş ZCZVT-PWM DC-DC Yükseltici Dönüştürücü

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 5 Güç Korunumu

Güç Elektroniği Ders notları Prof. Dr. Çetin ELMAS

Otomatik Kontrol Ulusal Toplantısı, TOK2013, Eylül 2013, Malatya ENERJİ VE GÜÇ SİSTEMLERİNİN KONTROLÜ

Elektrikli Araç Batarya Sistemleri İçin Aktif Hücre Dengeleme Sistemi An Active Balancing System for Electric Car Batteries

DA-DA BUCK, BOOST VE BUCK-BOOST KONVERTER DENEY SETĐ TASARIMI VE UYGULAMASI

Ders 04. Elektronik Devre Tasarımı. Güç Elektroniği 1. Ders Notları Ege Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Mehmet Necdet YILDIZ a aittir.

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOKULU ELEKTRİK VE ENERJİ BÖLÜMÜ ALTERNATİF ENERJİ KAYNAKLARI TEKNOLOJİSİ

Doğrultucularda ve Eviricilerde Kullanılan Pasif Filtre Türlerinin İncelenmesi ve Karşılaştırılması

Enerji Sistemleri Mühendisliği Bölümü

4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek

Şekil 1. Darbe örnekleri

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

AC-DC Dönüştürücülerin Genel Özellikleri

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Zener Diyot Karakteristiği ve Uygulaması

Şekil 1: Diyot sembol ve görünüşleri

T.C. KOCAELİ ÜNİVERSİTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ

Çukurova Üniversitesi Biyomedikal Mühendisliği

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ĠLETĠM HATTINA ĠLĠġKĠN KARAKTERĠSTĠK DEĞERLERĠN ELDE EDĠLMESĠ

Şekil 5-1 Frekans modülasyonunun gösterimi

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 6 GEÇİCİ DURUM ANALİZİ

Tam Köprü PSPWM DC-DC Dönüştürücülerin Karşılaştırılması. Comparison of the Full Bridge PSPWM DC-DC Converters

Doğru Akım (DC) Makinaları

Güç elektroniği elektrik mühendisliğinde enerji ve elektronik bilim dalları arasında bir bilim dalıdır.

DENEY 3. Maksimum Güç Transferi

GERİ DÖNÜŞLÜ GÜÇ KAYNAKLARININ TASARIMI 2

Burak Akın. Elektrik Mühendisliği Bölümü Yıldız Teknik Üniversitesi Özet. 1. Giriş. Abstract

Yumuşak Yolvericiler. Kalkış için kontrollü yol verme fonksiyonları. Duruş için özellikle pompa uygulamalarına yönelik yumuşak duruş fonksiyonları

100 kv AC YÜKSEK GERİLİM BÖLÜCÜSÜ YAPIMI

Nİ-CD AKÜLERİN OPTİMUM ŞARJ VE DEŞARJ EDİLMESİ ARAŞTIRMA SUNUMU

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Çukurova Üniversitesi Biyomedikal Mühendisliği

Belirsiz Katsayılar Metodu ile PWM Kontrollü Buck Tipi Dönüştürücü Devre Analizi

Samet Biricik Elk. Y. Müh. Elektrik Mühendisleri Odası 28 Ocak2011

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

Elektrik Devre Temelleri

TEK FAZLI VE ÜÇ FAZLI KONTROLSÜZ DOĞRULTUCULAR

10. e volt ve akımıi(

MODERN ENERJİ DEPOLAMA SİSTEMLERİ VE KULLANİM ALANLARİ

GÜÇ ELEKTRONİĞİ TEMEL KONTROLLÜ GÜÇ ELEMANLARI YRD.DOÇ. MUHAMMED GARİP

GERİ DÖNÜŞLÜ GÜÇ KAYNAKLARININ TASARIMI 1

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

DENEY-4 BİR FAZLI TRANSFORMATÖRÜN KISA DEVRE DENEYİ

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Tek Fazlı Tam Dalga Doğrultucularda Farklı Yük Durumlarındaki Harmoniklerin İncelenmesi

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

ÖLÇÜ TRANSFORMATÖRLERİ

Doğru Akım (DC) Makinaları

Gerilim beslemeli invertörler, akım beslemeli invertörler / 13. Hafta. Sekil-7.7 de endüktif yükte çalışan PWM invertör görülmektedir.

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör

Çukurova Üniversitesi Biyomedikal Mühendisliği

BİR FAZ BEŞ SEVİYELİ İNVERTER TASARIMI VE UYGULAMASI

ZENER DİYOTLAR. Hedefler

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA

Bölüm 1 Güç Elektroniği Sistemleri

DC/DC gerilim çeviriciler güç kaynakları başta olmak üzere çok yoğun bir şekilde kullanılan devrelerdir.

DİJİTAL KONTROLLÜ LABORATUVAR GÜÇ KAYNAĞI TASARIMI

EEM211 ELEKTRİK DEVRELERİ-I

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

Onur ELMA TÜRKIYE DE AKILLI ŞEBEKELER ALT YAPISINA UYGUN AKILLI EV LABORATUVARI. Yıldız Teknik Üniversitesi Elektrik Mühendisliği

Problem Çözmede Mühendislik Yaklaşımı İzlenecek Yollar Birimler ve ölçekleme Yük, akım, gerilim ve güç Gerilim ve akım kaynakları Ohm yasası

T.C. MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

ELEKTRİKLİ ARABALARDA KULLANILAN Lİ-İON AKÜLERİN TEK FAZDAN HIZLI VE VERİMLİ ŞARJI İÇİN GÜÇ FAKTÖRÜ DÜZELTMELİ DUAL BOOST DÖNÜŞTÜRÜCÜ.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

ELM201 ELEKTRONİK-I DERSİ LABORATUAR FÖYÜ

TRANSİSTÖRLERİN KUTUPLANMASI

3. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN.

EVK Enerji Verimliliği, Kalitesi Sempozyumu ve Sergisi Haziran 2015, Sakarya

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

V R1 V R2 V R3 V R4. Hesaplanan Ölçülen

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

TEK FAZLI VE ÜÇ FAZLI KONTROLLÜ DOĞRULTUCULAR

Chapter 14. Elektrik Devreleri. Principles of Electric Circuits, Electron Flow, 9 th ed. Floyd

TAM KÖPRÜ SIFIR GERİLİM GEÇİŞLİ FAZ KAYDIRMALI PWM DC-DC DÖNÜŞTÜRÜCÜNÜN İNCELENMESİ

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü ÖLÇME TEKNİĞİ 9. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 9. HAFTA

DC-DC Dönüştürücülerde Optimum Bastırma Hücresi Tasarımı Kriterleri

Transkript:

Şarj Dengeleme Sistemleri İçin Çift Yönlü Flyback Devresi Tasarımı Serhat NAFİZ, Doç. Dr. Musa ALCI, Yrd. Doç. Dr. M. Necdet YILDIZ Elektrik-Elektronik Mühendisliği Bölümü Ege Üniversitesi serhatnafiz@gmail.com Elektrik-Elektronik Mühendisliği Bölümü Ege Üniversitesi musa.alci@ege.edu.tr Ege Meslek Yüksekokulu Ege Üniversitesi necdet.yildiz@ege.edu.tr Özetçe Birden çok batarya bulunan sistemlerde, bataryaların eşdeğer şarj ve deşarj olabilmelerini sağlamak toplam enerjinin efektif kullanılması ve batarya ömrünün uzaması açısından önem arz etmektedir. Bu işlemi yapan sistemlere şarj dengeleme sistemleri denilmektedir. Literatürde temel yapı olarak rezistif, kapasitif ve indüktif olmak üzere üç temel şarj dengeleme tekniği bulunmaktadır. Enerjinin verimli bir şekilde kullanılması için tek bataryadan alınan enerjinin diğer bataryalara transferi ve tersi yönde işlem yapabilen güç elektroniği topolojilerine ihtiyaç vardır. Bu çalışmada indüktif şarj dengeleme tekniği topolojisi ile bir çift yönlü flyback devresi tasarımı önerilmiş ve gerçeklenmiştir. Yapılan deneysel çalışmalar ile önerilen topolojinin çalıştığı gösterilmiş ve uygulama sonuçları verilmiştir. 1. Giriş Sadece elektrik enerjisiyle veya hibrit yöntemle çalışan sistemler gün geçtikçe çoğalmaktadır. Bu konuda en bilinen uygulama elektrikli araçlar ve hibrit elektrikli araçlardır. Bu araçlar içinde bulunan sürücü sistemlerinin çalışma gerilimi önceden belirlidir. Bu çalışma gerilimini karşılayacak şekilde seri bağlanan aküler kapasite ihtiyacı doğrultusunda da paralel bağlanmaktadır. Sıcaklık ve kimyasal yapıdaki farklılıklar neticesinde bataryalar birbirine eşdeğer olmayan davranışlar sergilemektedirler [1]. Bu farklılıklar nedeniyle yüklenme sırasında bazı bataryaların daha çabuk deşarj olduğu, şarj sırasında da bazı bataryaların daha çabuk %100 kapasiteye ulaştığı gözlemlenmektedir. Bu olumsuzluğu ortadan kaldırmak için şarj dengeleme sistemleri kullanılmaktadır. Şarj dengeleme sisteminin en büyük görevi bataryaların terminal gerilimlerini her durumda eşit tutmaktır. Bu çalışmada kullanılan topoloji hem şarj sırasında hem de deşarj sırasında bu görevi yerine getirebilmektedir. 1.1. Şarj dengeleme işlemi Bataryalar paralel bağlı oldukları durumda, birbirlerini terminal gerilimlerini eşitlemek için zorlarlar ve böylelikle paralel bağlı bataryalar otomatik şarj dengelemesi yapmış olurlar. Seri bağlı durumda aynı akım bütün bataryalardan geçer. Bu durumda şarj ve ya deşarj akımının ne zaman kesileceğini en zayıf batarya belirler. Şarj ve deşarj işlemi sırasında maksimum ve minimum terminal gerilimi değerlerinin dışına çıkılması durumunda bataryalar zarar görmektedir. Seri bağlı bataryalarda her bir bataryanın terminal gerilimini ölçmek bu bağlamda önemlidir. Şekil 1. Seri bağlı şarj dengesi olmayan bir batarya sistemi.

Şekil 1 de görüldüğü üzere bataryalar arasındaki farklılıklar şarj ve deşarj işlemi sırasında enerjinin tam olarak kullanılmasını engeller. Şekil 1 deki sistemde deşarj işlemine devam edilirse Batarya-2 zarar görür, benzer olarak şarj işlemine devam edilirse Batarya-3 zarar görür. Açıklaması yapıldığı üzere seri bağlı batarya sistemlerinde şarj dengeleme işlemi batarya ömrünün uzaması, bataryaların takibi ve enerjinin verimli kullanılması için bir zorunluluktur. Rezistif, kapasitif ve indüktif şarj dengeleme sistemleri, pasif ve aktif şarj dengeleme sistemleri olarak iki ana başlık altında toplanmıştır [2]. Rezistif yöntem pasif, kapasitif ve indüktif yöntemler ise aktif şarj dengeleme sistemleri olarak isimlendirilmektedir. Rezistif şarj dengeleme sisteminde dirençler yardımı ile daha hızlı şarj olan bataryadaki enerji, diğer bataryaların da tam kapasiteye erişebilmesi için bir rezistans üzerinde yakılır ve ısı enerjisi olarak dışarıya atılır. Bu tekniğin dezavantajları şunlardır. Sadece şarj işlemi sırasında dengeleme işlemi yapılabilir. Fazla enerji diğer bataryalara dağıtılmak yerine ısı olarak atıldığı için çok verimsiz bir tekniktir. Bu çalışmada önerilmiş olan çift yönlü flyback topolojisi, bataryalar arası enerji transferini çift yönlü gerçekleştirebilen ve böylelikle rezistif şarj dengeleme yöntemine göre daha verimli olan bir topolojidir. 2. Flyback topolojisi Anahtarlama elemanı sayısının az olması, giriş ve çıkış arasında yalıtım sağlaması gibi avantajları nedeniyle güç elektroniği uygulamalarında flyback topolojiye sıklıkla rastlanmaktadır. Geleneksel flyback topoloji, primer taraftan aldığı enerjiyi sekonder tarafa transfer etmektedir. Bu topoloji Şekil 2 de gösterilmiştir. topolojinin çalışma prensibi ve teorik hesaplamaları kaynaklarda [1], [3], [4] detaylı olarak anlatılmış durumdadır. 2.1. Çift yönlü flyback topolojisi Bu çalışmada önerilen çift yönlü flyback topolojisi Şekil 3 de gösterilmiştir. Şekil 2 de bulunan D1 diyotu devreden kaldırılmış, yerine Şekil 3 de gösterildiği gibi bir S2 anahtarı eklenmiştir. Şekil 3. Çift yönlü flyback topolojisi Bu topolojide Şekil 2. deki D1 diyotunun görevini S1 ve S2 anahtarları üzerindeki gövde diyotları üstlenmektedir. Primer taraftan sekonder tarafa enerji transferi yapabilmek için S1 anahtarı anahtarlanmalı, S2 anahtarı ise kesimde tutulmalıdır. Benzer şekilde serkonderden primere enerji transferi yapmak için ise S2 anahtarı anahtarlanmalı S1 anahtarı kesimde tutulmalıdır. Primerden sekondere enerji transferi durumu Şekil 4. ve Şekil 5. de, Sekonderden primere enerji transferi de Şekil 6 ve Şekil 7. de basamaklar halinde verilmiştir. Şekil 2. Flyback topolojisi Şekil 4. S1 iletimde, S1 gövde diyodu kesimde, S2 kesimde, S2 gövde diyodu kesimde Şekil 2 de gösterilen devrede S1 anahtarı iletime geçtiğinde nüvenin primer sargısında enerji depolanır. Bu sırada, sekonder sargının ters sarılmış olmasından dolayı D1 diyodunun pozisyonu nedeniyle depolanan enerji sekonder tarafa aktarılmaz. S1 anahtarı kesime geçtiğinde ise depolanmış olan enerji sekonder sargı tarafında D1 diyodu üzerinden çıkışa aktarılır. Devrenin sekonder tarafında sadece diyot bulunmasından dolayı enerji aktarımı sadece primer taraftan sekonder tarafa doğru olmaktadır. Flyback

Şekil 5. S1 kesimde, S1 gövde diyodu kesimde, S2 kesimde, S2 gövde diyodu iletimde Şekil 8. Uygulama devresine ait prensip şema Tablo 1. Uygulama devresine ait teknik bilgiler Tasarım Parametreleri Nominal çıkış gücü Primer gerilim Sekonder gerilim Anahtarlama frekansı 40 Watt 12,5 Volt 50 Volt 62,5 khz Şekil 6. S2 iletimde, S2 gövde diyodu kesimde, S1 kesimde, S1 gövde diyodu kesimde Donanım Listesi ve Özellikleri MCU PIC18F2520 S1,S2 IRF640 Nüve ETD29 Primer indüktans 7,76 uh Primer kaçak indüktans 0,31 uh Sekonder indüktans 60 uh Sekonder kaçak indüktans 2,47 uh Sarım oranı 7/20 Şekil 7. S2 kesimde, S2 gövde diyotu kesimde, S1 kesimde, S1 gövde diyodu iletimde 3. Uygulama Önerilen topolojinin uygulaması yapılmıştır. Uygulama sırasında anahtarlama elemanları üzerindeki gerilim stresini azaltmak için devreye RC snubber ve nüvenin kaçak endüktansından kaynaklı stresi azaltmak için RCD snubber eklentileri yapılmıştır. Uygulaması yapılan devrede primer taraf ile mikrodenetleyicili kontrol kartının şaseleri ortaktır. Önerilen topoloji izolasyonlu bir topoloji olduğu için sekonder tarafta bulunan S2 anahtarı da izolasyonlu bir şekilde anahtarlanmalıdır. Şekil 8. de uygulama devresine ait prensip şema görülmektedir. Devreyle ilgili teknik bilgiler de Tablo 1 de verilmiştir. 3.1. Ölçümler Uygulama sırasında primerden sekondere ve sekonderden primere farklı çevrim oranlarında enerji transferi yapılmıştır. Üretilen devrenin gerilim, akım, verim bilgileri Tablo 2 de sunulmuştur. Tablo 2. Farklı çevrim oranlarına ait gerilim, akım, verim verileri Primerden sekondere nd erd en pri Çevrim Oranı [0,1] Vprimer (Volt) Iprimer (Amper) Vsekonder (Volt) Isekonder (Amper) Verim % Giriş Gücü (Watt) Çıkış Gücü (Watt) 0,194 12,16 0,47 48,70 0,07 59,64 5,71 3,41 0,334 11,79 1,31 48,86 0,22 69,59 15,44 10,75 0,338 11,62 1,71 48,90 0,28 68,90 19,87 13,70 0,444 11,50 2,07 48,97 0,33 67.88 23,80 16,16 0,550 11,16 2,97 49,10 0,45 66,66 33,14 22,10 0,20 12,73 0,79 48,45 0,29 71,58 14,05 10,05

0,33 13,12 1,93 48,18 0,74 71,02 35,65 25,32 0,38 13,43 2,49 47,90 0,93 75,07 44,57 33,44 0,40 13,50 2,64 47,90 1,00 74,41 47,90 35,64 0,43 13,37 3,30 47,70 1,26 73,41 60,10 44,12 Tablo 2. de sunulan ölçümlerden görüldüğü üzere devre yardımıyla çift yönlü enerji transferi yapılmaktadır. Devrenin kullanımı sırasında uygulamanın ihtiyaçları doğrultusunda hazırlanan algoritmaya göre enerjinin akış yönü belirlenmektedir. Şekil 9. ve Şekil 10 da primerden sekondere ve sekonderden primere aktarım yapılırken, çevrim oranına(duty) bağlı oluşan verim grafikleri verilmiştir. Şekil 11. Gerçeklenen çift yönlü flyback prototipi Bu prototip devre çift yönlü enerji transferi yapabilmeye ek olarak izolasyonlu RS-485 de haberleşmesi yapabilmekte, bağlı olduğu bataryanın terminal gerilimini, primer ve sekonder akımlarını ölçebilmektedir. PCB boyutu 10x15 cm dir. Bu çalışma kapsamında sadece güç katı incelenmiştir. Şekil 12, 13, 14 ve 15 de devrenin güç katı üzerinde yapılan osilaskop ölçümleri fotoğraf olarak verilmiştir. Şekil 9. Çevrim oranına (duty) bağlı verim grafiği Şekil 10. Çevrim oranına (duty) bağlı verim grafiği Anahtar olarak kullanılan mosfetlerin iç direncinin yüksek olması ve nüvedeki kaçak endüktansın %5 civarlarında olmasının elde edilen verim eğrilerinin düşük olmasında etkili olduğu değerlendirilmektedir. Şekil 9. ve 10 dan görüldüğü üzere eşdeğer çıkış gücü durumunda, primerden sekondere enerji transferi daha verimsiz olmaktadır. Bunun sebebi primer terminal geriliminin sekonder terminal geriliminden düşük olması ve bu sebeple eşdeğer çıkış gücü için daha yüksek akım ihtiyacı olmasıdır. Akım değerinin artması da devredeki iletim kayıplarını arttırmaktadır. Uygulama sırasında tasarlanan ilk örnek (prototip) devrenin bir fotoğrafı Şekil 11 de görülmektedir. Şekil 12. Sekonderden primere enerji transferi sırasında S2 anahtarı Vds ve Vgs gerilimleri. Kanal 1 Vds 10x, Kanal 2 Vgs 1x, çevrim oranı: 0,2

Şekil 13. Sekonderden primere enerji transferi sırasında S2 anahtarı Vds ve Vgs gerilimleri. Kanal 1 Vds 10x, Kanal 2 Vgs 1x, çevrim oranı: 0,43 Bu çalışmada şarj dengeleme sistemlerinin önemi ve gerekliliği vurgulanmıştır. Önerilen çift yönlü flyback topolojisi şarj dengeleme sistemleri haricinde çok geniş bir uygulama alanına sahip olabilir. Yapılan deneysel çalışmaların sonucunda önerilen topolojinin gerçeklemesi yapılmış ve alınan deneysel sonuçlar verilmiştir. Devam eden çalışmalar ile daha uygun elemanlar kullanılarak verimliliğin %90 mertebelerine[5] çıkarılması hedeflenmektedir. Yapılan çalışmanın çıktıları aşağıdaki gibi sıralanabilir. Birbirinden bağımsız iki sistem arasında izolasyonlu olarak çift taraflı enerji transferi mümkündür. Elektrikli araçlarda frenleme sırasında açığa çıkan enerji bu topoloji ile bataryalara geri döndürülebilir. Enerjiyi ısı olarak atmadan bataryalar arası transfer ederek şarj dengelemesi yapılabilir. Şekil 14. Primerden sekondere enerji transferi sırasında S1 anahtarı Vds ve Vgs gerilimleri. Kanal 1 Vds 10x, Kanal 2 Vgs 1x, çevrim oranı: 0,33 Toplamda 2 adet anahtarlama elemanı olması sebebiyle pratik gerçeklemesi kolaydır. MCU kontrollü olması sebebiyle enerji transferi sırasında değişik kontrol algoritmalarının (ANFIS, Fuzzy, PID) uygulanması ve kıyaslanması sağlanabilir. Kaynakça Şekil 15. Primerden sekondere enerji transferi sırasında S1 anahtarı Vds ve Vgs gerilimleri. Kanal 1 Vds 10x, Kanal 2 Vgs 1x, çevrim oranı: 0,55 4. Sonuçlar [1] Carl Bonfiglio, and Werner Roessler, A Cost Optimized Battery Management System with Active Cell Balancing for Lithium Ion Battery Stacks, Vehicle Power and Propulsion Conference, 2009. VPPC '09 IEEE, Dearborn MI, 7-10 Sept. 2009, pp. 304-309 [2] http://www.infineon.com/cms/en/product/applications/au tomotive/hybrid_electric_electric_vehicle/battery_manag ement.html.

[3] Abraham I. Pressman, Keith Billings, Taylor Morey, Switching Power Supply Design, Third Edition, Mc Graw Hill, 2009. [4] Application Note AN4137, Design Guidelines for Offline Flyback Converters Using Fairchild Power Switch (FPS). [5] Gang Chen, Yim-Shu Lee, S. Y. R. Hui, Dehong Xu, and Yousheng Wang, Actively Clamped Bidirectional Flyback Converter, Industrial Electronics, IEEE Transactions on, Volume 47, Issue 4, pp. 770 779, Aug 2000. Teşekkür Bu çalışma Sanayi Bakanlığı ve İnci Akü A.Ş. tarafından SANTEZ projesi olarak desteklenmektedir.