HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ"

Transkript

1 HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK DEVRE LABORATUARI DENEY FÖYLERİ KİTAPÇIĞI Sayfa 0

2 İçindekiler Laboratuarda Uyulması Gereken Kurallar... 2 Deneylerde Kullanılacak Ekipmanların Tanıtılması... 3 Deney 1 : Ohm ve Kirchoff Kanunlarının İncelenmesi Deney 2 : Electronic Workbench Kullanımı Deney 3 : Süperpozisyon Teoreminin İncelenmesi Deney 4 : Thevenin Teoreminin İncelenmesi Deney 5 : Maksimum Güç Transferi Deney 6 : Zaman Sabitesi,Akım ve Gerilim Deney 7 : RC Devresinin AC Analizi Deney 8 : Yarım ve Tam Dalga Doğrultma Uygulaması Sayfa 1

3 Deneylerde Uyulması Gereken Kurallar Ön hazırlık ve Sonuç Raporları kişisel olarak hazırlanacaktır. Aynı olan raporlar kopya sayılacak ve ona göre işlem yapılacaktır. Deneye mazeretsiz geç kalan öğrenciler devamsız sayılırlar. Öğrencinin gelmediği deneyde alacağı not 0 dır. Verimli bir çalışma ortamı sağlamak amacıyla alçak sesle konuşunuz. Gruplar arasında malzeme alışverişi yapılmamalıdır. Deney süresince deneyden çıkılamaz. Gerektiğinde görevliden izin isteyerek çıkabilirsiniz. Deneyde kullanılacak olan ölçü aleti, kablolar, kaynaklar, deney setleri gibi ekipmanlar her masada sayılı dağıtılmıştır. Dolaysıyla masalar arası kablo veya ölçü aleti taşımak kesinlikle yasaktır. Deney bitiminde görevli tarafından sayılacaktır ve sağlamlıkları kontrol edilecektir. Sağlam olmayan veya eksik bırakılan malzemeden ilgili masadaki öğrenci grubu sorumludur. Deney sonunda deney masasındaki bütün elektriksel cihazların elektrik bağlantısı kesilmeli, kablolar sökülerek ilgili cihazın üzerine konulmalı, tabureler ve masa düzenli bir şekilde bırakılmalıdır. Aksi takdirde deney sonuçları imzalanmayacaktır. Deneye gelmeden önce ön hazırlık raporu hazırlanmalı deney föyündeki ön hazırlık soruları bu raporda cevaplandırılmalıdır. Bu raporu hazırlamayanlar deneye alınmayacaktır ve devamsız sayılacaktır. Deney sonuç raporu ise deneyden bir sonraki hafta deneye gelirken getirilecektir. Deney sonuç raporunda deney sonuç soruları mutlaka cevaplandırılmalıdır. Deneyde yapılan ölçümler görevli öğretim elemanına imzalatılacaktır. İmzalı belge her bir kişisel sonuç raporuna eklenecektir. Teknik Olarak Deneylerde Dikkat Edilmesi Gereken Konular Deneylerde dikkat edilmesi gereken konular aşağıda sıralanmıştır. Bu konulara dikkat edilmemesi durumunda deneyi bitirebilmek için daha çok vakit harcamanız gerekecektir. Bread boardların altında ve üstündeki yatay blokları besleme ve toprak için kullanırsanız, devreyi kurmanız ve gerektiğinde kontrol etmeniz kolaylaşır. Bağlantı tellerinin uçlarını fazla sıyırmamalıyız. Aksi takdirde yanındaki elemanla kısa devre yapma ihtimali olabilir. Bağlantı tellerinin uçlarının bükük olmadığına dikkat edilmesi gerekir. Devreleri kurarken gerilim kaynağı mutlaka kapalı olmalıdır. Devre üzerinde değişiklik yapılırken (eleman ekleme/çıkarma, bağlantı değiştirme) gerilim kaynağı mutlaka kapalı olmalıdır. Eğer bu konularda hassasiyet gösterilmişse ve yine de devrede bir hata var ise; kontrolü aşağıdaki sıraya göre yapmalıyız. Yanlış Bağlantı Kopuk Tel Elemanların yanlış değerde seçilmesi Sayfa 2 Elemanların bozuk olması Deney seti cihazlarının bozuk olması Ölçü aletlerinin bozuk olması

4 Deneylerde Kullanılacak Ekipmanların Tanıtılması a) Bread Board Bread board, elektrik devrelerinin üzerine kurulmasını sağlayan en temel deney ekipmanıdır. Bread board un üzerinde dikey ve yatay olmak üzere kısa devre edilmiş, elektrik devre elemanlarının kolayca monte edilip sökülmesi için dizayn edilmiş olan delikler bulunur. Bu deliklerin şaselerinin nasıl olduğu Şekil 1.1 de gösterilmiştir. Bread board kullanılırken yatay kısa devre edilmiş bloklardan biri (+) diğeri ( ) şeklinde bağlantıları yapılıp devre kurulur. Bu şekilde devreyi kurmak karmaşık devrelerde çok büyük kolaylık sağlar. b) DC Güç Kaynağı Elektronik devrelerinin çalıştırılması için gerekli olan, regüleli doğru akım beslemesini sağlayan kaynaklara DC güç kaynakları denir. DC güç kaynaklarında Dijital ekranda gözüken ve ayar düğmesi ile ayarlayabildiğimiz gerilim değerini aynı ayar düğmesinin altındaki çıkışlara veren bir deney ekipmanıdır. Güç kaynağının sabit gerilimi (+ 5 V) TTL devre tasarımlarında kullanılır. Ayarlanabilir gerilimi (-30 V V) ise analog devre tasarımlarında kullanılır. c) Sinyal Jeneratörü Şekil 1.1 Bread Board un Kısa Devre Şeması Sinyal jeneratörü genellikle alıcıların testinde, amplifikatörlerin testinde ve bu cihazların onarımında kullanılır. Sinyal kaynağı olarak kullanılır. Dalga dedektörü, radyo frekans köprüleri gibi yerlerde kullanılır. Sayfa 3

5 Üç çeşit modülasyon vardır; 1-) Kare dalga 2-) Sinüs dalga 3-) Üçgen dalga Güç kaynağı devresi AC 110 V / 220 V ile beslenmiştir. Sinyal Jeneratöründeki tuşlar ve fonksiyonları 1. Frekans Displayi: 8 dijitli bir likit kristal ekrandır. Frekans değerlerinin azalıp artmasını gösterir. Maksimum Megahertz e kadar gösterebilir. Aynı zamanda cihazın açık olup olmadığını hata vererek gösterir. Tuşların test edilmesinde de bu ekrandan yaralanılır. 2. Genlik Displayi: 3 ½ dijitli likit kristal ekrandır. RF çıkış seviyesini veya genlik değişmelerini göstermektedir. 3. RF OFF / ON Anahtarı: İki pozisyonlu bu anahtar RF sinyalinin çıkışını kontrol eder. On konumunda RF sinyali çıkışa iletilir. OFF konumunda ise RF sinyalinin çıkışını keser. 4. Bilgi Giriş Tuşları: Frekans, genlik değerlerinin seçildiği tuş takımlarıdır (Örnek: 1KHz, 10 KHz,...) 5. Değer Arttırma Anahtarı: Frekans ve genlik arttırmamızı sağlayan kalibrasyon tuşlarıdır. 6. Modülasyon Tuşları: İstediğimiz modülasyonu seçmemizi sağlar: kare, sinüsoidal veya üçgen modülasyon. Ayrıca LEVEL, WIDE gibi tuşlar istediğimiz sinyali elde etmemizi sağlayan hassas ayarları yapabiliriz. d) Osiloskop Osiloskop, devre elemanlarının karakteristiklerinin çıkartılmasında ve zamana bağlı olarak değişen gerilimlerin incelenmesinde kullanılan bir ölçü aleti olup, çok hızlı değişen bir veya birden fazla sinyalin aynı anda incelenmesinde, genlik, frekans ve faz ölçümlerinde kullanılır. Zamana bağlı olarak değişen bir akım veya gerilim fonksiyonu, ibreli (analog) veya sayısal (digital) bir ölçme aleti ile ölçülebilmektedir. Fakat bu aletler fonksiyonun gerçek değişimi hakkında bilgi verememektedirler. Ancak değişim, kısa aralıklarla okunan değerlerin (zamanıda kaydederek) bir eksen takımı üzerinde gösterilmesi ile görülebilir ise de bu oldukça zor bir iştir. Bu nedenle, işareti zaman düzleminde gösteren bir ölçüm aleti olan osiloskoplar imal edilmiştir. Sayfa 4

6 İncelenecek işaretlerin osiloskop cihazına aktarılması için kullanılan bir çeşit kablodur. Bir ucu osiloskoba bağlanırken sivri olan diğer ucu devredeki incelenecek işaretin bulunduğu düğüme temas ettirilerek kullanılır. Probun bu ucunda genellikle krokodil konnektörü şeklinde bir de toprak bağlantısı bulunur. Osiloskop probları x1 ve x10 şeklinde ayarlanabilirler: x1 : izlenen sinyali bozmadan ve değiştirmeden osiloskoba ulaştırır. x10 : izlenen sinyal onda birine zayıflatılarak osiloskoba ulaştırılır. Bu takdirde, sinyalin gerçek genlik değeri ekranda görünen değerlerin 10 katıdır. Osiloskobun nasıl kullanılacağı ile ilgili bilgiler aşağıda verilmiştir. Dikey Kontrol Dikey kontrol seçilmiş olan dalga (CH1,CH2) için geçerli olacaktır. VOLTS/DIV ayar düğmesi ile dikey koordinatın skalası ayarlanır. POSITION ayar düğmesi ile ekranda görülen dalganın (CH1 veya CH2) dikey pozisyonu ayarlanabilir. Sadece gösterim olarak sinyal yukarı çıkar, değer olarak hiçbir değişiklik olmaz. Ekranın solundaki F serisi tuşlarının CH1 veya CH2 gösterilirken üstlendiği fonksiyonlar aşağıda gösterilmiştir. Bazı durumlarda bu tuşlar değişik görevler alır. Genel olarak bizim için geçerli olan kullanımlardan bahsedilecektir. ayarlama yapmaya yarayan butondur. (F1) Ölçülen sinyalin AC-DC-Toprak olduğu konusunda Ölçülen sinyalin invertini almaya yarayan ayar butonudur. ON olarak ayarlandığında ölçülen sinyalin tersi gösterilir. (F2) Probun elektronik ortamda ayarlanmasını sağlar. Eğer ölçülen sinyalin 10 veya 100 katı büyük bi sinyal görmek isterseniz bu ayar kısmını 10 veya 100 e ayarlayarak istediğinizi yapabilirsiniz. (F4) Sayfa 5

7 Yatay Kontrol Yatay kontrol menüsüne girebilmek için öncelikle Menu butonuna basılması gerekir. POSITION ayar düğmesi ile girişteki sinyal yatay olarak pozisyon değiştirir. TIME/DIV ayar düğmesi ile yatay koordinatta skalandırılmış olan eksenin skadası değiştirilebilir. Sinyal Giriş Bağlantıları e) Multimetre 1) CH1 ve CH2 girişleri 2) Topraklama girişi 3) Harici bir sinyal girişi Laboratuar ortamında birçok elektronik devrenin istenilen biçimde çalıģması için gerekli ölçümlerin yapılması gerekir. Bu ölçümler multimetre olarak adlandırılan cihazla yapılır. Multimetrenin kulanımı kısaca anlatılacaktır. Ölçülmesi istenen özellik fonksiyon seçim düğmesi ile seçilir ve dijital ekrandan ölçüm sonucu okunur. Sayfa 6

8 1) OFF konumu Cihazı kapatmak için kullanılır. 2) V konumu 1.Fonksiyon: AC gerilimi ölçer 2.Fonksiyon: DC gerilimi ölçer. 3) Ω/Buzzer konumu 1.Fonksiyon: Direnç ölçmek için kullanılır. 2.Fonksiyon: Kısa devre testi (Buzzer). 4) Diyot/C konumu 1.Fonksiyon: Diyot eşik gerilim değerini ölçer. 2.Fonksiyon: Kondansatör kapasite değerini ölçer. 5) ma konumu 1.Fonksiyon: AC akım (mili amper mertebesinde) ölçmek için kullanılır. 2.Fonksiyon: DC akım (mili amper mertebesinde) ölçmek için kullanılır. 6) 20A konumu 1.Fonksiyon: AC akım (amper mertebesinde) ölçmek için kullanılır. 2.Fonksiyon: DC akım (amper mertebesinde) ölçmek için kullanılır. 7) Hz konumu Frekans ölçmek için kullanılır. Ayrıca multimetrelerin genellikle alt kısımlarında ölçüm problarının bağlandığı kısım bulunur. Sayfa 7

9 Referans ucu (Siyah Kablo) her zaman 3 numaralı girişe takılır. Akım amper mertebesinde ölçülürken kırmızı kablo 1 numaralı girişe takılır. Akım miliamper mertebesinde ölçülürken kırmızı kablo 2 numaralı girişe takılır. Gerilim, direnç gibi geri kalan özellikler ölçülürken kırmızı kablo 4 numaralı girişe takılır. f) Dirençler v(t)=ri(t) ya da i(t)=gv(t) bağıntısı ile tanımlanan 2-uçlu elemana lineer zamanla değişmeyen direnç elemanı denir. Yukarıdaki tanım bağıntılarında R reel katsayısı direnç elemanının direnci (rezistansı), G reel katsayısı da iletkenliği (kondüktansı) dir. Universal birim sisteminde R' nin birimi ohm (Ω), G'nin birimi ise siemens (S) dir. Direnç ile iletkenlik arasında GR=1 bağıntısı vardır. Dirençler, elektrik veya elektronik devrelerinde akımı kontrol etmek amacıyla oldukça yaygın olarak kullanılan elemanlardır. Dirençler, kullanılacak yere ve amaca göre çeşitli şekillerde üretilirler. Bunlardan başlıcaları: a) Sabit dirençler b) Değişken dirençler c) Foto rezistif dirençler d) Isıya duyarlı dirençler a) Sabit Dirençler: Fiziksel olarak bir bozulmaya uğramadığı sürece direnç değeri (rezistansı) değişmeyen yani aynı kalan dirençlerdir. Bunların boyutu ve yapılışı içinden geçen akıma dolayısıyla üzerinde harcanan güce göre değişir. Dirençlerin değerleri ve toleransları renk kodu denilen işaretleme ile belirtilir. Sayfa 8

10 b) Değişken Dirençler: Direnç değeri, 0 Ω ile üretici firma tarafından belirlenmiş bir üst sınır aralığında değişen dirençlerdir. Örneğin 10 kω'luk bir değişken direncin değeri 0-10 kω arasında değiştirilebilir. Değişken dirençler bir devrede direnç değerinin sık sık değişmesi istendiği zaman kullanılırlar. Değişken dirençler istenen güce göre karbonlu veya tel sargılı olurlar. c)foto Rezistif Dirençler: Bunların isminden de anlaşılacağı gibi direnç değeri, üzerine düşen ışığın şiddetine göre değişen özel dirençlerdir. Bu tip dirençler endüstriyel uygulamalarda oldukça yaygın olarak kullanılmaktadır. d)isıya Duyarlı Dirençler: Direnci ısıya bağlı olarak değişen nonlineer dirençlerdir (PTC, NTC). g) Kapasitanslar Kondansatör iki levha arasına konmuş bir dielektrik maddeden ibarettir. Elektrik ve elektronik devreler için temel devre elemanlarından biridir. Elektronikte iki kat arasında kuplaj, by pass, dekuplaj, bloklama, ayar ve filtre elemanı olarak kullanılır. Elektrik devrelerinde, güç katsayısının düzeltilmesinde, bir fazlı motorlarda ilk hareketi sağlamada ve kalkınma momentini artırmada kullanılır. Kapasitansın değeri üzerinde yazılıdır. 2) Ön Deney Raporu ve Deney Sonuç Raporunun Hazırlanması Bu raporlar kişisel olarak hazırlanacaktır. a) Ön Deney Raporu Ön deney raporu ile öğrencilerin deney konularına önceden çalışması hedeflenmektedir. Dolaysıyla ön deney raporu hazırlanmadan önce deney föyünün deneyle ilgili teorik bilgiler kısmı iyice okunmalıdır. Daha sonra ön hazırlık soruları çözmeli ve bir rapor halinde deneye gelirken getirilmelidir. Sayfa 9

11 b) Deney Sonuç Raporu Deney sonuç raporu ile öğrencilerin deneyde görülmesi hedeflenen sonuçlara ulaşılıp ulaşılmadığı kontrol edilmektedir. Deney sonuç raporunda; deney adı, deneyin amacı,deneyin yapılışı,deney sonuçları,deney sonuç soruları, deneyle ilgili kişinin yorumu ve sonuç kısımları bulunmalıdır. İmzalı belge veya kopyası eklenmelidir. Sayfa 10

12 DENEY #1 OHM VE KIRCHOFF KANUNLARININ İNCELENMESİ Deneyin Amacı : Ohm ve Kirchoff kanunlarının geçerliliğinin deneysel olarak gözlemlenmesi Kullanılan Alet ve Malzemeler: 1) DC Güç Kaynağı 2) Avometre 3) Çeşitli Değerlerde Dirençler ve bağlantı kabloları Deneyle İlgili Teorik Bilgiler: Bir doğru akım devresinde, bir direnç üzerinden akan akım, elemanın uçlarına uygulanan gerilimle doğru, elemanın direnci ile ters orantılıdır. Buna ohm kanunu denir. Düğüm : İki veya daha çok elektronik devre elemanının birbirleri ile bağlandıkları bağlantı noktalarına düğüm adı verilir. Düğüm, akımın kollara ayrıldığı yolların birleşme noktaları olarak da tarif edilebilir. Göz : Bir düğümden başlayarak, bu düğüme tekrar gelinceye dek elektriksel yollar üzerinden sadece bir kez geçmek şartı ile oluşturulan kapalı devreye göz (çevre) ismi verilir. Kirchoff Akım Kanunu : Bir elektriksel yüzeye veya bir düğüm noktasına giren (düğümü besleyen) akımlar ile bu düğüm noktasından çıkan (düğüm tarafından beslenen) akımların cebirsel toplamı sıfırdır. İ 1 İ 7 İ 6 İ 5 İ 2 İ 3 İ 4 Düğüm noktasını besleyen akımlar (giren akımlar) : i 1, i 3, i 4, i 7 Düğüm noktasından beslenen akımlar (çıkan akımlar) : i 2, i 5, i 6 Sayfa 11

13 Bu durumda; Kirchoff Gerilim Kanunu : Bir elektronik devrenin sahip olduğu çevrelerdeki gerilim düşmelerinin cebirsel toplamı sıfıra eşittir. V R1 V R2 V R V S + - İ 1 İ V R3 + - V R5 İ 1 akımının dolaştığı kapalı çevre için ; İ 2 akımının dolaştığı kapalı çevre için ; Ön Hazırlık Soruları : İ 1 1 kω A İ kω 4.7 kω B 5 V + - I İ 2 İ 5 İ 6 II 2.2 kω 4.7 kω 10 kω S.1. Yukarıdaki devredeki tüm dallardaki akımları istediğiniz bir yöntemle bulunuz. S.2. 1 kω luk direncin üzerindeki gerilimi bulunuz. S.3. I ve II nolu gözler için Kirchoff un Gerilim Kanunu nun ispatını yapınız. S.4. A ve B düğümleri için Kirchoff un Akım Kanunu nun ispatını yapınız. Sayfa 12

14 Deneyin Yapılışı : 1) Şekil 1 de verilen devreyi kurunuz. 2) R 1 direnci üzerindeki gerilimi ve üzerinden akan akımı ölçerek Ohm Kanunun geçerliliğini gözleyiniz. 3) I ve II nolu gözlerdeki elemanlar üzerindeki gerilimleri ölçerek Kirchoff un Gerilim Kanunu geçerliliğini gözleyiniz. 4) A ve B düğüm noktalarına gelen ve giden akımları ölçerek Kirchoff un Akım Kanunu geçerliliğini gözleyiniz. 5)Ölçmeleri yaparken paralel kollardaki gerilimlerin ve seri kol üzerindeki akımların birbirine eşit olduğunu kontrol ediniz. 6)Ölçme sonuçlarını Tablo 1.1 e kaydediniz. İ 1 R 1 A İ 3 R 3 R 4 İ 4 B V s + - I İ 2 İ 5 İ 6 II R 5 R 6 R 2 Şekil 1 V s = 5 V R 1 = 1 kω R 2 = 2.2 kω R 3 = 3.3 kω R 4 = 4.7 kω R 5 = 4.7 kω R 6 = 10 kω I 1 (ma) I 2 (ma) I 3 (ma) I 4 (ma) I 5 (ma) I 6 (ma) Ölçme Hesap V R1 (V) V R2 (V) V R3 (V) V R4 (V) V R5 (V) V R6 (V) Ölçme Hesap Tablo 1.1 Sayfa 13

15 Deney Sonuç Soruları S.1. Ön hazırlık sorularında bulduğunuz akım ve gerilim değerleriyle, deneyde ölçtüğünüz değerleri karşılaştırınız. Eğer fark var ise sebebini belirtiniz? S.2. V A - V B = i 3. (R 3 + R 4 ) ifadesini ölçtüğünüz değerlerle hesaplayarak doğruluğunu gösteriniz. Sayfa 14

16 DENEY #2 ELEKTRONİC WORKBENCH KULLANIMI Deneyin Amacı : Electronic Workbench simulasyon programının kullanmasını öğrenmek ve örnek deneylerle pratik yapmak Deneyle İlgili Teorik Bilgiler: 1. Giriş: Günümüzde her türlü elektronik devrenin tasarım ve analizinde artık simülasyon (benzetim) programları yaygın olarak kullanılmaktadır. Bu programlar sayesinde zamandan ve paradan tasarruf sağlanarak bilgisayar başında devre tasarımı ve analizi kolayca yapılabilmektedir. Elektronik devre çizimi için kullanılan pek çok program bulunmaktadır. Ancak çizimle birlikte devre analizi de yapan program sayısı fazla değildir. Burada EWB programının 5.12 versiyonu anlatılacaktır. Amaç, programın temel düzeyde nasıl kullanılacağını göstermektir. Programın eski versiyonlarında bulunmayan bazı gelişmiş özelliklerin nasıl kullanılacağını öğrenmek için programın help (yardım) menüsünden yararlanılmalıdır. Programın doğru bir şekilde kullanılabilmesi için elektroteknik, analog ve dijital elektronik, kontrol teorisi, sinyaller ve sistemler gibi alanlarda belirli bir düzeyde bilgi sahibi olunması gereklidir.workbench simülasyon programının açılış ekranı Şekil 1 deki gibidir. Şekil 1 2. TEST CİHAZLARI Bu bölümde, analiz edilecek bir devrede kullanılacak ölçü aletleri ve sinyal kaynakları tanıtılacaktır. Şekil 2 nin üst kısmında görülen butona basılmasıyla Instruments menüsü açılır. Burada, test cihazları programdaki Sayfa 15 Şekil 2

17 görünüş sırasına göre toplu halde verilmiştir. Aşağıda her birinin görevi ve çalışma şekli kısaca anlatılmaktadır AVO Metre (Multimeter) Şekil 2 nin ilk sırasında yer alan küçük kutu AVOmetredir. Bu eleman mouse ile çalışma sayfasına taşınıp çift tıklanırsa şekil 3 deki büyük kutu açılır. İki uçlu bu eleman sayesinde doğru ve alternatif akım şartlarında akım(a), gerilim(v), direnç(ω) ölçülebilmektedir. Ayrıca logaritmik kazanç da db (desibel) cinsinden hesaplanabilmektedir. Şekil Sinyal Üreteci ( Function Generator) Şekil 4 de görülen sinyal üreteci ile dalga şekli farklı 3 sinyal üretilebilmektedir. Bunlar sinüsoidal, üçgen ve kare dalga dır. Sinyal üreteci üzerindeki ayar butonları yardımıyla sinyalin frekansı (frequency) ve genliği (amplitude) değiştirilebilmektedir. Duty cycle ve offset adlı butonlar ile sırasıyla işaretin görev periyodu ve kayma miktarı ayarlanmaktadır. Sinyal kaynağı üzerinde görünen genlik değeri maksimum değerdir. Örneğin efektif değeri 220 V olan şebeke Şekil 4 gerilimini elde etmek için genlik 311V seçilmelidir Osiloskop (Oscilloscope) Osiloskop üzerindeki butonlar gerçek osiloskoptaki ile aynıdır. Görüntüyü büyütmek için expand butonuna basılır Bode Çizici (Bode Plotter) Şekil 6 da görülen test cihazı bir devrenin bode diyagramını çizmek için kullanılır. Bu sayede bir devrenin frekans cevabı (genlik-frekans ve faz-frekans eğrileri) elde edilir. Şekil 6 Sayfa 16

18 2.5. Kelime Üreteci (Word Generator) Kelime üreteci sayesinde dijital (sayısal) bir elektronik devreye 16 bitlik lojik sinyaller gönderilebilir. Frekans ayarlaması yapılarak bilgi aktarım hızı istenildiği gibi seçilebilir. Sol kısımda, gönderilen bilginin heksadesimal (16 lık taban) karşılığı görülmektedir. Ayrıca ikili (binary) veya ASCII kodu da görülebilir Lojik analizör Lojik analizör yardımıyla bir dijital devrenin herhangi bir noktasındaki zamana bağlı dalga şekli görülebilir. Zaman ekseni uygun şekilde seçilerek ekrandaki dalga sıklığı artırılabilir. Ayrıca girişe uygulanan sinyalin heksadesimal karşılığı da okunabilir Lojik Çevirici (Logic Converter) Lojik çevirici yardımıyla bir lojik devrenin doğruluk tablosu elde edilir. Bu test cihazı ile doğruluk tablosuna göre otomatik lojik devre çizimi de yaptırılabilir. Aynı zamanda cihazın alt kısmında doğruluk tablosuna göre otomatik olarak elde edilmiş lojik ifadeler de görülebilir. 3. MALZEME KUTULARI 3.1. Kaynaklar (Sources) Şekil 7 nin üst kısmında görülen kutucuğa mouse ile tıklandığında kaynaklar penceresi açılır. Şekilden de görüldüğü gibi pek çok kaynak türü bulunmaktadır. Bunların ne işe yaradığı aşağıda sırasıyla verilmiştir. Şekil 7 Ground : Toprak bağlantısı Battery : Doğru gerilim kaynağı DC Current Source : Doğru akım kaynağı AC Voltage Source : Alternatif gerilim kaynağı (Gerilim değerini efektif değer olarak gösterir). AC Current Source : Alternatif akım kaynağı Voltage-Controlled Voltage Source : Gerilim kontrollü gerilim kaynağı Voltage-Controlled Current Source : Gerilim kontrollü akım kaynağı Current-Controlled Voltage Source : Akım kontrollü gerilim kaynağı Current-Controlled Current Source : Akım kontrollü akım kaynağı Sayfa 17

19 +Vcc Voltage Source : +Vcc gerilim kaynağı (5 volt) +Vdd Voltage Source : +Vdd gerilim kaynağı (15 volt) Clock : Saat (Kare dalga üreteci) AM Source : Genlik modülasyonu (Amplitude modulation) kaynağı FM Source : Frekans modülasyonu (Frequency modulation) kaynağı Voltage-Controlled Sine Wave Oscillator : Gerilim kontrollü sinüs dalga osilatörü Voltage-Controlled Triangle Wave Oscillator : Gerilim kontrollü üçgen dalga osilatörü Voltage-Controlled Square Wave Oscillator : Gerilim kontrollü kare dalga osilatörü Controlled One-Shot : Kontrollü tek darbe (Darbe genişliği ayarlanabilen darbe üreteci) Piecewise Linear Source : Parça parça lineer (doğrusal) kaynak (Bir txt uzantılı dosyadan alacağı zaman ve gerilim değerlerine göre sinyal üretir). Voltage-Controlled Piecewise Linear Source : Gerilim kontrollü parça parça doğrusal kaynak Frequecy-Shift-Keying Source : Frekans kaydırmalı anahtarlama kaynağı Polynomial Source : Çokterimli (polinom) kaynak Nonlinear Dependent Source : Doğrusal olmayan bağımlı kaynak 3.2. Basic (Temel) Şekil 8 de görülen malzeme kutusunda temel elektriksel devre elemanları bulunur. Aşağıda bu elemanların sırasıyla açıklaması verilmiştir. Şekil 8 Connector : Bağlayıcı Resistor : Direnç Capacitor : Kondansatör, kapasitör Inductor : Bobin, indüktör Transformer : Transformatör, trafo Relay : Röle Switch : Anahtar Time-Delay Switch : Zaman gecikmeli anahtar Voltage-Controlled Switch : Gerilim kontrollü anahtar Current- Controlled Switch : Akım kontrollü anahtar Pull-Up Resistor : Yukarı çekme direnci (Bir ucu pozitif kaynağa bağlı olan direnç) Sayfa 18

20 Potentiometer : Potansiyometre, ayarlı direnç Resistor Pack : Direnç kutusu (Eşit değerde 8 bağımsız direnç içerir) Voltage Controlled Analog Switch : Gerilim kontrollü analog anahtar Polarized Capacitor : Kutuplu kondansatör Variable Capacitor : Değişken (ayarlı) kondansatör Variable Inductor : Ayarlı bobin Coreless Coil : Çekirdeksiz bobin Magnetic Core : Manyetik çekirdek Nonlinear Transformer : Doğrusal olmayan transformatör 3.3. Diodes (Diyotlar) Şekil 9 da görülen kutuda çeşitli yarıiletken elemanlar bulunmaktadır. Şekil 9 Diode : Diyot Zener Diode : Zener diyot LED : LED (Light Emitting Diode), ışık yayan diyot Full-Wave Bridge Rectifier : Tam dalga köprü doğrultucu Shockley Diode : Şotki diyot Silicon Controlled Rectifier : Silikon kontrollü doğrultucu, tristör Diac : Diyak Triac : Triyak 3.4. Transistors (Transistörler) Şekil 10 de görülen malzeme kutusunda çeşitli transistör türleri bulunur. Şekil 10 Sayfa 19

21 NPN Transistor : NPN transistör PNP Transistor : PNP transistör N-Channel JFET : N kanallı JFET P-Channel JFET : P kanallı JFET 3-Terminal Depletion N-MOSFET : 3 uçlu kanal ayarlamalı N-MOSFET 3-Terminal Depletion P-MOSFET : 3 uçlu kanal ayarlamalı P-MOSFET 4-Terminal Depletion N-MOSFET : 4 uçlu kanal ayarlamalı N-MOSFET 4-Terminal Depletion P-MOSFET : 4 uçlu kanal ayarlamalı P-MOSFET 3-Terminal Enhancement N-MOSFET : 3 uçlu kanal oluşturmalı N-MOSFET 3-Terminal Enhancement P-MOSFET : 3 uçlu kanal oluşturmalı P-MOSFET 4-Terminal Enhancement N-MOSFET : 4 uçlu kanal oluşturmalı N-MOSFET 4-Terminal Enhancement P-MOSFET : 4 uçlu kanal oluşturmalı P-MOSFET 3.4. Analog ICs (Analog IC ler) Şekil 11 de çeşitli analog entegre devreler görülmektedir. Şekil 11 3-Terminal Opamp : 3 uçlu Opamp (İşlemsel kuvvetlendirici) 5-Terminal Opamp : 5 uçlu Opamp 7-Terminal Opamp : 7 uçlu Opamp 9-Terminal Opamp : 9 uçlu Opamp Comparator : Karşılaştırıcı Phase-Locked Loop : Faz kilitlemeli çevrim 3.5. Mixed ICs (Karışık IC ler) Şekil 12 de çeşitli entegre devreler görülmektedir. Şekil 12 Analog-to-Digital Converter : Analog-dijital dönüştürücü (ADC) Digital-to-Analog Converter (I) : Dijital-analog dönüştürücü (I) (DAC) Sayfa 20

22 Digital-to-Analog Converter (V) : Dijital-analog dönüştürücü (V) (DAC) Monostable Multivibrator : Tek kararlı multivibratör 555 Timer : 555 zamanlayıcı 3.6. Digital ICs (Dijital IC ler) Şekil 13 da çeşitli dijital entegre şablonları bulunur. Bunlar yardımıyla 7447, 74145, gibi entegreler seçilebilir. Şekil 13 74XX Template : 74XX şablonu 741XX Template : 741XX şablonu 742XX Template : 742XX şablonu 743XX Template : 743XX şablonu 744XX Template : 744XX şablonu 4XXX Template : 4XXX şablonu 3.7. Logic Gates (Lojik Kapılar) Şekil 14 de lojik devrelerde kullanılan lojik kapıların sembolleri görülmektedir. Şekil 14 2-Input AND Gate : 2 girişli VE kapısı 2-Input OR Gate : 2 girişli VEYA kapısı NOT Gate : DEĞİL kapısı 2-Input NOR Gate : 2 girişli VEYA DEĞİL kapısı 2-Input NAND Gate : 2 girişli VE DEĞİL kapısı 2-Input XOR Gate : 2 girişli ÖZEL VEYA kapısı 2-Input XNOR Gate : 2 girişli ÖZEL VEYA DEĞİL kapısı Tristate Buffer : 3 durumlu tampon Sayfa 21

23 Buffer : Tampon Schmitt Triggered Inverter : Schmitt tetiklemeli tersleyen AND Gates : VE kapıları OR Gates : VEYA kapıları NAND Gates : VE DEĞİL kapıları NOR Gates : VEYA DEĞİL kapıları NOT Gates : DEĞİL kapıları XOR Gates : ÖZEL VEYA kapıları XNOR Gates : ÖZEL VEYA DEĞİL kapıları BUFFERS : Tamponlar 3.8. Digital (Dijital) Şekil 15 de çeşitli dijital entegre devre elemanları görülmektedir. Şekil 15 Half-Adder : Yarım toplayıcı Full-Adder : Tam toplayıcı RS Flip-Flop : RS flip flop JK Flip-Flop with Active High Asynch Inputs : Aktif yüksek asenkron girişli JK flip flop JK Flip-Flop with Active Low Asynch Inputs : Aktif düşük asenkron girişli JK flip flop D Flip-Flop : D flip flop D Flip-Flop with Active Low Asynch Inputs : Aktif düşük asenkron girişli D flip flop Multiplexers : Bilgi seçiciler, Çoğullayıcılar (Mux) Demultiplexers : Bilgi dağıtıcılar, Yol çoklayıcılar (Demux) Encoders : Kodlayıcılar Arithmetic : Aritmetik Counters : Sayıcılar Shift Registers : Kaydırmalı kaydediciler Flip-Flops : Flip flop lar Sayfa 22

24 3.9. Indicators (Göstergeler) Şekil 16 da, elektronik devrelerde kullanılan bazı sesli ve ışıklı göstergeler görülmektedir. Şekil 16 Voltmeter : Voltmetre Ammeter : Ampermetre Bulb : Ampul Red Probe : Kırmızı prob, lojik sinyal seviye gösterici Seven-Segment Display : Yedi segmentli display Decoded Seven-Segment Display : Kod çözücülü yedi segmentli display Buzzer : Buzer, belirli frekansta ses üreten devre elemanı Bargraph Display : Çubukgrafik display Decoded Bargraph Display : Kod çözücülü çubukgrafik display Controls (Kontroller) Şekil 17 de görülen kontrol elemanlarının adları aşağıdaki verilmiştir. Şekil 17 Voltage Differentiator : Gerilim türev alıcı Voltage Integrator : Gerilim integral alıcı Voltage Gain Block : Gerilim kazanç bloğu Transfer Function Block : Transfer fonksiyon bloğu Multiplier : Çarpıcı Divider : Bölücü Three-Way Voltage Summer : 3 yollu gerilim toplayıcı Voltage Limiter : Gerilim sınırlandırıcı Voltage Controlled Limiter : Gerilim kontrollü sınırlandırıcı Current Limiter Block : Akım sınırlandırıcı blok Voltage Hysteresis Block : Gerilim histeresiz bloğu Sayfa 23

25 Voltage Slew Rate Block : Gerilim eğim oranı bloğu (Sinyalin yükselme ve düşme hızını ayarlar) Miscellaneous (Çeşitli) Şekil 18 de simülasyon sırasında kullanılacak çeşitli elemanlar görülmektedir. Şekil 18 Fuse : Sigorta Write Data : Veri yazma (Simülasyon sonuçlarını ASCII dosyaya yazar) Netlist Component : Netlist elemanı (Üreteci firmanın eleman modelini.cir uzantılı bir dosya aracılığıyla devreye eklemek için kullanılır) Lossy Transmission Line : Kayıplı iletim hattı Lossles Transmission Line : Kayıpsız iletim hattı Crystal : Kristal DC Motor : Doğru akım motoru Triode Vacuum Tube : Triyod vakum tüpü Boost (Step-Up) Converter : Yükseltici konvertör Buck (Step-Down) Converter : Düşürücü konvertör Buck-Boost Converter : Düşürücü-yükseltici konvertör Textbox : Metin kutusu Title Block : Başlık bloğu (Başlık, tarih, isim yazmak için kullanılır) 4. ELEKTRONİK DEVRE ÇİZİMİ İÇİN ÖN BİLGİLER Bu bölümde, devre çizimi sırasında yapılan hatalı bağlantılardan, ayarlı elemanlardan ve eleman modellerinin nasıl seçileceğinden bahsedilecektir Hatalı Bağlantılar Aşağıda, devre çizimi sırasında yapılan yanlış bağlantıların birkaç tanesi verilmiştir. Bu tip hatalı bağlantılar yapıldığında simülasyon başlatılamaz ve ekranda hata yapıldığına dair bir uyarı mesajı görülür. Sayfa 24

26 Gerilim kaynağı kısa devre yapılmaz. Akım kaynağı açık devre yapılmaz. Kondansatör açık devre yapılmaz. Bobin kısa devre yapılmaz. Farklı değerli gerilim kaynakları paralel bağlanmaz. Aynı değerli olanlar küçük değerli seri bir dirençle birlikte paralel bağlanabilir. Bir devrede birden fazla toprak bağlantısı bulunmamalıdır. Aksi taktirde toprak noktaları birbirine fiziksel olarak bağlı duruma gelir. Buna göre alttaki iki devre de aynıdır. Osiloskop bağlantısı için devrede mutlaka bir toprak bağlantısı olmalıdır. Devrenin bir ucuna veya osiloskobun sağ üst köşesindeki uca toprak bağlantısı yapılmadan simülasyon Sayfa 25

27 başlatılırsa hata oluşur. Bunun için her zaman alttaki şeklin sağındaki gibi bir bağlantı şekli oluşturulmalıdır. Ön Hazırlık Soruları : S.1. Elektronic Workbench programı hangi amaçla kullanılır? Deneyin Yapılışı : 1) Şekil 1 deki devreyi Elektronic Workbench programında simüle ediniz. 2) Elektronic Workbench te okuduğunuz akımları ve gerilimleri Tablo 1 e kaydediniz. Şekil 1 Sayfa 26

28 V 9 = 5 V V 10 = 12 V R 1 = 100 Ω R 2 = 470 Ω R 3 = 180 Ω R 4 = 1 kω R 5 = 680 Ω R 6 = 1 kω R 7 = 2.2 kω R 8 = 330 Ω Direnç Akımı (I) Gerilimi (V) R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 Sayfa 27

ELEKTRONICS WORKBENCH (EWB) V5.12 KULLANIMI

ELEKTRONICS WORKBENCH (EWB) V5.12 KULLANIMI ELEKTRONICS WORKBENCH (EWB) V5.12 KULLANIMI GENEL GÖRÜNÜM EWB programı uygun şekilde bilgisayara yüklenip çalıştırıldığında şekilde sunulan çalışma sayfası elde edilir. Üst kısımda File, Edit, Circuit,

Detaylı

ELEKTRONİK DEVRE ÇİZİM VE SİMÜLASYON PROGRAMI EWB (Electronics Workbench)

ELEKTRONİK DEVRE ÇİZİM VE SİMÜLASYON PROGRAMI EWB (Electronics Workbench) ELEKTRONİK DEVRE ÇİZİM VE SİMÜLASYON PROGRAMI EWB (Electronics Workbench) Günümüzde her türlü elektronik devrenin tasarım ve analizinde artık simülasyon (benzetim) programları yaygın olarak kullanılmaktadır.

Detaylı

DENEY 21 IC Zamanlayıcı Devre

DENEY 21 IC Zamanlayıcı Devre DENEY 21 IC Zamanlayıcı Devre DENEYİN AMACI 1. IC zamanlayıcı NE555 in çalışmasını öğrenmek. 2. 555 multivibratörlerinin çalışma ve yapılarını öğrenmek. 3. IC zamanlayıcı anahtar devresi yapmak. GİRİŞ

Detaylı

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI

DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI DENEY NO: DĐRENÇ DEVRELERĐNDE KIRCHOFF UN GERĐLĐMLER ve AKIMLAR YASASI Bu deneyde direnç elamanını tanıtılması,board üzerinde devre kurmayı öğrenilmesi, avometre yardımıyla direnç, dc gerilim ve dc akım

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY RAPORU. Deney No: 1 MULTİSİM E GİRİŞ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY RAPORU. Deney No: 1 MULTİSİM E GİRİŞ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY RAPORU Deney No: 1 MULTİSİM E GİRİŞ Yrd.Doç. Dr. Ünal KURT Arş. Gör. Ayşe AYDIN YURDUSEV Öğrenci: Adı Soyadı Numarası

Detaylı

HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ HARRAN ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LABORATUARI DENEY FÖYLERİ KİTAPÇIĞI Sayfa 0 İçindekiler Laboratuarda Uyulması Gereken Kurallar... 2 Deneylerde Kullanılacak Ekipmanların

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1 DİRENÇ DEVRELERİNDE OHM VE KİRSHOFF KANUNLARI Arş. Gör. Sümeyye

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı DENEY NO : 7 DENEY ADI : DOĞRULTUCULAR Amaç 1. Yarım dalga ve tam dalga doğrultucu oluşturmak 2. Dalgacıkları azaltmak için kondansatör filtrelerinin kullanımını incelemek. 3. Dalgacıkları azaltmak için

Detaylı

V-LAB BİLGİSAYAR ARAYÜZLÜ EĞİTİM SETİ

V-LAB BİLGİSAYAR ARAYÜZLÜ EĞİTİM SETİ Çeşitli ölçüm ünitelerine ve sinyal üreteçlerine sahip olan, tüm entegre cihazlarının bilgisayar üzerinden kontrol edilebilir ve gözlemlenebilir olması özellikleri ile Mesleki Eğitim'in önemli bir enstrümanıdır.

Detaylı

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi:

DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI. Malzeme ve Cihaz Listesi: DENEY NO: 2 KIRCHHOFF UN AKIMLAR YASASI Malzeme ve Cihaz Listesi: 1. 12 k direnç 1 adet 2. 15 k direnç 1 adet 3. 18 k direnç 1 adet 4. 2.2 k direnç 1 adet 5. 8.2 k direnç 1 adet 6. Breadboard 7. Dijital

Detaylı

MULTİMETRE. Şekil 1: Dijital Multimetre

MULTİMETRE. Şekil 1: Dijital Multimetre MULTİMETRE Multimetre üzerinde dc voltmetre, ac voltmetre,diyot testi,ampermetre,transistör testi, direnç ölçümü bazı modellerde bulunan sıcaklık ölçümü ve frekans ölçümü gibi bir çok ölçümü yapabilen

Detaylı

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız.

Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız. ÖLÇME VE KONTROL ALETLERİ Bir devrede dolaşan elektrik miktarı gibi elektriksel ifadelerin büyüklüğünü bize görsel olarak veren bazı aletler kullanırız. Voltmetre devrenin iki noktası arasındaki potansiyel

Detaylı

İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü İnönü Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü 00223 - Mantık Devreleri Tasarımı Laboratuar Föyleri Numara: Ad Soyad: Arş. Grv. Bilal ŞENOL Devre Kurma Alanı Arş. Grv. Bilal ŞENOL

Detaylı

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM)

Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) Fatih Üniversitesi Elektrik ve Elektronik Mühendisliği Bölümü EEM 316 Haberleşme I LAB SINAVI DARBE GENLİK MODÜLASYONU (PWM) 9.1 Amaçlar 1. µa741 ile PWM modülatör kurulması. 2. LM555 in çalışma prensiplerinin

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM2104 Elektrik Devreleri Laboratuarı II 2014-2015 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EEM201 DEVRE ANALİZİ I LABORATUARI. Deney 2. Süperpozisyon, Thevenin,

TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EEM201 DEVRE ANALİZİ I LABORATUARI. Deney 2. Süperpozisyon, Thevenin, TURGUT ÖZAL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ EEM201 DEVRE ANALİZİ I LABORATUARI Deney 2 Süperpozisyon, Thevenin, Norton Teoremleri Öğrenci Adı & Soyadı: Numarası: 1 DENEY

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ

SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ 2013-2014 EGE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DENEYLER İÇİN GEREKLİ ÖN BİLGİLER Tablo 1: Direnç kod tablosu OSİLOSKOP KULLANIMINA AİT TEMEL

Detaylı

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ 1- Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, şekil 1 'de görüldüğü gibi yarım

Detaylı

Şekil 6.1 Faz çeviren toplama devresi

Şekil 6.1 Faz çeviren toplama devresi 23 Deney Adı : İşlemsel Kuvvetlendiricinin Temel Devreleri Deney No : 6 Deneyin Amacı : İşlemsel kuvvetlendiricilerle en ok kullanılan devreleri gerekleştirmek, fonksiyonlarını belirlemek Deneyle İlgili

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. 6. Osiloskop Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. Osiloskoplar üç gruba ayrılabilir; 1. Analog osiloskoplar 2. Dijital osiloskoplar

Detaylı

KIRCHOFF'UN AKIMLAR VE GERĠLĠMLER YASASININ DENEYSEL SAĞLANMASI

KIRCHOFF'UN AKIMLAR VE GERĠLĠMLER YASASININ DENEYSEL SAĞLANMASI K.T.Ü ElektrikElektronik Müh.Böl. Temel Elektrik Laboratuarı I KICHOFF'UN KIML E GEĠLĠMLE YSSININ DENEYSEL SĞLNMSI KICHOFF'UN KIML YSSI: Bir elektrik devresinde, bir düğümde bulunan kollara ilişkin akımların

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ FİZ 102 FİZİK LABORATUARI II FİZİK LABORATUARI II CİHAZLARI TANITIM DOSYASI Hazırlayan : ERDEM İNANÇ BUDAK BİYOMEDİKAL MÜHENDİSİ Mühendislik

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

EET-101 EEM TEMELLERİ -İ DENEY Kİ TAPÇİĞ İ

EET-101 EEM TEMELLERİ -İ DENEY Kİ TAPÇİĞ İ EET-101 EEM TEMELLEİ -İ DENEY Kİ TAPÇİĞ İ FIAT ÜNİVESİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTİK ELEKTONİK MÜHENDİSLİĞİ HAZILAYAN: AŞ. GÖ. OHAN ATİLA /AŞ.GÖ. AHMET TOP LABOATUVA GÜVENLİK FOMU Laboratuvar ortamında

Detaylı

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI DENEY 6: KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI 1. Açıklama Kondansatör doğru akımı geçirmeyip alternatif akımı

Detaylı

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ

6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ AMAÇLAR 6. DİRENÇ ÖLÇME YÖNTEMLERİ VE WHEATSTONE KÖPRÜSÜ 1. Değeri bilinmeyen dirençleri voltmetreampermetre yöntemi ve Wheatstone Köprüsü yöntemi ile ölçmeyi öğrenmek 2. Hangi yöntemin hangi koşullar

Detaylı

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi. 1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi. 1.2.Teorik bilgiler: Yarıiletken elemanlar elektronik devrelerde

Detaylı

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1.

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1. KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I THEENİN ve NORTON TEOREMLERİ Bir veya daha fazla sayıda Elektro Motor Kuvvet kaynağı bulunduran lineer bir devre tek

Detaylı

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır?

1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? 1. Direnç değeri okunurken mavi renginin sayısal değeri nedir? a) 4 b) 5 c) 1 d) 6 2. Direnç değeri okunurken altın renginin tolerans değeri kaçtır? a) Yüzde 10 b) Yüzde 5 c) Yüzde 1 d) Yüzde 20 3. Direnç

Detaylı

BİLGİSAYARLI KONTROL OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER

BİLGİSAYARLI KONTROL OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER BÖLÜM 4 OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER 4.1 OPERASYONEL AMPLİFİKATÖRLER (OPAMP LAR) Operasyonel amplifikatörler (Operational Amplifiers) veya işlemsel kuvvetlendiriciler, karmaşık sistemlerin

Detaylı

Elektrik Akımının etkileri. Ampermetrenin yapısı ve özellikleri. Ampermetreyi devreye bağlama ve akım ölçme. Gerilimin tanımı, birimi

Elektrik Akımının etkileri. Ampermetrenin yapısı ve özellikleri. Ampermetreyi devreye bağlama ve akım ölçme. Gerilimin tanımı, birimi 11.01.2016 12.01.2016 13.01.2016 14.01.2016 15.01.2016 PAZARTESİ SALI ÇARŞAMBA PERŞEMBE CUMA ELEKTRİK ELEKTRONİK Elektrik Akımının ast ve üst katlara çevirimi TEMEL 4 1 18.50-19.30 16.30-17.10 ESASLARI

Detaylı

6. TRANSİSTÖRÜN İNCELENMESİ

6. TRANSİSTÖRÜN İNCELENMESİ 6. TRANSİSTÖRÜN İNCELENMESİ 6.1. TEORİK BİLGİ 6.1.1. JONKSİYON TRANSİSTÖRÜN POLARMALANDIRILMASI Şekil 1. Jonksiyon Transistörün Polarmalandırılması Şekil 1 de Emiter-Beyz jonksiyonu doğru yönde polarmalandırılır.

Detaylı

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2

DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2 DC Akım/Gerilim Ölçümü ve Ohm Yasası Deney 2 DENEY 1-3 DC Gerilim Ölçümü DENEYİN AMACI 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-22001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını

Detaylı

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI

DENEY 9: THEVENİN VE NORTON TEOREMİ UYGULAMALARI A. DENEYİN AMACI : Thevenin ve Norton teoreminin daha iyi bir şekilde anlaşılması için deneysel çalışma yapmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Multimetre 2. DC Güç Kaynağı 3. Değişik değerlerde

Detaylı

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR

ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR ALTERNATĐF AKIM (AC) I AC NĐN ELDE EDĐLMESĐ; KARE VE ÜÇGEN DALGALAR 1.1 Amaçlar AC nin Elde Edilmesi: Farklı ve değişken DC gerilimlerin anahtar ve potansiyometreler kullanılarak elde edilmesi. Kare dalga

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ

DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ HAZIRLIK BİLGİLERİ: Şekil 1.1 de işlemsel yükseltecin eviren yükselteç olarak çalışması görülmektedir. İşlemsel yükselteçler iyi bir DC yükseltecidir.

Detaylı

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ

SAYISAL UYGULAMALARI DEVRE. Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ SAYISAL DEVRE UYGULAMALARI Prof. Dr. Hüseyin EKİZ Doç. Dr. Özdemir ÇETİN Arş. Gör. Ziya EKŞİ İÇİNDEKİLER ŞEKİLLER TABLOSU... vi MALZEME LİSTESİ... viii ENTEGRELER... ix 1. Direnç ve Diyotlarla Yapılan

Detaylı

EEM 311 KONTROL LABORATUARI

EEM 311 KONTROL LABORATUARI Dicle Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü EEM 311 KONTROL LABORATUARI DENEY 03: DC MOTOR FREN KARAKTERİSTİĞİ 2012-2013 GÜZ DÖNEMİ Grup Kodu: Deney Tarihi: Raporu

Detaylı

DENEY NO:6 DOĞRU AKIM ÖLÇME

DENEY NO:6 DOĞRU AKIM ÖLÇME DENEY NO:6 DOĞRU KIM ÖLÇME MÇ 1. Bir devrede akım ölçmek 2. kım kontrolünde direncin etkisini ölçmek 3. kım kontrolünde gerilimin etkisini ölçmek MLZEME LİSTESİ 1. 6 V çıkış verebilen bir 2. Sayısal ölçü

Detaylı

TRANSİSTÖRLERİN KUTUPLANMASI

TRANSİSTÖRLERİN KUTUPLANMASI DNY NO: 7 TANSİSTÖLİN KUTUPLANMAS ipolar transistörlerin dc eşdeğer modellerini incelemek, transistörlerin kutuplama şekillerini göstermek ve pratik olarak transistörlü devrelerde ölçüm yapmak. - KUAMSAL

Detaylı

DENEY 1 Basit Elektrik Devreleri

DENEY 1 Basit Elektrik Devreleri ULUDAĞ ÜNİVESİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM203 Elektrik Devreleri Laboratuarı I 204-205 DENEY Basit Elektrik Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı : Deney

Detaylı

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI

DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI DİRENÇLER, DİRENÇLERİN SERİ VE PARALEL BAĞLANMASI, OHM VE KIRCHOFF YASALARI AMAÇ: Dirençleri tanıyıp renklerine göre değerlerini bulma, deneysel olarak tetkik etme Voltaj, direnç ve akım değişimlerini

Detaylı

Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir.

Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir. DENEY 4 THEVENİN VE NORTON TEOREMİ 4.1. DENEYİN AMACI Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir. 4.2. TEORİK İLGİ

Detaylı

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır?

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır? 1- Doğa ve çevreye fazla zarar vermeden devamlı ve kaliteli bir hizmet veya mal üretimi sırasında iş kazalarının meydana gelmemesi ve meslek hastalıklarının oluşmaması için alınan tedbirlerin ve yapılan

Detaylı

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir.

TEMEL BİLGİLER. İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. TEMEL BİLGİLER İletken : Elektrik yüklerinin oldukça serbest hareket ettikleri maddelerdir. Örnek olarak bakır, gümüş ve alüminyum verilebilir. Yalıtkan : Elektrik yüklerinin kolayca taşınamadığı ortamlardır.

Detaylı

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ

DENEY 6: SERİ/PARALEL RC DEVRELERİN AC ANALİZİ A. DENEYİN AMACI : Seri ve paralel RC devrelerinin ac analizini yapmak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal Üreteci, 2. Osiloskop, 3. Değişik değerlerde direnç ve kondansatörler. C. DENEY İLE

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

Elektriksel-Fiziksel Özellikler... 2 Kullanım... 3 Uygulama Örnekleri... 7

Elektriksel-Fiziksel Özellikler... 2 Kullanım... 3 Uygulama Örnekleri... 7 FONKSİYON ÜRETECİ KULLANIM KILAVUZU (FUNCTION GENERATOR) İçindekiler Elektriksel-Fiziksel Özellikler... 2 Kullanım... 3 Uygulama Örnekleri... 7 Şekil Listesi Şekil 1 Fonksiyon üreteci... 2 Şekil 2 Fonksiyon

Detaylı

MOSFET Karakteristiği

MOSFET Karakteristiği Alınacak Malzemeler Listesi: 4 Adet 10 kω Potansiyomete 2 Adet 10 kω Direnç MOSFET Karakteristiği 4 Adet 10nF Polyester Kutu Tip Kondansatör 1 Adet IRF 530 N Kanallı MOSFET Amaç Bu deneyin amacı MOSFET

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER ELEKTRİK ELEKTROİK MÜHEDİSLİĞİ FİZİK LABORATUVAR DEEY TRASFORMATÖRLER . Amaç: Bu deneyde:. Transformatörler yüksüz durumdayken giriş ve çıkış gerilimleri gözlenecek,. Transformatörler yüklü durumdayken

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ GÜÇ ELEKTRONİĞİ LABORATUVARI DENEY NO:1 TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR 1.1 Giriş Diyod ve tristör gibi

Detaylı

Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir.

Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir. DENEY 5 - ALAN ETKİLİ TRANSİSTOR(FET- Field Effect Transistor) 5.1. DENEYİN AMACI Bu deneyde alan etkili transistörlerin DC ve AC akım-gerilim karakteristikleri incelenecektir. 5.2. TEORİK BİLGİ Alan etkili

Detaylı

Bölüm 4 Ardışıl Lojik Devre Deneyleri

Bölüm 4 Ardışıl Lojik Devre Deneyleri Bölüm 4 Ardışıl Lojik Devre Deneyleri DENEY 4-1 Flip-Floplar DENEYİN AMACI 1. Kombinasyonel ve ardışıl lojik devreler arasındaki farkları ve çeşitli bellek birimi uygulamalarını anlamak. 2. Çeşitli flip-flop

Detaylı

Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı

Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı Sabit Gerilim Regülatörü Kullanarak Ayarlanabilir Güç Kaynağı Sabit değerli pozitif gerilim regülatörleri basit bir şekilde iki adet direnç ilavesiyle ayarlanabilir gerilim kaynaklarına dönüştürülebilir.

Detaylı

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI

DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ DENEYİN AMACI DENEY 1 1.1. DC GERİLİM ÖLÇÜMÜ 1. DC gerilimin nasıl ölçüldüğünü öğrenmek. 2. KL-21001 Deney Düzeneğini tanımak. 3. Voltmetrenin nasıl kullanıldığını öğrenmek. Devre elemanı üzerinden akım akmasını sağlayan

Detaylı

SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ

SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ SAYISAL ELEKTRONİK DERSİ LABORATUVARI DENEY FÖYLERİ 2009-2010 EGE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ DENEYLER İÇİN GEREKLİ ÖN BİLGİLER Tablo 1: Direnç kod tablosu OSİLOSKOP KULLANIMINA AİT TEMEL

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

DEVRELER VE ELEKTRONİK LABORATUVARI

DEVRELER VE ELEKTRONİK LABORATUVARI DENEY NO: 1 DENEY GRUBU: C DİRENÇ ELEMANLARI, 1-KAPILI DİRENÇ DEVRELERİ VE KIRCHHOFF UN GERİLİMLER YASASI Malzeme ve Cihaz Listesi: 1. 10 Ω direnç 1 adet 2. 100 Ω direnç 3 adet 3. 180 Ω direnç 1 adet 4.

Detaylı

ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA

ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA ARTOS7F1 ARIZA TESPİT CİHAZI VE PC OSİLOSKOP 7 FONKSİYON 1 CİHAZDA ARTOS7F1 Arıza Tespit Cihazı ve PC Osiloskop her tür elektronik kartın arızasını bulmada çok etkili bir sistemdir. Asıl tasarım amacı

Detaylı

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Multivibratörler. Monastable (Tek Kararlı) Multivibratör Multivibratörler Kare dalga veya dikdörtgen dalga meydana getiren devrelere MULTİVİBRATÖR adı verilir. Bu devreler temel olarak pozitif geri beslemeli iki yükselteç devresinden oluşur. Genelde çalışma

Detaylı

Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım kaynakları incelenecektir.

Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım kaynakları incelenecektir. DENEY 7 AKIM KAYNAKLARI VE AKTİF YÜKLER DENEY 1 DİYOT KARAKTERİSTİKLERİ 7.1 DENEYİN AMACI Bu deneyde kuvvetlendirici devrelerde kullanılan entegre devre beslemesi ve aktif yük olarak kullanılabilen akım

Detaylı

DENEY 1. 7408 in lojik iç şeması: Sekil 2

DENEY 1. 7408 in lojik iç şeması: Sekil 2 DENEY 1 AMAÇ: VE Kapılarının (AND Gates) çalısma prensibinin kavranması. Çıkıs olarak led kullanılacaktır. Kullanılacak devre elemanları: Anahtarlar (switches), 100 ohm ve 1k lık dirençler, 7408 entegre

Detaylı

DENEY-3. FET li Yükselticiler

DENEY-3. FET li Yükselticiler DENEY-3 FET li Yükselticiler Deneyin Amacı: Bir alan etkili transistor ün (FET-Field Effect Transistor) kutuplanması ve AF lı bir kuvvetlendirici olarak incelenmesi. (Ayrıca azaltıcı tip (Depletian type)

Detaylı

Y Analog - Dijital Haberleşme Eğitim Seti Analog - Digital Communication Training Set

Y Analog - Dijital Haberleşme Eğitim Seti Analog - Digital Communication Training Set Genel Özellikler General Specifications Analog Dijital Haberleşme Eğitim Seti analog ve dijital haberleşme ile ilgili uygulamaların yapılabilmesi amacıyla tasarlanmış Ana Ünite ve 13 Adet (9 adet standart

Detaylı

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ

dq I = (1) dt OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ OHM YASASI ve OHM YASASI İLE DİRENÇ ÖLÇÜMÜ AMAÇLAR Ohm yasasına uyan (ohmik) malzemeler ile ohmik olmayan malzemelerin akım-gerilim karakteristiklerini elde etmek. Deneysel akım gerilim değerlerini kullanarak

Detaylı

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI DENEY NO:4 KIRPICI DEVRELER Laboratuvar Grup No : Hazırlayanlar :......................................................................................................

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI DC SERİ JENERATÖR KARAKTERİSTİKLERİNİN İNCELENMESİ DERSİN

Detaylı

Proje Teslimi: 2012-2013 güz yarıyılı ikinci ders haftasında Devre ve Sistem Analizi Dersinde teslim edilecektir.

Proje Teslimi: 2012-2013 güz yarıyılı ikinci ders haftasında Devre ve Sistem Analizi Dersinde teslim edilecektir. ELEKTRONĐK YAZ PROJESĐ-1 (v1.2) YTÜ Elektronik ve Haberleşme Mühendisliği Bölümü birinci sınıf öğrencileri için Elektrik Devre Temelleri Dersinde isteğe bağlı olarak verilen pratik yaz ödevidir. Proje

Detaylı

DENEY 6-3 Ortak Kollektörlü Yükselteç

DENEY 6-3 Ortak Kollektörlü Yükselteç Deney 10 DENEY 6-3 Ortak Kollektörlü Yükselteç DENEYİN AMACI 1. Ortak kollektörlü (CC) yükseltecin çalışma prensibini anlamak. 2. Ortak kollektörlü yükseltecin karakteristiklerini ölçmek. GENEL BİLGİLER

Detaylı

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken)

Düzenlilik = ((Vçıkış(yük yokken) - Vçıkış(yük varken)) / Vçıkış(yük varken) KTÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı DOĞRULTUCULAR Günümüzde bilgisayarlar başta olmak üzere bir çok elektronik cihazı doğru akımla çalıştığı bilinen

Detaylı

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır?

2- İşverenler işyerlerinde meydana gelen bir iş kazasını en geç kaç iş günü içerisinde ilgili bölge müdürlüğüne bildirmek zorundadır? 1- Doğa ve çevreye fazla zarar vermeden devamlı ve kaliteli bir hizmet veya mal üretimi sırasında iş kazalarının meydana gelmemesi ve meslek hastalıklarının oluşmaması için alınan tedbirlerin ve yapılan

Detaylı

ANALOG DEVRE TASARIMI VE SİMÜLASYONU

ANALOG DEVRE TASARIMI VE SİMÜLASYONU ANALOG DEVRE TASARIMI VE SİMÜLASYONU Analog Ölçü Araçları ve Üreteçleri ISIS programının elektronik laboratuarında 12 tane ölçü aleti ve cihaz bulunmaktadır. unlardan 4 tanesi analog test cihazı, 8 tanesi

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN:

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN: ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ DENEYİ YAPANLAR Grup Numara Ad Soyad RAPORU HAZIRLAYAN: Deneyin Yapılış Tarihi Raporun Geleceği Tarih Raporun

Detaylı

DENEY 3 Ortalama ve Etkin Değer

DENEY 3 Ortalama ve Etkin Değer A. DENEYİN AMACI : Ortalama ve etkin değer kavramlarının tam olarak anlaşılmasını sağlamak. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. Sinyal üreteci 2. Osiloskop 3. 741 entegresi, değişik değerlerde dirençler

Detaylı

5. AKIM VE GERĐLĐM ÖLÇÜMÜ

5. AKIM VE GERĐLĐM ÖLÇÜMÜ 5. AKIM VE GERĐLĐM ÖLÇÜMÜ AMAÇLAR 1. Döner çerçeveli ölçü aletini (d Arsonvalmetre) tanımak.. Bu ölçü aletinin akım ve gerilim ölçümlerinde nasıl kullanılacağını öğrenmek. ARAÇLAR Döner çerçeveli ölçü

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO: DENEY GRUP NO:

Detaylı

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits)

BSE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates And Logic Circuits) SE 207 Mantık Devreleri Lojik Kapılar ve Lojik Devreler (Logic Gates nd Logic Circuits) Sakarya Üniversitesi Lojik Kapılar - maçlar Lojik kapıları ve lojik devreleri tanıtmak Temel işlemler olarak VE,

Detaylı

Osiloskop ve AC Akım Gerilim Ölçümü Deney 3

Osiloskop ve AC Akım Gerilim Ölçümü Deney 3 Osiloskop ve AC Akım Gerilim Ölçümü Deney 3 DENEY 1-6 AC Gerilim Ölçümü DENEYİN AMACI 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. GENEL BİLGİLER AC

Detaylı

ELM 232 Elektronik I - Deney 2 Zener Diyotlu Regülatör Tasarımı. Doğrultucu Regülatör Yük. R L yükü üzerinde oluşan sinyalin DC bileşeni

ELM 232 Elektronik I - Deney 2 Zener Diyotlu Regülatör Tasarımı. Doğrultucu Regülatör Yük. R L yükü üzerinde oluşan sinyalin DC bileşeni Amaç Bu deneyin amaçları; tam doğrultucu köprünün çalışmasını izlemek, kondansatör kullanılarak elde edilen doğrultucuyu incelemek ve zenerli regülatör tasarımı yapmaktır. Deneyin Yapılışı Sırasında İhtiyaç

Detaylı

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ

13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ 13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI T.C. Maltepe Üniersitesi Mühendislik e Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü EK 01 DEVRE TEORİSİ DERSİ ABORATUVARI DENEY 7 DC DEVREERDE GÜÇ ÖÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGUAMAARI

Detaylı

ELEKTRİK DEVRELERİ-2 LABORATUVARI II. DENEY FÖYÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI II. DENEY FÖYÜ ELEKRİK DERELERİ-2 LABORAUARI II. DENEY FÖYÜ 1-a) AA Gerilim Ölçümü Amaç: AA devrede gerilim ölçmek ve AA voltmetrenin kullanımı Gerekli Ekipmanlar: AA Güç Kaynağı, AA oltmetre, 1kΩ direnç, 220Ω direnç,

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

Y-0035 GÜÇ ELEKTRONİĞİ EĞİTİM SETİ

Y-0035 GÜÇ ELEKTRONİĞİ EĞİTİM SETİ Güç Elektroniği Eğitim Seti, temel güç elektroniği uygulamaları, endüstriyel otomasyon, elektriksel işlemlerin kontrolü ve ölçümleri ile birlikte öğretilmesi, kullanılması, devre elemanlarının tanınması,

Detaylı

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM ELEKTRİK TEST CİHAZLARI

İklimlendirme Soğutma Elektriği ve Kumanda Devreleri BÖLÜM ELEKTRİK TEST CİHAZLARI BÖLÜM ELEKTRİK TEST CİHAZLARI AMAÇ: Elektriksel ölçme ve test cihazlarını tanıyabilme; kesik devre, kısa devre ve topraklanmış devre gibi arıza durumlarında bu cihazları kullanabilme. Elektrik Test Cihazları

Detaylı

DY-45 OSİLOSKOP V2.0 KİTİ

DY-45 OSİLOSKOP V2.0 KİTİ DY-45 OSİLOSKOP V2.0 KİTİ Kullanma Kılavuzu 12 Ocak 2012 Amatör elektronikle uğraşanlar için osiloskop pahalı bir test cihazıdır. Bu kitte amatör elektronikçilere hitap edecek basit ama kullanışlı bir

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ DENEY FÖYÜ DENEY ADI AC AKIM, GERİLİM VE GÜÇ DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEY SORUMLUSU DENEY GRUBU: DENEY TARİHİ : TESLİM

Detaylı

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET) 2.1. eneyin amacı: Temel yarıiletken elemanlardan BJT ve FET in tanımlanması, test edilmesi ve temel karakteristiklerinin incelenmesi. 2.2. Teorik bilgiler: 2.2.1. BJT nin özelliklerinin tanımlanması:

Detaylı