YARIİLETKENLER ve P-N EKLEMLERİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YARIİLETKENLER ve P-N EKLEMLERİ"

Transkript

1 YARIİLETKENLER ve P-N EKLEMLERİ

2 TEMEL KAVRAMLAR Atom: elektron elektron yörüngesi K L M N çekirdek elektron elektron Çekirdek Atomun basit gösterimi Çekirdek normalde neutron ve protonlardan oluşur Elektronlar çekirdek etrafında ayrık kabuklar şeklinde K, L, M, N, vb. gibi isimler verilen orbitler oluştururlar. Atom, proton sayısı = elektron sayısı olduğu için elektriksel olarak nötrdür. En dıştaki kabuk VALANS (DEĞERLİK) kabuk olarak isimlendirilir. Bu kabuktaki elektronlar da valans elektronları olarak isimlendirilir.

3 TEMEL KAVRAMLAR Elektrik Yükü Atomu oluşturan elektron ve protonlar, elektrik yükünü meydana getirirler. Normalde elektron yükü ile proton yükü ters yönde etki gösterirler. Dolayısıyla elektronlara Negatif yüklü denirken protonlara da pozitif yüklü denir. Atom çekirdeğinde bulunan nötronlar ise herhangi bir yük taşımazlar. Yani Nötrdürler. İyonlar Normal bir atomun elektron yörüngesindeki elektron sayısı kadar çekirdeğinde proton bulunur. Böylece pozitif yükler (protonlar) ile negatif yükler (elektronlar) birbirlerini dengeler ve atom elektriksel olarak nötrlenir. Bir atomun herhangi bir yolla fazladan bir elektron aldığını varsayalım. Bu durumda atom artık nötral değildir. Çünkü fazlalık bir negatif yükü vardır ve negatif yüklü diğer kütleler gibi davranır. Benzer şekilde, normal bir atom, bir elektron kaybederse, pozitif yüklü hale gelir. Çünkü bu durumda çekirdeğinde pozitif yüklü fazladan bir protona sahiptir. Kaybedilmiş ya da kazanılmış elektronlar nedeniyle yüklü hale gelmiş (nötr durumu bozulmuş) bir atoma iyon adı verilir. Eğer bir atom, elektron kaybetmişse pozitif iyon, kazanmışsa negatif iyon olur.

4 TEMEL KAVRAMLAR Yük Transferi Bir atom elektron kazanıp ya da kaybedince yüklü hale gelir. Benzer durum cisimler için de sözkonusudur. Yünlü kumaşa sürtüldüğünde fazladan elektron alarak negatif yüklü hale gelen kalem buna bir örnektir. Yüklü kalem bir kağıt parçasına yaklaştırıldığında bunu çeker. Bunun nedeni statik elektriktir. Yük akışı olmamadan meydana gelen bu çekme olayı elektrostatik çekim olarak isimlendirilir. Keskin kış günlerinde bir halı üzerinde yürürken, araba koltuğunda otururken, v.b. gibi durumlarda insan vücudu da bu statik elektrikle yüklenir ve herhangi bir şeye dokununcaya kadar da vücutta yüklü kalır. Bir şeye dokunduğumuzda ise vücuttan bu dokunulan nesneye akar ve vücut bu yükten boşalmış olur. Bu statik yük vücuttan deşarj cismine akarken artık statik (durgun) değildir. Bu durum da dinamik elektrik özelliğine sahiptir. Çünkü yük hareket halindedir. Yükün vücuttan dışarı boşalması, bir şok etkisiyle hissedilir. Unutulmamalıdır ki yük, kalemin bir kumaşa sürtülmesiyle oluşmaz. Sadece bir cisimden diğerine transfer edilir.

5 TEMEL KAVRAMLAR Coulomb Elektrik yükleri miktar bakımından çok küçüktürler ve işlem yapmakta zorluk çıkarırlar. Bu nedenle Coulomb bir birim olarak kullanılıp bu zorluk ortadan kaldırılır. 1 Coulomb (C) = 6, elektron Elektrik yükü sembolü: Q, birimi: C

6 Örnek Eğer bir gövde 26, elektron kaybederse ne kadarlık bir yük kazanır. Mikro Coulomb türünden bulunuz. Çözüm: Gövde elektron kaybettiği için pozitif yüklenir. Q = 26, elektron 6, C 18 elektron 6 10 µ C C = 4, 2 µ C

7 1- İletkenler Bir maddenin iletkenliğini belirleyen en önemli faktör, atomlarının son yörüngesindeki elektron sayısıdır. Bu son yörüngeye "Valans Yörünge, üzerinde bulunan elektronlara da "Valans Elektron" denildiğini daha önce söylemiştik. Valans elektronlar atom çekirdeğine zayıf olarak bağlıdır. Valans elektrona uygulanan enerji ile elektron atomu terk eder. Valans elektronun serbest hale geçmesi, o maddenin iletkenlik kazanması demektir. Valans elektronlara enerji veren etkenler: v Elektriksel etki v Isı etkisi v Işık etkisi v Elektronlar kanalıyla yapılan bombardıman etkisi v Manyetik etki

8 Valans yörüngesindeki elektron sayısı 4 'den büyük olan maddeler yalıtkan, 4 den küçük olan maddeler de iletkendir. Örneğin bakır atomunun son yörüngesinde sadece bir elektron bulunmaktadır. Bu da bakırın iletken olduğunu belirler. Bakırın iki ucuna bir elektrik enerjisi uygulandığında bakırdaki valans elektronlar güç kaynağının pozitif kutbuna doğru hareket eder. Bakır elektrik iletiminde yaygın olarak kullanılmaktadır. Sebebi ise maliyetinin düşük olması ve iyi bir iletken olmasıdır. En iyi iletken ise özdirencinin daha düşük olması nedeniyle gümüştür (gümüşün öz direnci: 1.6 µω.cm). İletkenlik sıralamasında; gümüşten sonra bakır, sonra altın gelir. Bakır ve altının özdirençleri ise sırasıyla; 1.7 ve 2.2 µω.cm dir. Gümüş ve altın, maliyetinin yüksek olması nedeniyle elektrik iletiminde kullanılmamaktadır.

9 2-Yalıtkanlar: Yalıtkan maddelerin atomlarının valans yörüngelerinde 8 elektron bulunur. Bu tür yörüngeler doymuş yörünge sınıfına girdiği için elektron alıp verme gibi bir istekleri yoktur. Bu sebeple de elektriği iletmezler. Yalıtkan maddeler iletken maddelerin yalıtımında kullanılır. Yalıtkan maddelere örnek olarak tahta, cam ve plastiği örnek verebiliriz. 3-Yarıiletkenler: Yarıiletken, iletkenliği yalıtkan ve metal arasında olan ve yine iletkenliği sıcaklık veya katkılama ile değiştirilebilen kristal veya amorf yapıdaki katılardır. Yarıiletkenlerin valans yörüngelerinde 4 elektron bulunmaktadır. Bu yüzden yarıiletkenler iletkenlerle yalıtkanlar arasında yer almaktadır. Elektronik elemanlarda en yaygın olarak kullanılan yarıiletkenler Germanyum ve Silisyumdur. Tüm yarıiletkenler son yörüngelerindeki atom sayısını 8'e çıkarma çabasındadırlar. Bu nedenle saf bir germanyum maddesinde komşu atomlar son yörüngelerindeki elektronları kovalent bağ ile birleştirerek ortak kullanırlar.

10

11 Ametal, ısıyı ve elektrik akımını hiç iletmeyen. Oda sıcaklığında katı, sıvı ve gaz halde bulunan ametaller vardır. Örneğin Oksijen, Azot, Helyum, Klor gibi elementler saf halde iken oda sıcaklığında gaz halinde bulunur. Brom sıvı bir ametaldir. Karbon, Fosfor, Kükürt, İyot ise oda sıcaklığında katı halde bulunur.

12 Metal, yalıtkan ve yarıiletkenlerin iletkenlik ve serbest elektron sayıları oda sıcaklığında aşağıdaki tabloda karşılaştırılmaktadır: Katı İletkenlik (oda sıcaklığı) Serbest elektron (taşıyıcı) sayısı İletken (metal) 10 6 (Ω.cm) /cm 3 Yalıtkan (Ω.cm) -1 <10 8 1/cm 3 Yarıiletken (Si) (Ω.cm) /cm 3

13 Valans elektronları serbest hale geçirecek enerji seviyeleri madde yapısına göre şöyle değişmektedir: Ø İletkenler için düşük seviyeli bir enerji yeterlidir (yasak enerji aralığı çok düşük olduğundan) Eg 0 Ø Yarıiletkenlerde nispeten fazla enerji gereklidir (yasak enerji aralığı ikisinin ortasında) 0 < Eg < 3 ev Ø Yalıtkanlar için çok büyük enerji verilmelidir (yasak enerji aralığı çok büyük olduğundan) Eg 3 ev Bu durum Şekil 1.2 de gösterilmektedir. Şekil 1.2. İletkenlik derecesine göre değişen bant enerjileri: (a) İletken, (b) Yarıiletken, (c) Yalıtkan (Not: Enerji Boşluğu = Yasak enerji aralığı)

14 Kovalent Bağ Oluşumu Aşağıdaki şekilde kovalent bağ gösterilmektedir. Silisyum özellik olarak germanyumla hemen hemen aynı olmakla birlikte yarıiletken elektronik devre elemanlarında daha çok silisyum kullanılır. Silisyumun ana hammaddesi kum olduğundan maliyeti ucuzdur. Şekil 1.1 Yarıiletkenlerde kovalent bağ oluşumunun gösterimi

15 Yarıiletkenlerde boşluk (hole) oluşumu ve taşıyıcı hareketi İçinde yabancı madde bulunmayan düzgün bir kristal yapıya sahip olan yarıiletken saf yarıiletken (intrinsic semiconductor) olarak adlandırılır. Düşük sıcaklıklarda taşıyıcı yük olmadığından yarıiletkenden akım iletilemez ve yalıtkan gibi davranır. Sıcaklık arttığında bağ oluşturan elektronların enerjisi artar ve bağların birinden bir elektron kopar. Elektron bağdan ayrılınca elektronun ayrıldığı bölgede yük dengesi bozulur ve elektronun ayrıldığı bağ +q yüküne sahip olur. +q yükü olarak görülen eksik elektronlu bağ delik-boşluk-oyuk (hole) adını alır. Kristal içindeki bu (+) ve (-) yüklerin çoğalması ile kristal daha iyi iletken hale gelir. Yarıiletken kristal, bir elektrik alanı içine konursa delikler ve e ler birbirlerinin tersi yönde hareket eder. Boşluk, komşu bağdan gelen elektron tarafından doldurulur; daha doğrusu delik, elektronun geldiği bağa geçer. Aslında hareket eden elektron olmasına rağmen delik hareket ediyor gibi görünmektedir. Yarıiletken içerisinde +q yüklü boşluklar ile q yüklü elektronlar hareket edebilmekte, iletkenlerden farklı olarak iki tip taşıyıcı yük bulunmaktadır.

16 Saf yarıiletkende bağlardan kopan her bir elektrona karşılık boşluk oluşmaktadır. Birim hacimde bulunan elektron sayısı n ve boşluk sayısı p ile gösterildiğinde saf yarıiletken için: n = p = n i Burada n i saf yarıiletkenin taşıyıcı yoğunluğudur. Yariletkenlerin direnci, sıcaklığa bağlı olarak üstel bir fonksiyon şeklinde azalır. Öte yandan metallerde ise sıcaklık arttıkça direnç de artar. Bundan dolayı yarıiletkenler NTC tipi termistör yapımında kullanılır.

17 3.1 Katkılanmış yarıiletken (extrinsic/doped semiconductor): Yarıiletkenin elektriksel ve optiksel özellikleri çok küçük bir katkılama (doping) ile oldukça değiştirilebilir. Bu maddeler katkılandırılarak Pozitif veya Negatif maddeler elde edilir. Pozitif (+) maddelere "P-tipi", Negatif (-) maddelere de "N-tipi" yarıiletken denir N-tipi yarıiletken: Arsenik elementinin valans yörüngesinde 5 adet elektron bulunur. Silisyum arsenik ile katkılandırıldığında, arsenik ile silisyum atomlarının kurdukları kovalent bağdan arsenik atomunun 1 elektronu açıkta kalır (Şekil 1.3). Örnek olarak yarıiletkene 10 6 da 1 oranında 5 valans elektronlu yabancı atom (bu atomlara verici-donör atom denir) katılsın. Yarıiletkende cm 3 başına mertebesinde atom olduğundan buna göre cm 3 de mertebesinde yabancı atom ve bu atomlara karşılık serbest elektron açığa çıkacaktır. Yapıdaki elektron sayısı oldukça arttığından "Negatiflik" özelliği kazandırır ve malzeme n-tipi yarıiletken olarak adlandırılır. Birim hacimde bulunan veren atom sayısı N D ile gösterilsin.

18 Bir elektron kaybeden katkı atomu +q yüküne sahip olacaktır. Elektron yoğunluğu n ve boşluk yoğunluğu da p olduğuna göre birim hacimde n tane q yükü ve p+n D tane de +q yükü olacaktır. Yük dengesi olduğundan; n=p+n D Yapıda n>>p olduğundan elektron sayısı yaklaşık olarak veren atom sayısına eşit olacaktır: n N D Şekil 1.3 N-tipi yarıiletkenin gösterimi

19 3.1.2 P-tipi Yarıiletken: Bor, Al, Ga ve In elemetlerinin valans yörüngesinde 3 adet elektron bulunmaktadır. Silisyum maddesine bor maddesi enjekte edildiğinde atomların kurduğu kovalent bağlarda bir elektronluk eksiklik kalır (Şekil 1.4) ve bu eksikliğe yukarıda da belirtildiği gibi "Delik-Oyuk-boşluk" adı verilir. Yani katkı atomunun 3 elektronu bağ oluştururken dördüncü elektron, komşu bağlardan birinden sağlanan elektronla tamamlanır. Bu işlem sırasında katkı atomu bir elektron kazandığından q yüküne sahip olmuştur. Yabancı atom bağ sayısını dörde çıkarırken yarıiletkenin atomlarından birinden bir elektron eksilmiştir ve kopan bağda bir boşluk meydana gelmiştir. Bu elektron eksikliği, yapıya "Pozitiflik" özelliği kazandırır yani pozitif yüklü taşıyıcı boşluk sayısı, negatif yüklü taşıyıcı (elektron) sayısından daha fazladır. N-tipi yarıiletkendeki durumun tersi olarak; p=n+n A (N A : Katkı atomlarının birim hacimdeki sayısı) Her bir katkı atomuna karşılık bir boşluk oluştuğundan, boşluk sayısı elektron sayısından çok daha fazladır ve bu nedenle; p N A

20 P tipi maddeye bir gerilim kaynağı bağlandığında kaynağın negatif kutbundaki elektronlar P tipi maddeki boşlukları doldurarak kaynağın pozitif kutbuna doğru ilerlerler. Elektronlar pozitif kutba doğru ilerlerken boşluklar da elektronların ters yönünde hareket etmiş olurlar. Bu kaynağın pozitif kutbundan negatif kutbuna doğru bir boşluk hareketi sağlar. Şekil 1.4. P-tipi yarıiletkenin gösterimi

21 Azınlık ve Çoğunluk Taşıyıcılar : Yukarıda da bahsedildiği gibi P tipi yarıiletkende bulunan boşluk sayısı, elektron sayısından fazladır. Aynı şekilde N tipi maddede de serbest elektron sayısı boşluk sayısından fazladır. İşte bu fazla olan boşluk ve serbest elektronlara "Çoğunluk Taşıyıcılar", az olanlara da "Azınlık Taşıyıcılar" denir. Yani P-tipi yarıiletkende çoğunluk taşıyıcılar boşluklar ve azınlık taşıyıcılar ise serbest elektronlardır. N-tipi malzemede bunun tersidir. Azınlık taşıyıcılar, yarıiletken elektronik devre elemanlarında sızıntı akımına neden olur. İçerisinde çok sayıda yarıiletken devre elemanı bulunduran entegrelerde fazladan gereksiz akım çekimine yol açar ve bu da elemanın ısınmasına hatta zarar görmesine neden olur.

22 3.1.4 Difüzyon akımı. Yarıiletkenlerde iletkenlerde olmayan bir iletim biçimine rastlanır. Bu, difüzyon akımıdır. Yarıiletken içerisinde herhangi bir bölgede taşıyıcı yoğunluğu, dış etki nedeniyle veya farklı taşıyıcı yoğunluklu bölgelerin bir araya gelmesi ile artabilir. Bu durumda yoğunluğu fazla olan bölgeden az olan bölgeye doğru taşıyıcı yük akışı meydana gelir ve yük akışı nedeniyle de akım oluşur. Bu akıma difüzyon akımı denir. Yoğunluk değişimi olmadığı durumda difüzyon meydana gelmediğinden difüzyon akımı da oluşamayacaktır. Yarıiletken içerisinde taşıyıcı yükler, difüzyon nedeniyle hareket ederken zıt yüklü taşıyıcı ile karşılaştığında bağ oluşturarak yok olacaktır. Taşıyıcı yük, difüzyon sırasında, yok oluncaya kadar yarıiletken içerisinde bir yol kat eder. Kat edilen yolun ortalama değeri difüzyon yolu adını alır. Difüzyon yolu, yarıiletken cinsine, katkı yoğunluğuna ve sıcaklığa bağlı bir büyüklüktür.

23 . Difüzyon olayına, aynı kristal içerisinde p ve n tipi yarıiletken malzemelerin oluşturulması halinde de rastlanır. Böyle bir durumda iki bölge arasında taşıyıcı yük yoğunlukları farklıdır. Bu fark nedeniyle yoğunluğu az olan böigeye doğru, difüzyon nedeniyle yük geçişi olacaktır. Difüzyon olayı ve akımı, iletkenlerde rastlanmayan bir durumdur. İletkenlerde valans elektronların tamamına yakını serbesttir ve iletken içerisinde taşıyıcı yük yoğunluğu sabit olacak biçimde dağılmıştır. Bu yüzden taşıyıcı yoğunluğu herhangi bir etki ile değişmez ve iletken içerisinde difüzyon olayı oluşmaz.

24 Tablo 1. Sıcaklığa bağlı olarak elektron ve boşluk oluşumu Katkı Maddelerine sıcaklığın etkisi N ve P tipi malzemelerde sıcaklıkla birlikte azınlık taşıyıcılarında da artış olur. Çoğunluk taşıyıcıların sayısı sıcaklıkla değişmez. Örnek olarak n-tipi bir malzemede farklı sıcaklıklarda oluşan elektron ve boşluklar Tablo 1 de gösterilmiştir. Mutlak sıfırda (-273 o C) elektron boşluk çifti oluşturacak bir enerji yoktur. Aynı zamanda katkı atomlarının elektronlarını iletim bandına geçirecek seviyede bir enerji de yoktur. Oda sıcaklığında (25 o C) azınlık taşıyıcılarının sayısı, katkı maddesinden kaynaklanan serbest elektron sayısına göre düşüktür. Sıcaklık 250 o C olduğunda ise boşluk sayısı elektron sayısına yaklaşık olarak eşittir ve madde saf bir yarıiletken gibi davranır.

25 4- P-N eklemi ü p ve n tipi yarıiletken bölgeler aynı kristal içerisinde oluşturulduğunda iki bölge arasında bir arakesit yüzey oluşur. Bu arakesit yüzey, p-n jonksiyonu (eklemi) adını alır. p-n jonksiyonu, yarıiletken elemanların (diyot ve transistor gibi) elde edilmesinde kullanılmaktadır. Bir p-n ekleminin şematiği Şekil 1.5 de verilmektedir. ü Jonksiyonun iki tarafında farklı taşıyıcı yoğunluklarına sahip yarıiletken bölgeler bulunmaktadır. n-tipi bölgede çoğunluk taşıyıcı yük elektron ve azınlık taşıyıcı yük boşluktur. p-tipi yarıiletken bölgede çoğunluk taşıyıcı boşluk, azınlık taşıyıcı ise elektrondur. ü Ayrıca yarıiletken bölgeler içerisinde akım iletimine katılamayan yükler bulunmaktadır. Bu yükler n-tipi bölgede +q yüküne sahip verici (donor) atomlar, p-tipi bölgede -q yüklü alıcı (acceptor) atomlardır.

26 . V B : İç potansiyel Şekil 1.5. p-n ekleminin gösterimi

27 p-n ekleminin ve deplesyon bölgesinin oluşumunun diğer bir gösterimi Şekil 1.6 da veriliyor. (a) (b) Şekil 1.6. (a) p-n ekleminin ve (b) deplesyon bölgesinin gösterimi P ve n tipi malzemelerin bir araya getirilmesinden (kontaktan) sonra, elektron ve boşluklar yüksek konsantrasyonlu bölgeden düşük konsantrasyonlu bölgeye doğru difüzyonla geçiş yaparlar.

28 P-tarafına geçen elektronlar burada boşluklarla birleşirler (bağ oluştururlar) ve yok olurlar (böylece p-tarafındaki bazı sınır negatif yükleri boşluklar tarafından nötralize edilemezler); n tarafına geçen boşluklar da elektronlarla birleşerek yok olurlar (böylece n-tarafındaki bazı sınır pozitif yükleri serbest elektronlar tarafından nötralize edilemezler). Böylece eklem civarında depletion layer (deplesyonboşaltılmış-fakirleşmiş bölge) meydana gelir. Bu deplesyon bölgesi n tarafı pozitif (sebebi yukarıda altı çizili ifade), p tarafı negatif olacak şekilde sabit yükler içerir ve bir elektrik alanı meydana getirir. Bu alan, daha fazla taşıyıcının eklemi aşmasına mani olur ve deplesyon bölgesinde bir iç potansiyel (V B ) veya temas gerilimi oluşturur. Temas geriliminin değeri yarıiletken bölgelerin katkı yoğunluklarına, sıcaklığa ve yarıiletkenin cinsine bağlıdır. p-n eklemi Si yarıiletken kullanılarak yapılmış ise bu gerilimin değeri normal sıcaklıklarda V kadardır (Germanyum için bu değer 0.3 V civarındadır).

29 . Bu elektriksel alanın yönü, diğer deyişle iç potansiyel (V B ) çoğunluk taşıyıcıların karşı bölgeye geçişini engelleyecek, azınlık taşıyıların ise geçişini kolaylaştıracak yöndedir. Ancak yarıiletken bölgelerin boşluk ve elektron yoğunlukları arasında çok büyük fark vardır. Çoğunluk taşıyıcılar, elektriksel alanın engeline rağmen difüzyonla karşı bölgeye az sayıda da olsa geçmeyi başarırlar. Azınlık taşıyıcılar alan etkisi ile çoğunluk taşıyıcılar da difuzyonla karşı bölgeye geçmektedir. Jonksiyona dışardan gerilim uygulanmadığında bir denge söz konusudur ve akan akım sıfırdır. Yani jonksiyondan alan etkisi ile geçen azınlık taşıyıcıların sayısı kadar difüzyonla çoğunluk taşıyıcı geçmektedir. Bu durum jonksiyonda oluşan dengeye karşılık gelmektedir.

30 4.1.1 İle(m yönünde kutuplama Şekil 1.7 V I ü p-n eklemine Şekil 1.7 de görüldüğü gibi p tarafı pozitif olacak şekilde bir V gerilimi uygulansın. N tarafına uygulanan negatif gerilim n deki elektronları iterken, p tarafına uygulanan pozitif gerilim ise p deki boşlukları ekleme doğru itecektir. Böylece, uygulanan V geriliminin yönü temas geriliminin (V B ) yönüne terstir ve p-n ekleminde oluşan gerilim, V B -V olacaktır. ü Bu da eklemin iç potansiyelinin azalması anlamına geldiğinden çoğunluk taşıyıcıların difüzyonu kolaylaşacak ve difüzyon akımı artacaktır. Bu sırada eklemden azınlık taşıyıcıların geçişi de devam etmektedir, fakat azınlık taşıyıcıların sayısı çok az olduğundan oluşturacakları iletim akımı çoğunluk taşıyıcıların oluşturduğu difüzyon akımı yanında çok küçük kalır.

31 Uygulanan gerilim arttıkça (iç potansiyeli aştıkça) Şekil 1.7 de oklarla gösterildiği gibi her iki tipin akım taşıyıcıları eklemi geçerek diğer uca doğru hareket ederler. Sonuç olarak elektronların oluşturduğu akım için de elektron akış yönünün tersi alındığı zaman p-n ekleminde p den n ye doğru I akımı akar. ( I = I n + I p ) I akımı (difüzyon akımı) p-n eklemine uygulanan V gerilimi büyüdükçe artmakta, hatta amperler seviyesine çıkabilmektedir. p-n eklemine bu biçimde gerilim uygulamaya p-n eklemini iletim yönünde (forward-biased) kutuplama denir.

32 4.1.2 Tıkama yönünde kutuplama Şekil 1.8 V N tarafı pozitif, p tarafı da negatif olacak şekilde kutuplandığı zaman (Şekil 1.8), n deki elektronlar pozitif uca doğru çekilirken, p deki boşluklar da negatif uca doğru çekileceklerdir. Bu nedenle uygulanan gerilimin yönü eklem temas gerilimi ile aynı yönde olacak ve temas gerilimi büyüyecektir. Yani geçiş bölgesinde Şekil 1.8 de görüldüğü gibi genişleme meydana gelecektir. Bu da, çoğunluk taşıyıcıların difüzyonla geçişini engellemeye, azınlık taşıyıların geçişini ise kolaylaştırmaya devam edecektir. Bu nedenle difüzyon akımı azınlık taşıyıcıların sağladığı akım yanında yok denecek kadar küçüktür.

33 Azınlık taşıyıcıların oluşturduğu akım, elektriksel alan etkisi ile meydana geldiğinden iletim akımı (I) niteliğindedir. Azınlık taşıyıcıların sayısı az olduğundan gerilim artırılsa bile akım küçük bir değerde (µa-na) sabit kalır ve bu akım p-n ekleminin doyma akımı (I o ) olarak adlandırılır. Azınlık taşıyıcılar elektron bağlarının ısıl nedenlerle çözülmesi ile oluşmaktadır ve bu nedenle I o ın değeri sıcaklıkla değişecektir. Değişim, her 10 o C lik sıcaklık artımı için I o ın yaklaşık olarak iki katına çıkması biçimindedir. Si kullanılarak gerçekleştirilmiş bir p-n ekleminde doyma akımı 1 pikoamper (pa) mertebesindedir. p-n eklemine n tarafı pozitif olacak şekilde gerilim uygulanmasına tıkama yönünde (reverse-biased) kutuplama denir.

34 YARIİLETKEN ELEKTRONİK ELEMANLAR

35 1- DİYOTLAR (P-N EKLEMLİ DİYOTLAR) p-n eklemini oluşturan n ve p 6pi yarıiletken bölgelere elektrotlar bağlanarak oluşturulan iki elektrotlu yarıiletken yapıya diyot denir. Diyot devre elemanın sembolü Şekil 2.1 de gösterilmiş6r. Şekilde anot p-6pi ve katot ise n-6pi yarıiletken bölgeye bağlanmışcr. Diyot ile6m yönünde kutuplandığı zaman anot katoda göre pozi6f olacakcr. Tıkama durumunda ise tersi olacakcr. İle6m yönünde akan akım, gerilimle birlikte eklemin kesi6ne de bağlıdır. P-n eklemi (diyot) bu özelliği ile akımı tek yönde (ile6m yönünde) ileten bir yapıdır. Ters yönde ise açık devre olan bir elemandır. Anot Şekil 2.1. Diyotun sembolü

36 Diyot (p-n eklemi) yukarıda da açıklandığı gibi ile6m ya da Ckama yönünde kutuplanabilir. DiyoNan akan akım büyük değerlere çıkmadığı zaman diyota uygulanan gerilimle (V) akım (I) arasında aşağıdaki bağınc vardır ve bu bağınc diyot denklemi olarak adlandırılır. I / = I V VT o( e 1) Burada I o diyotun doyma akımı, V T ısıl gerilim olarak adlandırılır. Isıl gerilim sıcaklığa bağlı olan bir büyüklüktür ve şu eşitlikle verilir: V T = kt q Bu bağıntıda T, Kelvin cinsinden sıcaklık olup k değeri, 1.38x10-23 J/K olan Boltzman sabitidir. q ise elektron yüküdür (1.6x10-19 C). Diyot denklemi iletim ve tıkama yönünde kutuplama için geçerlidir. Tıkama yönünde gerilim uygulanınca V gerilimi negatif olacaktır. V T << V olduğundan üstel terim 1 e göre çok küçük olur ve tıkama yönü akımı yaklaşık I o olacaktır yani diyot denklemi I=I o olacaktır. İletim yönünde ise V/V T oranı 1 den çok büyük olduğundan bu durumda iletim yönü akımı yaklaşık I = I V / VT o ( e ) olacaktır.

37 Diyotun Gerilim-Akım Eğrisi Diyotun ile6m veya Ckama durumundaki tepkesini gösteren gerilim ve akım eğrisi -diyot denkleminden faydalanarak- Şekil 2.2 de gösteriliyor. İle6m yönünde V γ eşik gerilimine (daha önce bahsedilen p-n eklemindeki temas gerilimi) kadar akım akmadığı görülmektedir, işte bu akım eşik akımı (threshold current) olarak adlandırılır. Gerilim, V γ değerine ulaşjğında (Si diyot için V) diyot akımı algılanabilir değerleri almaya başlar ve diyot denklemine uygun olarak üstel bir şekilde artar. Diyotun uçları arasındaki gerilim, akım çok büyük değerlere çıkmadığı zaman b ü y ü k ö l ç ü d e değişmeyecek(r. Şekil 2.2

38 Tıkama yönünde diyot denkleminin I=I o a dönüştüğünü söylemiştik. Bu durum Şekil 2.2 de tıkama yönünde gösteriliyor. Şekilde gösterilen belverme gerilimini şu şekilde izah edebiliriz: Diyotu tıkama yönünde kutupladığımızda anot negatif, katot ise pozitif olacak şekilde bir V gerilimi uygulanacaktır (tıkama yönünde kutuplanmış p-n eklemi). Tıkama yönünde V geriliminin değeri artırılırsa eklemde oluşan elektriksel alanın şiddeti de büyüyecektir. Geçiş bölgesi genişliği 1 µm mertebesindedir. Bu nedenle V gerilimi çok büyük değerleri almadığı zaman bile elektriksel alan şiddeti büyük değerlere çıkabilecektir (E=V/d). Sonuçta artan elektrik alanı geçiş bölgesi içinde taşıyıcıların hızı artar ve hızları artan bu taşıyıcılar kinetik enerjilerini kovalent bağ oluşturan elektronlara aktarırlar. Bunun sonucunda bağlardan ayrılan elektronlar hızlanarak başka valans bandlarına çarparlar ve elektron koparırlar. Böylece geçiş bölgesi içinde zincirleme olarak taşıyıcı yük sayısı artar. Bu olaya çığ veya zener olayı denir ve diyot (p-n eklemi) tıkama yönünde kutuplanmasına karşın akım, çok büyük değerlere çıkabilir (gerilim çok az değiştiği halde). Akımın çok yüksek değerlere çıkmasına diyotun belvermesi (breakdown) ve bu gerilim değerine de belverme gerilimi (V BR ) denir.

39 Sonuç olarak, diyot doğru polarmada küçük dirençli bir devre elemanı, ters polarmada ise büyük dirençli bir devre elemanı niteliği gösterir ve akımın tek yönde akmasını sağlamaktadır. Doğru yön akımı ve ters yön gerilimi, sınır değerlerin üzerine çıkarsa diyot yanar. Diyotlar arasında bir kıyaslama yapabilmek için Tablo 2.1 de bazı diyotların karakteristik değerleri verilmiştir: Tablo 2.1. Farklı türdeki diyotlar için karakteristik değerler

40 ÖDEV: Bir diyot 25 o C sıcaklık için I D = 20 ( e 35 V )na D 1 eşitliği ile modellenmektedir. a) Bu diyota seri 25 Ω luk (I = 0 : 1 : 30 ma alınız) ve b) Paralel 25 Ω luk direnç bağlanması durumunda (V = 0 : 0.1 : 0.5 Volt alınız) Her iki devrenin ayrı ayrı V-I değişimini MATLAB de çiziniz ve diyotların ne tür olduğunu belir(niz (Si veya Ge). Not: I akımı ana koldan akan akım ve ve V gerilimi ana kol gerilimidir.

41 Diyotun Eşdeğeri I Q akımı, diyota uygulanan doğru gerilime karşılık gelen akım değeridir. Pratikte diyotun VT r değişken işaret direnci, yarıiletken bölgelerin direnci d nedeniyle IQ ile bulunan değerden biraz büyük olur. İdeal olmayan bir diyotun eşdeğer devresi, ideal diyot ve gerilim kaynağına seri olarak R s direnci bağlandığında elde edilen devredir (Şekil 2.6). Devredeki R s direnci, yarıiletken bölgelerin dirençleri ile eklemin değişken işaret direncinin (r d ) toplamına eşittir. Şekil 2.6. Diyotun değişken işaret eşdeğeri

42 Diyot Çeşitleri p-n ekleminin bazı özelliklerinden yararlanılarak özel diyotlar imal edilmektedir. Bu diyot çeşitleri şunlardır: 1- Doğrultucu diyotlar: p-n ekleminin sadece tek yönlü akım ile66minden yararlanılarak yapılan diyotlara doğrultucu diyotlar denilmektedir. Genellikle düşük frekanslardaki (50-60 Hz) şehir şebeke işaretlerini doğrultmak için kullanılırlar. 2- Zener Diyotlar: p-n eklemi Ckama yönünde kutuplandığında belverme bölgesinde akım büyük ölçüde değişmesine rağmen gerilim çok az değişiyordu. p-n ekleminin bu özelliğinden yararlanmak üzere imal edilen diyotlara zener diyot denir.

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

1. Yarı İletken Diyotlar Konunun Özeti

1. Yarı İletken Diyotlar Konunun Özeti Elektronik Devreler 1. Yarı İletken Diyotlar 1.1 Giriş 1.2. Yarı İletkenlerde Akım Taşıyıcılar 1.3. N tipi ve P tipi Yarı İletkenlerin Oluşumu 1.4. P-N Diyodunun Oluşumu 1.5. P-N Diyodunun Kutuplanması

Detaylı

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir. TEMEL ELEKTRONİK Elektronik: Maddelerde bulunan atomların son yörüngelerinde dolaşan eksi yüklü elektronların hareketleriyle çeşitli işlemleri yapma bilimine elektronik adı verilir. KISA ATOM BİLGİSİ Maddenin

Detaylı

DİYOT KARAKTERİSTİKLERİ

DİYOT KARAKTERİSTİKLERİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı Elektronik I Dersi Laboratuvarı 1. Deneyin Amacı DİYOT KARAKTERİSTİKLERİ Diyot çeşitlerinin

Detaylı

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Valans Elektronları Atomun en dış kabuğundaki elektronlara valans elektron adı verilir. Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar. Bir atomun en dış kabuğundaki elektronlar,

Detaylı

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Seri Paralel Devrelere Örnekler Temel Elektrik Elektronik Yarıiletken Elemanlar Kullandığımız pek çok cihazın üretiminde

Detaylı

Elektronik-I. Yrd. Doç. Dr. Özlem POLAT

Elektronik-I. Yrd. Doç. Dr. Özlem POLAT Elektronik-I Yrd. Doç. Dr. Özlem POLAT Kaynaklar 1-"Electronic Devices and Circuit Theory", Robert BOYLESTAD, Louis NASHELSKY, Prentice-Hall Int.,10th edition, 2009. 2- Elektronik Cihazlar ve Devre Teorisi,

Detaylı

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır,

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, YARIİLETKEN MALZEMELER Yarıiletkenler; iletkenlikleri iyi bir iletkenle yalıtkan arasında bulunan özel elementlerdir. Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır, Ge Germanyum

Detaylı

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER YARI İLETKENLER Doğada bulunan atamlar elektriği iletip-iletmeme durumuna görene iletken, yalıtkan ve yarı iletken olarak 3 e ayrılırlar. İletken maddelere örnek olarak demir, bakır, altın yalıtkan maddeler

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Enerji Band Diyagramları

Enerji Band Diyagramları Yarıiletkenler Yarıiletkenler Germanyumun kimyasal yapısı Silisyum kimyasal yapısı Yarıiletken Yapım Teknikleri n Tipi Yarıiletkenin Meydana Gelişi p Tipi Yarıiletkenin Meydana Gelişi Yarıiletkenlerde

Detaylı

BÖLÜM I İLETKEN, YALITKAN VE YARIİLETKENLER

BÖLÜM I İLETKEN, YALITKAN VE YARIİLETKENLER BÖLÜM I İLETKEN, YALITKAN VE YARIİLETKENLER 1-İletkenler: Bilindiği gibi elektronlar, atom çekirdeği etrafında belirli yörüngeler boyunca sürekli dönmektedir. Hareket halinde olması nedeniyle her yörünge

Detaylı

Karadeniz Teknik Üniversitesi. Elektrik-Elektronik Mühendisliği Bölümü

Karadeniz Teknik Üniversitesi. Elektrik-Elektronik Mühendisliği Bölümü Elektrik-Elektronik Mühendisliği Bölümü Karadeniz Teknik Üniversitesi ELEKTRİK MÜHENDİSLİĞİNDE MALZEME Yrd. Doç. Dr. H. İbrahim OKUMUŞ E-mail : okumus@ktu.edu.tr WEB : 1 Yarı-iletken elemanların yapısı

Detaylı

ATOM, İLETKEN, YALITKAN VE YARIİLETKENLER

ATOM, İLETKEN, YALITKAN VE YARIİLETKENLER ATOM, İLETKEN, YALITKAN VE YARIİLETKENLER Hedefler Elektriksel karakteristikler bakımından maddeleri tanıyacak, Yarıiletkenlerin nasıl elde edildiğini, karakteristiklerini, çeşitlerini öğrenecek, kavrayacak

Detaylı

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK ELEKTRONİK 1 1. Atomun çekirdeği nelerden oluşur? A) Elektron B) Proton C) Proton +nötron D) Elektron + nötron 2. Elektron hangi yükle yüklüdür?

Detaylı

Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Yarıiletken devre elemanlarında en çok kullanılan maddeler; 1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1 Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2 Katkı Oluşturma Silisyum ve Germanyumun

Detaylı

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT YALITKAN YARI- İLETKEN METAL DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT Amaç: Birinci deneyde Ohmik bir devre elemanı olan direncin uçları arasındaki gerilimle üzerinden geçen akımın doğru orantılı

Detaylı

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM 108 Elektrik Devreleri I Laboratuarı Deneyin Adı: Kırchoff un Akımlar Ve Gerilimler Yasası Devre Elemanlarının Akım-Gerilim

Detaylı

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi DERS NOTLARI Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi Ders-2 4.10.2016 http://www.megep.meb.gov.tr/mte_program_modul/ TEMEL YARI İLETKEN ELEMANLAR TEMEL YARI İLETKEN ELEMANLAR

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

ÖLÇME VE ÖLÇÜ ALETLERİ

ÖLÇME VE ÖLÇÜ ALETLERİ ÖLÇME VE ÖLÇÜ ALETLERİ 1. KISA DEVRE Kısa devre; kırmızı, sarı, mavi, nötr ve toprak hatlarının en az ikisinin birbirine temas ederek elektriksel akımın bu yolla devresini tamamlamasıdır. Kısa devre olduğunda

Detaylı

Ölçme Kontrol ve Otomasyon Sistemleri 1

Ölçme Kontrol ve Otomasyon Sistemleri 1 Ölçme Kontrol ve Otomasyon Sistemleri 1 Dr. Mehmet Ali DAYIOĞLU Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 1. Elektroniğe giriş Akım, voltaj, direnç, elektriksel

Detaylı

Elektrik Yük ve Elektrik Alan

Elektrik Yük ve Elektrik Alan Bölüm 1 Elektrik Yük ve Elektrik Alan Bölüm 1 Hedef Öğretiler Elektrik yükler ve bunların iletken ve yalıtkanlar daki davranışları. Coulomb s Yasası hesaplaması Test yük kavramı ve elektrik alan tanımı.

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

FTR 205 Elektroterapi I. Temel Kavramlar. yrd.doç.dr. emin ulaş erdem

FTR 205 Elektroterapi I. Temel Kavramlar. yrd.doç.dr. emin ulaş erdem FTR 205 Elektroterapi I Temel Kavramlar yrd.doç.dr. emin ulaş erdem Elektrik, Akım, Gerilim Nedir? Elektriği anlamak için ilk olarak maddenin en kucuk birimi olan atomları anlamak gerekir. Atomlar bir

Detaylı

Şekil 1: Diyot sembol ve görünüşleri

Şekil 1: Diyot sembol ve görünüşleri DİYOTLAR ve DİYOTUN AKIM-GERİLİM KARAKTERİSTİĞİ Diyotlar; bir yarısı N-tipi, diğer yarısı P-tipi yarıiletkenden oluşan kristal elemanlardır ve tek yönlü akım geçiren yarıiletken devre elemanlarıdır. N

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları T.C. MALTEPE ÜNİVERSİTESİ ELK232 Elektronik Devre Elemanları DENEY 2 Diyot Karekteristikleri Öğretim Üyesi Yrd. Doç. Dr. Serkan TOPALOĞLU Elektronik Devre Elemanları Mühendislik Fakültesi Baskı-1 ELK232

Detaylı

YAŞAMIMIZDAKİ ELEKTRİK

YAŞAMIMIZDAKİ ELEKTRİK YAŞAMIMIZDAKİ ELEKTRİK DURGUN ELEKTRİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU DİYOTLAR Diyot tek yöne elektrik akımını ileten bir devre elemanıdır. Diyotun

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

Şekil 1.1. Hidrojen atomu

Şekil 1.1. Hidrojen atomu ANALOG ELEKTRONİK ANALOG ELEKTRONİK... i A. KISA ATOM BİLGİSİ...1 Giriş...1 Yörünge ve Kabuk...1 Enerji Bantları...2 İletken, Yarı İletken ve Yalıtkanlar...4 Kovalent Bağ...5 Saf Yarı İletken Malzemenin

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 4: Fotovoltaik Teknolojinin Temelleri Fotovoltaik Hücre Fotovoltaik Etki Yarıiletken Fiziğin Temelleri Atomik Yapı Enerji Bandı Diyagramı Kristal Yapı Elektron-Boşluk Çiftleri

Detaylı

ELEKTRONİK-1 DERSİ LABORATUVARI DENEY 1: Diyot Karakteristikleri Deneyleri (PN Jonksiyon)

ELEKTRONİK-1 DERSİ LABORATUVARI DENEY 1: Diyot Karakteristikleri Deneyleri (PN Jonksiyon) ELEKTRONİK-1 DERSİ LABORATUVARI DENEY 1: Diyot Karakteristikleri Deneyleri (PN Jonksiyon) DENEYİN AMACI 1. Silisyum ve Germanyum Diyotların karakteristiklerini anlamak. 2. Silisyum ve Germanyum Diyot tiplerinin

Detaylı

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur.

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. ELEKTROSTATİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında bulunan elektron ve proton

Detaylı

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU

T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 DENEY RAPORU DENEY 1. YARI İLETKEN DİYOT KARAKTERİSTİĞİ Yrd.Doç.Dr. Engin Ufuk ERGÜL Ar.Gör. Ayşe AYDIN YURDUSEV

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1. DİYOT ve UYGULAMALARI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1. DİYOT ve UYGULAMALARI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 DİYOT ve UYGULAMALARI DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN EKİM 2011 KAYSERİ DİYOT

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

ELEKTRİKSEL ÖZELLİKLER

ELEKTRİKSEL ÖZELLİKLER ELEKTRİKSEL ÖZELLİKLER İletkenlik Elektrik iletkenlik, malzeme içerisinde atomik boyutlarda yük taşıyan elemanlar (charge carriers) tarafından gerçekleştirilir. Bunlar elektron veya elektron boşluklarıdır.

Detaylı

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1

BÖLÜM 2 ATOMİK YAPI İÇERİK. Atom yapısı. Bağ tipleri. Chapter 2-1 BÖLÜM 2 ATOMİK YAPI İÇERİK Atom yapısı Bağ tipleri 1 Atomların Yapıları Atomlar başlıca üç temel atom altı parçacıktan oluşur; Protonlar (+ yüklü) Nötronlar (yüksüz) Elektronlar (-yüklü) Basit bir atom

Detaylı

Ders 2- Temel Elektriksel Büyüklükler

Ders 2- Temel Elektriksel Büyüklükler Ders 2- Temel Elektriksel Büyüklükler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Yük Elektriksel yük maddelerin temel özelliklerinden biridir. Elektriksel yükün iki temel

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Atom, birkaç türü birleştiğinde çeşitli molekülleri, bir tek türü ise bir kimyasal öğeyi oluşturan parçacıktır. Atom, elementlerin özelliklerini taşıyan en küçük yapı birimi olup çekirdekteki

Detaylı

ELEKTROSTATİK Nötr (Yüksüz) Cisim: Pozitif Yüklü Cisim: Negatif Yüklü Cisim: İletken Cisimler: Yalıtkan Cisimler:

ELEKTROSTATİK Nötr (Yüksüz) Cisim: Pozitif Yüklü Cisim: Negatif Yüklü Cisim: İletken Cisimler: Yalıtkan Cisimler: ELEKTROSTATİK Elektrostatik; durgun elektrik yüklerinin birbirleriyle ilişkilerinden, atom altı parçacıklarının etkileşmesine kadar geniş bir sahada yer alan fiziksel olayları inceler. Atomun merkezinde

Detaylı

BÖLÜM III YARIİLETKEN ESASLARI

BÖLÜM III YARIİLETKEN ESASLARI BÖLÜM III YARIİLETKEN ESASLARI 3.1 GİRİŞ XIX. YY ın sonlarında başlayıp XX.YY ın başlarına kadar sürdürülen bilimsel çalışmalar sonucu bulunan yarı iletkenler;elektronik sanayisinin oluşup hızla gelişmesini

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ

ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ ATOMLAR ARASI BAĞLAR Doç. Dr. Ramazan YILMAZ Sakarya Üniversitesi, Teknoloji Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü Esentepe Kampüsü, 54187, SAKARYA Atomlar Arası Bağlar 1 İyonik Bağ 2 Kovalent

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK-I LABORATUVARI DENEY 1: YARIİLETKEN DİYOT Yrd.Doç.Dr. Engin Ufuk ERGÜL Arş.Gör. Ayşe AYDIN YURDUSEV Arş.Gör. Alişan AYVAZ Arş.Gör. Birsen BOYLU AYVAZ ÖĞRENCİ

Detaylı

BÖLÜM 1 YARIİLETKENLERİN TANITILMASI. Konular: Amaçlar:

BÖLÜM 1 YARIİLETKENLERİN TANITILMASI. Konular: Amaçlar: BÖLÜM 1 YARIİLETKENLERİN TANITILMASI Konular: 1.1 Atomik Yapı 1.2 Yarıiletken, İletken ve Yalıtkan 1.3 Yarıiletkenlerde İletkenlik 1.4 N Tipi ve P tipi Yarıiletkenler 1.5 PN Bitişimi (eklemi) ve Diyot

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti Elektronik Devreler 1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar Konunun Özeti * Diyotlar yapım tekniğine bağlı olarak; Nokta temaslı diyotlar,

Detaylı

28.02.2012 ELEKTRONİK DEVRE ELEMANLARI

28.02.2012 ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI Transistör 20. yüzyılın en büyük buluşlarından biri olduğu düşülmektedir. İnsanlığın aya gitmesi, giderek daha küçük ve daha etkili bilgisyarların yapılması, kulak içi işitme

Detaylı

Elektrik Mühendisliğinin Temelleri-I EEM 113

Elektrik Mühendisliğinin Temelleri-I EEM 113 Elektrik Mühendisliğinin Temelleri-I EEM 113 1 1 Terim Terimler, Birimleri ve Sembolleri Formülsel Sembolü Birimi Birim Sembolü Zaman t Saniye s Alan A Metrekare m 2 Uzunluk l Metre m Kuvvet F Newton N

Detaylı

Atomlar, dış yörüngedeki elektron sayısını "tamamlamak" üzere, aşağıdaki iki yoldan biri ile bileşik oluştururlar:

Atomlar, dış yörüngedeki elektron sayısını tamamlamak üzere, aşağıdaki iki yoldan biri ile bileşik oluştururlar: ATOMUN YAPISI VE BAĞLAR Atomun en dış yörüngesinde dönen elektronlara valans elektronlara adi verilir (valance: bağ değer). Bir atomun en dış yörüngesinde 8'e yakın sayıda elektron varsa, örnek klor: diğer

Detaylı

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI

ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI ELEKTRİK ELEKTRONİK DEVRE ELEMANLARI BCP103 Öğr.Gör. MEHMET GÖL 1 Ders İçeriği Analog ve sayısal sinyal kavramları ler, çeşitleri, uygulama yerleri, direnç renk kodları Kondansatörler, çalışması, çeşitleri,

Detaylı

Malzemelerin elektriksel özellikleri

Malzemelerin elektriksel özellikleri Malzemelerin elektriksel özellikleri OHM yasası Elektriksel iletkenlik, ohm yasasından yola çıkılarak saptanabilir. V = IR Burada, V (gerilim farkı) : volt(v), I (elektrik akımı) : amper(a) ve R(telin

Detaylı

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr

2. HAFTA BLM223 DEVRE ANALİZİ. Yrd. Doç Dr. Can Bülent FİDAN. hdemirel@karabuk.edu.tr 2. HAFTA BLM223 Yrd. Doç Dr. Can Bülent FİDAN hdemirel@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 2. AKIM, GERİLİM E DİRENÇ 2.1. ATOM 2.2. AKIM 2.3. ELEKTRİK YÜKÜ

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET EBE-211, Ö.F.BAY 1 Temel Elektriksel Nicelikler Temel Nicelikler: Akım,Gerilim ve Güç Akım (I): Eletrik yükünün zamanla değişim oranıdır.

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI TEMEL DEVRE TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Şaban ULUS Şubat 2014 KAYSERİ

Detaylı

2.Sabit dirençte V= 50v iken I= 0,5 amper oluyorsa.v2= 100v iken akım kaç amper olur? A) 1A B) 0,5A C) 5A D) 0,1A

2.Sabit dirençte V= 50v iken I= 0,5 amper oluyorsa.v2= 100v iken akım kaç amper olur? A) 1A B) 0,5A C) 5A D) 0,1A TEMEL ELEKTRİK ELEKTRONİK 1.İletkenlerin almaçtan önce herhangi bir sebeple birleşmesiyle oluşan devreye ne denir? A) Açık devre B) Kısa devre C) Kapalı devre D) Elektrik devresi 2.Sabit dirençte V= 50v

Detaylı

Atomlar ve Moleküller

Atomlar ve Moleküller Atomlar ve Moleküller Madde, uzayda yer işgal eden ve kütlesi olan herşeydir. Element, kimyasal tepkimelerle başka bileşiklere parçalanamayan maddedir. -Doğada 92 tane element bulunmaktadır. Bileşik, belli

Detaylı

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0

ATOMİK YAPI. Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 ATOMİK YAPI Elektron Yükü=-1,60x10-19 C Proton Yükü=+1,60x10-19 C Nötron Yükü=0 Elektron Kütlesi 9,11x10-31 kg Proton Kütlesi Nötron Kütlesi 1,67x10-27 kg Bir kimyasal elementin atom numarası (Z) çekirdeğindeki

Detaylı

12. Ders Yarıiletkenlerin Elektronik Özellikleri

12. Ders Yarıiletkenlerin Elektronik Özellikleri 12. Ders Yarıiletkenlerin lektronik Özellikleri T > 0 o K c d v 1 Bu bölümü bitirdiğinizde, Yalıtkan, yarıiletken, iletken, Doğrudan (direk) ve dolaylı (indirek) bant aralığı, tkin kütle, devingenlik,

Detaylı

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla

ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla ATOM ve YAPISI Maddelerin gözle görülmeyen (bölünmeyen) en parçasına atom denir. Atom kendinden başka hiçbir fiziksel ya da kimyasal metotlarla kendinden farklı atomlara dönüşemezler. Atomda (+) yüklü

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

ELEKTRİK DEVRE TEMELLERİ

ELEKTRİK DEVRE TEMELLERİ ELEKTRİK DEVRE TEMELLERİ Dr. Cemile BARDAK Ders Gün ve Saatleri: Çarşamba (09:55-12.30) Ofis Gün ve Saatleri: Pazartesi / Çarşamba (13:00-14:00) 1 TEMEL KAVRAMLAR Bir atom, proton (+), elektron (-) ve

Detaylı

Elektrik Akımı, Direnç ve Ohm Yasası

Elektrik Akımı, Direnç ve Ohm Yasası 1. Akım Şiddeti Elektrik akımı, elektrik yüklerinin hareketi sonucu oluşur. Ancak her hareketli yük akım yaratmaz. Belirli bir bölge ya da yüzeyden net bir elektrik yük akışı olduğu durumda elektrik akımından

Detaylı

MADDENİN SINIFLANDIRILMASI

MADDENİN SINIFLANDIRILMASI MADDENİN SINIFLANDIRILMASI MADDE Saf madde Karışımlar Element Bileşik Homojen Karışımlar Heterojen Karışımlar ELEMENT Tek cins atomlardan oluşmuş saf maddeye element denir. ELEMENTLERİN ÖZELLİKLERİ Elementler

Detaylı

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI

DA DEVRE. Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI DA DEVRE Ege Üniversitesi Ege MYO Mekatronik Programı ANALIZI BÖLÜM 1 Temel Kavramlar Temel Konular Akım, Gerilim ve Yük Direnç Ohm Yasası, Güç ve Enerji Dirençsel Devreler Devre Çözümleme ve Kuramlar

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 2. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 2. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 2. HAFTA 1 İçindekiler Yarıiletken Devre Elemanlarının İncelenmesi Diyot Güç Diyotları Diyak 2 YARI İLETKEN DEVRE ELEMANLARININ İNCELENMESİ 1940

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 43 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

ELEKTRONİK LAB. I DİYOT KARAKTERİSTİĞİ

ELEKTRONİK LAB. I DİYOT KARAKTERİSTİĞİ KURALLAR: Deneye isminizin bulunduğu grupla beraber, ilgili saat ve günde geliniz. Deney grubu değişiklikleri için (başka bir dersle çakışması vb. durumlarda) deneyden sorumlu öğretim elemanı ile görüşebilirsiniz.

Detaylı

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta. Aysuhan OZANSOY FİZ102 FİZİK-II Ankara Üniversitesi Fen Fakültesi Fizik Bölümü 7. Hafta Aysuhan OZANSOY Bölüm 6: Akım, Direnç ve Devreler 1. Elektrik Akımı ve Akım Yoğunluğu 2. Direnç ve Ohm Kanunu 3. Özdirenç 4. Elektromotor

Detaylı

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK BÖLÜM 5 DİYOT ÇEŞİTLERİ 1) KRİSTAL DİYOT 2) ZENER DİYOT 3) TÜNEL DİYOT 4) IŞIK YAYAN DİYOT (LED) 5) FOTO DİYOT 6) AYARLANABİLİR KAPASİTELİ DİYOT (VARAKTÖR - VARİKAP) DİĞER DİYOTLAR 1) MİKRODALGA DİYOTLARI

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I

ELEKTRONİK DEVRE TASARIM LABORATUARI-I ELEKTRONİK DEVRE TASARIM LABORATUARI-I BİPOLAR JONKSİYON TRANSİSTOR (BJT) YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ YRD.DOÇ.DR. ÖZHAN ÖZKAN BJT: Bipolar Jonksiyon Transistor İki Kutuplu Eklem

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE

ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE ELEKTRONLARIN DİZİLİMİ, KİMYASAL ÖZELLİKLERİ VE ELEMENTLER ELEMENTLER METALLER AMETALLER SOYGAZLAR Hiçbir kimyasal ayırma yöntemi ile kendinden daha basit maddelere ayrıştırılamayan saf maddelere element

Detaylı

ALAN ETKİLİ TRANSİSTÖR

ALAN ETKİLİ TRANSİSTÖR ALAN ETKİLİ TRANİTÖR Y.oç.r.A.Faruk BAKAN FET (Alan Etkili Transistör) gerilim kontrollu ve üç uçlu bir elemandır. FET in uçları G (Kapı), (rain) ve (Kaynak) olarak tanımlanır. FET in yapısı ve sembolü

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 2 @ysevim61 https://www.facebook.com/groups/ktuemt/ 1 Akım, Gerilim, Direnç Anahtar Pil (Enerji kaynağı) V (Akımın yönü) R (Ampül) (e hareket yönü) Şekildeki devrede yük

Detaylı

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. Ön Hazırlık: Deneyde yapılacaklar kısmının giriş aşamasındaki 1. adımda yapılacakları; multisim, proteus gibi simülasyon programı ile uygulayınız. Simülasyonun ekran çıktısı ile birlikte yapılması gerekenleri

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller

Detaylı

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır. ATOM ve YAPISI Elementin özelliğini taşıyan en küçük parçasına denir. Atom Numarası Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü

Detaylı

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM

MADDENİN YAPISI VE ÖZELLİKLERİ ATOM MADDENİN YAPISI VE ÖZELLİKLERİ ATOM ATOMUN YAPISI Elementlerin tüm özelliğini gösteren en küçük parçasına atom denir. Atomu oluşturan parçacıklar farklı yüklere sa-hiptir. Atomda bulunan yükler; negatif

Detaylı

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün

Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün Bir iletken katı malzemenin en önemli elektriksel özelliklerinden birisi, elektrik akımını kolaylıkla iletmesidir. Ohm kanunu, akım I- veya yükün geçiş hızının, uygulanan voltaj V ile aşağıdaki şekilde

Detaylı

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur.

ELEKTROSTATİK. Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. ELEKTROSTATİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında bulunan elekton ve proton

Detaylı

1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi. DNY 1: DİYOT KARAKTRİSTİKLRİ 1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi. 1.2. Kullanılacak Aletler ve

Detaylı

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç

Akım ve Direnç. Bölüm 27. Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Bölüm 27 Akım ve Direnç Elektrik Akımı Direnç ve Ohm Kanunu Direnç ve Sıcaklık Elektrik Enerjisi ve Güç Öğr. Gör. Dr. Mehmet Tarakçı http://kisi.deu.edu.tr/mehmet.tarakci/ Elektrik Akımı Elektrik yüklerinin

Detaylı

DENEY 1 DİYOT KARAKTERİSTİKLERİ

DENEY 1 DİYOT KARAKTERİSTİKLERİ DENEY 1 DİYOT KARAKTERİSTİKLERİ 1.1. DENEYİN AMACI Bu deneyde diyotların akım-gerilim karakteristiği incelenecektir. Bir ölçü aleti ile (volt-ohm metre) diyodun ölçülmesi ve kontrol edilmesi (anot ve katot

Detaylı

1. HAFTA ELEKTRON TEORİSİ. Serbest Elektronlar

1. HAFTA ELEKTRON TEORİSİ. Serbest Elektronlar 1. HAFTA ELEKTRON TEORİSİ Serbest Elektronlar Atomların en dış yörüngelerine valans yörünge, buradaki elektronlara ise valans elektron adı verilir. Atomların en dış yörüngelerindeki elektronlar, çekirdek

Detaylı

4/26/2016. Bölüm 7: Elektriksel Özellikler. Malzemelerin Elektriksel Özellikleri. Elektron hareketliliği İletkenlik Enerji bant yapıları

4/26/2016. Bölüm 7: Elektriksel Özellikler. Malzemelerin Elektriksel Özellikleri. Elektron hareketliliği İletkenlik Enerji bant yapıları Bölüm 7: Elektriksel Özellikler CEVAP ARANACAK SORULAR... Elektriksel iletkenlik ve direnç nasıl tarif edilebilir? İletkenlerin, yarıiletkenlerin ve yalıtkanların ortaya çıkmasında hangi fiziksel süreçler

Detaylı

BİYOLOJİK MOLEKÜLLERDEKİ

BİYOLOJİK MOLEKÜLLERDEKİ BİYOLOJİK MOLEKÜLLERDEKİ KİMYASALBAĞLAR BAĞLAR KİMYASAL VE HÜCRESEL REAKSİYONLAR Yrd. Doç.Dr. Funda BULMUŞ Atomun Yapısı Maddenin en küçük yapı taşı olan atom elektron, proton ve nötrondan oluşmuştur.

Detaylı

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori: Deney 3: Diyotlar ve Diyot Uygulamaları Amaç: Diyot elemanını ve çeşitlerini tanımak Diyotun çalışma mantığını kavramak Diyot sağlamlık kontrolü İleri kutuplama, geri kutuplama ve gerilim düşümü. Araç

Detaylı

FZM 220. Malzeme Bilimine Giriş

FZM 220. Malzeme Bilimine Giriş FZM 220 Yapı Karakterizasyon Özellikler İşleme Performans Prof. Dr. İlker DİNÇER Fakültesi, Fizik Mühendisliği Bölümü 1 Atomsal Yapı ve Atomlararası Bağ1 Ders Hakkında FZM 220 Dersinin Amacı Bu dersin

Detaylı

Atom Y Atom ap Y ısı

Atom Y Atom ap Y ısı Giriş Yarıiletken Malzemeler ve Özellikleri Doç.. Dr. Ersan KABALCI 1 Atom Yapısı Maddenin en küçük parçası olan atom, merkezinde bir çekirdek ve etrafında dönen elektronlardan oluşur. Çekirdeği oluşturan

Detaylı

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com

Yrd. Doç. Dr. H. Hasan YOLCU. hasanyolcu.wordpress.com Yrd. Doç. Dr. H. Hasan YOLCU hasanyolcu.wordpress.com En az iki atomun belli bir düzenlemeyle kimyasal bağ oluşturmak suretiyle bir araya gelmesidir. Aynı atomda olabilir farklı atomlarda olabilir. H 2,

Detaylı

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR ANALOG LKTONİK Y.Doç.Dr.A.Faruk AKAN ANALOG LKTONİK İPOLA TANSİSTÖ 35 Yapısı ve Sembolü...35 Transistörün Çalışması...35 Aktif ölge...36 Doyum ölgesi...37 Kesim ölgesi...37 Ters Çalışma ölgesi...37 Ortak

Detaylı

BÖLÜM 3. Bobin bir yalıtkan makara (mandren veya karkas) üzerine belirli sayıdaki sarılmış tel grubudur.

BÖLÜM 3. Bobin bir yalıtkan makara (mandren veya karkas) üzerine belirli sayıdaki sarılmış tel grubudur. TEMEL ELEKTRONİK BÖLÜM 3 BOBİNLER SABİT BOBİNLER VE YAPILARI Bobin bir yalıtkan makara (mandren veya karkas) üzerine belirli sayıdaki sarılmış tel grubudur. Kullanım yerine göre, makara içerisi boş kalırsa

Detaylı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı

Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı Günümüzde bilinen 117 element olmasına rağmen (92 tanesi doğada bulunur) bu elementler farklı sayıda ve şekilde birleşerek ve etkileşerek farklı kimyasal özelliklere sahip milyonlarca yani madde yani bileşik

Detaylı

Yüksüz (nötr) bir atomdaki elektronların ( ) yük toplamı, protonların (+) yük toplamına eşittir.

Yüksüz (nötr) bir atomdaki elektronların ( ) yük toplamı, protonların (+) yük toplamına eşittir. ELEKTROSTATİK Atomda proton ve nötrondan oluşan bir çekirdek ve çekirdeğin çevresinde yörüngelerde hareket eden elektronlar bulunur. Elektrik yüklerinin kaynağı atomun yapısında bulunan elekton ve proton

Detaylı