Interpolation of Bilinear Operators Between Quasi-Banach Spaces

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Interpolation of Bilinear Operators Between Quasi-Banach Spaces"

Transkript

1 Positivity 10 (2006), c 2006 Birkhäuser Verlag Basel/Switzerland / , published online May 24, 2006 DOI /s x Positivity Interpolation of Bilinear Operators Between Quasi-Banach Spaces Loukas Grafakos 1 and Mieczys law Masty lo 2 Abstract. We study interpolation, generated by an abstract method of means, of bilinear operators between quasi-banach spaces. It is shown that under suitable conditions on the type of these spaces and the boundedness of the classical convolution operator between the corresponding quasi-banach sequence spaces, bilinear interpolation is possible. Applications to the classical real method spaces, Calderón-Lozanovsky spaces, and Lorentz-Zygmund spaces are presented. Mathematics Subject Classification (2000). 46B70; 46M35. Keywords. Interpolation, quasi-banach spaces, multilinear interpolation, bilinear operators, Calderón-Lozanovsky spaces, Lorentz-Zygmund spaces. 1. Introduction Motivated by applications in harmonic analysis, we are interested in interpolation of bilinear operators defined on products of quasi-banach spaces. The main aim of this paper is to prove interpolation theorems for bilinear operators on quasi- Banach spaces generated by certain interpolation methods. We study a problem for the abstract method of means as well as for the real interpolation method. Let us briefly outline the content of the paper. In Section 2 we establish notation and recall basic facts concerning quasi-banach spaces and interpolation. In Section 3 we introduce a notion of special type of convexity for bilinear operators between quasi-banach couples and we prove a bilinear interpolation theorem using the method of means, under the condition that the associated convolution operator is bounded on the parameter spaces involved in the construction of these methods. In view of a remarkable result of Kalton [13], the convexity parameters of the bilinear operators that take values in so called natural quasi-banach spaces, are nicely determined by the types of the domains of the quasi-banach spaces. We also 1 The author is supported by the National Science Foundation under grant DMS The author is supported by KBN Grant 1 P03A

2 410 L. Grafakos and M. Masty lo Positivity prove continuous inclusions between spaces generated by the method of means and the Calderón-Lozanovsky method applied to certain classes of couples of Banach lattices satisfying the upper or lower lattice estimates. We give applications in the context of weighted Orlicz spaces. In particular, we obtain that the method of means determined by the corresponding weighted quasi-banach spaces l p0 and l p1 and any couple of weighted quasi-banach lattices (L p0 (w 0 ),L p1 (w 1 )) coincide, up to equivalence of norms, with the Calderón-Lozanovsky space ϕ(l p0 (w 0 ),L p1 (w 1 )). In Section 4 we discuss applications of these results in the context of interpolation between quasi-banach spaces generated by the real method of interpolation as well as to Calderón-Lozanovsky spaces that include, in particular, Orlicz spaces. In Section 5 we discuss abstract K or J interpolation method of bilinear operators between quasi-banach spaces satisfying weaker convexity type conditions. These results are used for special weighted sequence spaces for which the classical convolution operator is bounded. As a consequence, bilinear interpolation theorems for Lorentz-Zygmund spaces are obtained. 2. Definitions and Notation A quasi-norm defined on a vector space X (over real or complex field K) isa map X R + such that (i) x > 0forx 0, (ii) αx = α x for α K, x X, (iii) x + y C( x + y ) for all x, y X, where C is a constant independent of x, y. Let 0 <p 1. We call a p-norm if we also have (i) x + y p x p + y p for all x, y X. A quasi-banach space X is said to be p-normable, 0<p 1, if there exists an equivalent p-norm on X and a constant C such that x x n C ( x 1 p + + x n p ) 1/p. for all x 1,..., x n X. An 1-normable space is simply called normable. While clearly any p-normable space is a quasi-normed space, a theorem of Aoki and Rolewicz (see [14]) asserts that any quasi-normed space X has an equivalent p-norm, where p satisfies C =2 1/p 1 with C is as in (iii), defined by x =inf ( x k p 1/p, X) k where the infimum is taken over all finite sequences {x k } X satisfying k x k =x. If is a quasi-norm (resp., p-norm) on X defining a complete metrizable topology, then X is called a quasi-banach space (resp., p-banach space). We shall use standard notation and notions from interpolation theory, as presented, e.g., in [2], [3]. Throughout this paper we will let (Ω,µ)=(Ω, Σ,µ)

3 Vol. 10 (2006) Interpolation of Bilinear Operators 411 be a complete σ-finite measure space and L 0 (µ) will denote, as usual, the space of equivalence classes of real valued measurable functions on Ω, equipped with the topology of convergence (in the measure µ) on sets of finite measure. By a quasi-banach lattice on Ω we mean a quasi-banach space X which is a subspace of L 0 (µ) such that there exists u X with u>0andif f g a.e., where g X and f L 0 (µ), then f X and f X g X. A quasi-banach lattice X is said to be maximal if its unit ball B X = {x; x 1} is a closed subset in L 0 (µ). In the special case when Ω = Z is the set of integers and µ is the counting measure then a quasi-banach lattice E on Ω is called a quasi-banach sequence space on Z, and in this case we denote by E aköthe dual space of E. If X is a quasi-banach lattice on Ω and w L 0 (µ) with w>0 a.e., we define the weighted quasi-banach lattice X(w) by x X(w) = xw X. Given 0 <p< and a quasi-banach lattice X let X p denote the p-convexification of X. Here X p consists of all x such that x p X and is equipped with the quasi-norm x = x p 1/p. Let 0 <t< and A =(A 0,A 1 ) be a couple of quasi-banach spaces. We equip A 0 + A 1 (resp., A 0 A 1 ) with the quasi-norm K(1,a)(resp.J(1,a)) where K(t, a) = K(t, a; A) andj(t, a) = J(t, a; A) are the functionals of J. Peetre, defined by and K(t, a; A) =inf{ a 0 A0 + t a 1 A1 ; a = a 0 + a 1 } J(t, a; A) = max{ a A0,t a A1 }. It is easy to see that if A j is p j -normable (j =0, 1) then both A 0 +A 1 and A 0 A 1 are p-normable with p = min{p 0,p 1 }. If X =(X 0,X 1 )andy =(Y 0,Y 1 ) are couples of quasi-banach spaces, we let L(X,Y ) be the quasi-banach space of all linear operators T : X Y (which means, as usual, that T : X 0 + X 1 Y 0 + Y 1 is linear and the restrictions T Xj are bounded operators from X j to Y j for j =0, 1). The space is equipped with the quasi-norm T X Y := max { T X0 Y 0, T X1 Y 1 }. We will deal with vector-valued quasi-banach sequence spaces. Let E be a quasi-banach sequence lattice on Z and let X be a quasi-banach space. The vector sequence x = {x n } n Z in X is called strongly E-summable if the corresponding scalar sequence { x n X } n Z is in E. We denote by E(X) thesetofall such sequences in X. This is a quasi-banach space under pointwise operations, and a natural quasi-norm on it is given by x E(X) := { x n X } E. It is easy to check that if E is p-banach and X is q-banach space then E(X) isr-banach with r = min{p, q}. Let X be a quasi-banach couple. A couple E =(E 0,E 1 ) of quasi-banach sequence lattices on Z is said to be a parameter of the method of means on X if E 0 E 1 l p for some 0 <p 1 such that the quasi-banach space X 0 + X 1 is p-normable. Throughout the paper, for such E =(E 0,E 1 )andx, the space

4 412 L. Grafakos and M. Masty lo Positivity denoted by J E (X) =J E0,E 1 (X) =X E0,E 1 is built by the method of means consisting of all x X 0 + X 1 which can be represented in the form x = u n (convergence in X 0 + X 1 ) n Z with {u n } E 0 (X 0 ) E 1 (X 1 ). We note that J E (X) is a quasi-banach space under the quasi-norm x := inf max { {u n } E0(X 0), {u n } E1(X 1)}, where the infimum is taken over all the above representations of x. In fact, the continuous inclusion E 0 E 1 l p implies that there exists a constant C>0such that u n p X 0+X 1 C {u n } E0(X 0) E 1(X 1) n Z for any {u n } E 0 (X 0 ) E 1 (X 1 ). Since X 0 +X 1 is p-normable, we conclude that the linear map J defined by J ({x n }):= n Z x n is continuous from E 0 (X 0 ) E 1 (X 1 ) into X 0 + X 1. Thus the quotient space ( E0 (X 0 ) E 1 (X 1 ) )/ ker(j ) is a quasi-banach space. Since it is isometrically isomorphic to J E (X), we conclude that J E (X) is also a quasi-banach space. 3. Main Results In this section we prove interpolation theorems for bilinear operators between spaces generated by the method of means. An operator T defined on a product of two quasi-banach spaces X Y and taking values in another quasi-banach space Z is called bilinear if it is linear in each of the two variables, and bounded, i.e., there is a constant C 0 such that for all x X and y Y we have T (x, y) Z C 0 x X y Y. The smallest C 0 so that the above inequality holds for all x X and y Y is called the norm of T and will be denoted by T X Y Z. Inspired by a remarkable result of Kalton [13] we introduce the following terminology: we say that a bilinear operator T : X Y Z between quasi-banach spaces is said to be s-bilinear convex (0 <s 1) if there exists a constant C>0 such that for all finite sequences {x j } n j=1 X and {y j} n j=1 Y, we have n T (x j,y j ) n Z C T X Y Z x j s X y j s Y j=1 In the case when s = 1, we say, in short, that T is bilinear convex. j=1 1/s.

5 Vol. 10 (2006) Interpolation of Bilinear Operators 413 The triple (X, Y, Z) of quasi-banach spaces is said to be s-bilinear (resp., bilinear) admissible whenever there exists C = C(X, Y, Z) > 0 such that any bilinear operator T : X Y Z is s-bilinear convex (resp., bilinear convex). In view of the result of Kalton ([13], p. 311), it follows that if X is a quasi- Banach space of type p, Y is a quasi-banach of type q, andz is a natural quasi- Banach space, then the triple (X, Y, Z) iss-bilinear admissible where 1/s = 1/p + 1/q. Let us recall that a quasi-banach space X is of type p (0 <p 2) if there exists a constant C>0sothat [ ( n 1/p ( n ) 1/p E ε k x k p)] C x k p, k=1 where {ε k } is any sequence of independent Bernoulli random variables with k=1 P (ε k =1)=P (ε k = 1) = 1/2. It is well-known that for 0 <p<1, X is of type p if (and only if) X is p-normable; if p>1andx is of type p, then X is a Banach space (see [14], p. 99 and p. 107). A quasi-banach space is called natural [15] if it is isomorphic to a subspace of an L-convex quasi-banach lattice. A quasi-banach lattice X is said to be L-convex if there exists 0 <ε<1sothatifu X, with u =1and0 x k u (1 k n) satisfy (x x n )/n (1 δ)u, then max 1 k n x k ε. The following lemma will be useful in the proof of the main result of this section. Lemma 3.1. Let X be a p-normable quasi-banach space and let {x k,m } be an infinite matrix in X with k, m Z. Assume that the series k Z x k,m k is unconditionally convergent for every m Z and m Z k Z x p k,m k <. Then the X double limit k M j N x k,j exists in X and lim M,N lim M,N k M j N x k,j = m Z ( ) x k,m k. Proof. Let u m := k Z x k,m k for m Z. Fixε>0. Since m Z u m p X < and the series k Z x k,m k converges unconditionally, there exists m 0 N such that and ( u m m m 0 m Z k Z m >m 0 k F m x k,m k k Z x k,m k ) p X <ε/2 p <ε/4, X

6 414 L. Grafakos and M. Masty lo Positivity where F m is any finite subset of Z. Furthermore, there exists k 0 N such that for any k m k 0 with m m 0,wehave X <ε/4. m m 0 k >k m x k,m k Let M and N be positive integers with M>k 0 and N>m 0 + k 0. We define two subsets A and B of Z Z by setting A = { (k, j); k M, j N } and B = { (k, j); k k 0, j + k m 0 }. For m Z we let F m = { k Z ; (k, m k) A} and k m = max { } k Z ; k F m. Since B A, we conclude that k m k 0, whenever m m 0. This implies that the two last inequalities hold for F m and k m just defined. It is easy to verify that x k,j = u m x k,m k k M j N m m 0 m m 0 k >k m + x k,m k. m >m 0 k F m Combining this identity with the above three norm inequalities, we deduce ( ) X x k,m k <ε. x k,j k M j N m Z k Z for M>k 0 and N>m 0 + k 0. This proves the assertion. Let X =(X 0,X 1 ), Y =(Y 0,Y 1 )andz =(Z 0,Z 1 ) be quasi-banach couples. We will say that T =(T 0,T 1 ) is a bilinear operator from X Y into Z, and write T B(X,Y ; Z) ift j : X j Y j Z j is a bounded bilinear operator (j =0, 1) and T 0 (x, y) =T 1 (x, y) for any x X 0 X 1 and y Y 0 Y 1. If additionally X, Y and Z are intermediate quasi-banach spaces with respect to X, Y and Z, respectively, then we say that T B(X,Y ; Z) extends to a bilinear operator from X Y into Z provided that T 0 has a bilinear extension from X Y into Z. Note that any (T 0,T 1 ) B(X,Y ; Z) defines a bilinear operator T 0 (resp., T 1 ) which will be called in the sequel a natural bilinear extension of (T 0,T 1 )from (X 0 + X 1 ) (Y 0 Y 1 )intoz 0 + Z 1 (resp., (X 0 X 1 ) (Y 0 + Y 1 ) Z 0 + Z 1 )by T 0 (x, y) :=T 0 (x 0,y)+T 1 (x 1,y) for any x = x 0 + x 1 and y Y 0 Y 1 (resp., T 1 (x, y) :=T 0 (x, y 0 )+T 1 (x, y 1 )for any x X 0 X 1 and y = y 0 + y 1 Y 0 + Y 1 with y 0 Y 0 and y 1 Y 1.Itiseasy to see that T 0 (resp., T 1 ) does not depend on the representations of x X 0 + X 1 (resp., y Y 0 + Y 1 ).

7 Vol. 10 (2006) Interpolation of Bilinear Operators 415 An operator T =(T 0,T 1 ) B(X,Y ; Z) is said to be (s 0,s 1 )-bilinear convex (0 <s 0,s 1 1) if there exists a constant C>0such that for any finite sequences {x j } X 0 X 1 and {y j } Y 0 Y 1 the following holds for k =0, 1 j T k (x j,y j ) Zk C T k Xk Y k Z k j x j s k Xk y j s k Yk 1/sk. In the case when s 0 = s 1 = s (resp., s 0 = s 1 = 1), we say, in short, that T is s-bilinear convex (resp., bilinear convex). Throughout the paper we will consider the convolution operator τ of sequences defined for x = {ξ k } and y = {η k } by τ(x, y) n = ξ k η n k, n Z. k Z We now state the main theorem of this section: Theorem 3.1. Let X =(X 0,X 1 ), Y =(Y 0,Y 1 ),andz =(Z 0,Z 1 ) be quasi-banach spaces and let T = (T 0,T 1 ) B(X,Y ; Z) be (s 0,s 1 )-bilinear convex. Assume that E j, F j and G j are quasi-banach sequence spaces on Z such that (E s0 0,Es1 1 ), (F s0 0,Fs1 1 ),and(gs0 0,Gs1 1 ) are parameters of the method of means on X, Y and Z, respectively. If the convolution operator τ is bounded from E j F j to G j (j =0, 1), then T extends to a bilinear operator T from X s E 0 0,Es 1 Y s 1 F 0 0,F s 1 1 with the norm estimate T max j=0,1 for some C j > 0(j =0, 1). [ Cj τ Ej F j G j T j Xj Y j Z j ] into Z s G 0 0,G s 1 1 Proof. Let x X := X s E 0 0,Es 1 and y Y := Y s 1 F 0 0,F s.forε>0pick{u 1 k} 1 E s0 0 (X 0) E s1 1 (X 1)and{v k } F s0 0 (Y 0) F s1 1 (Y 1) such that x = u k (convergence in X 0 + X 1 ), y = v k (convergence in Y 0 + Y 1 ) k Z k Z and {u k } s E j j (Xj) (1 + ε) x X, {v k } s F j j (Yj) (1 + ε) y Y. Since the convolution operator τ is bounded from E j F j G j and T =(T 0,T 1 ) is (s 0,s 1 )-bilinear convex, we immediately deduce that if S := T 0, then the series S(u k,v m k ) k Z converges unconditionally in both spaces Z 0 and Z 1 for all m Z, and thus also in Z 0 + Z 1. Furthermore if we set z m := k Z S(u k,v m k )form Z, we obtain for some C j > 0

8 416 L. Grafakos and M. Masty lo Positivity { z m Zj } s Gj j C j T j τ({ uk Xj Y j Z j sj X 0 }, { v k sj Y j }) 1/sj G j C j T j Xj Y j Z j τ Ej F j G j {u k } E s j (Xj) {v k } F s j (Yj) (1 + ε) 2 C j τ Ej F j G j T j Xj Y j Z j x X y Y. These calculations show that the sequence {z m } m Z lies in G s0 0 (Z 0) G s1 1 (Z 1)and {z m } s G 0 0 (Z 0) G s 1 1 (Z 1) (1+ε)2 max [C j T j Xj Y j Z j τ Ej F j G j ] x X y Y. j=0,1 Our hypothesis that (G s0 0,Gs1 1 ) is a parameter of the method of means on (Z 0,Z 1 ) implies that for some 0 <p 1 z m p Z 0+Z 1 <. m Z Applying Lemma 3.1, we deduce that the double limit T (x, y) := S(u k,v j ) lim m,n k m j n exists in Z 0 + Z 1 and T (x, y) = z m (convergence in Z 0 + Z 1 ). m Z Combining the above remarks yield T (x, y) Z := Z G s 0 0,G s 1 1 with T (x, y) Z C(1 + ε) 2 x X y Y, where C = max j=0,1 [C j T j Xj Y j Z j ] τ Ej F j G j. Since ε is arbitrary, to conclude it is enough to show that T defines a required bilinear extension of T. To see this recall that the natural extensions T 0 :(X 0 + X 1 ) (Y 0 Y 0 ) Z 0 + Z 1 and T 1 :(X 0 X 1 ) (Y 0 + Y 0 ) Z 0 + Z 1 are bilinear operators. This implies that the following limits exist in Z 0 + Z 1 for all k, j Z S(u k,v j )=T 0 (x, v j ), and lim m lim n k m S(u k,v j )=T 1 (u k,y). j n Combining this with the fact that double limit z := lim m,n k m S(u k,v j )existsinz 0 + Z 1, we easily obtain z = lim lim S(u k,v j ) = lim T 0 x, v j n m n j n k m j n j n

9 Vol. 10 (2006) Interpolation of Bilinear Operators 417 and z = lim m k m lim n S(u k,v j ) = lim j n This shows that the double limit T (x, y) := lim m,n k m j n m T 1 S(u k,v j ) u k,y. k m is independent of the representations of x = k Z u k and y = k Z v k. Therefore, we conclude that T is a bilinear operator from X Y into Z. Since T is an extension of T, the proof is complete. From the point of view of applications the following corollary is of independent interest. Corollary 3.1. Assume X =(X 0,X 1 ), Y =(Y 0,Y 1 ) are couples of Banach spaces of type 2 and Z =(Z 0,Z 1 ) is a couple of natural quasi-banach spaces. Let (E 0,E 1 ), (F 0,F 1 ) and (G 0,G 1 ) be parameters of the method of means on X, Y,andZ, respectively. If the convolution operator τ is bounded from E j F j to G j,for j =0, 1, then any T =(T 0,T 1 ) B(X,Y ; Z) extends to a bilinear operator T from X E0,E 1 Y F0,F 1 into Z G0,G 1 which satisfies the norm estimate T max j=0,1 for some C j = C(X j,y j,z j ) > 0(j =0, 1). [ Cj τ Ej F j G j T j Xj Y j Z j ] Proof. Using Kalton s [13] result, we conclude that both triples (X 0,Y 0,Z 0 )and (X 1,Y 1,Z 1 ) are bilinear admissible, thus Theorem 3.1 applies. We conclude this section by giving applications to methods of means generated by weighted quasi-banach sequence spaces determined by quasi-concave functions. Recall that a positive function ρ on (0, ) is said to be quasi-concave if ρ is non-decreasing and the function t ρ(t)/t is non-increasing. A quasi-concave function ρ is called a quasi-power if s ρ (t) =o(max{1,t}) ast 0andt, where s ρ (t) :=sup u>0 ( ρ(tu)/ρ(u) ) for t>0. Lemma 3.2. Let ρ be a quasi-power function and let Φ 0, Φ 1 be quasi-banach sequence spaces on Z such that Φ j l (j =0, 1). Then the following statements are true for E 0 =Φ 0 (1/ρ(q n )) and E 1 =Φ 1 (q n /ρ(q n )) and any q>1: (i) E 0 E 1 l r for any r>0. (ii) X E0,E 1 is a quasi-banach space for any quasi-banach couple X. (iii) If ρ(t) =t θ, 0 <θ<1 and Φ j = l pj, 0 <p j, then for any q>1 and any quasi-banach space X X E0,E 1 = X θ,p, where 1/p =(1 θ)/p 0 + θ/p 1.

10 418 L. Grafakos and M. Masty lo Positivity Proof. (i). Since ρ is a quasi-power function, it follows (see, e.g., [17], p ) ( ( { s} min 1, ρ(s)) r ds ) 1/r ρ(t) 0 t s for any r>0. In particular, this implies that for any q>1 ( ( C(r) := min{1,q n }ρ(q n ) ) ) 1/r r <. n Z Thus if Φ j l for j =0, 1, it follows that E 0 E 1 l (1/ρ(q n )) l (q n /ρ(q n )) = l (max{1/ρ(q n ),q n /ρ(q n )}). Consequently there exists a constant K>0such that for any {ξ n } E0 E 1 1, we have ξ n K min{ρ(q n ),ρ(q n )/q n } for all n Z. Thus {ξ n } lr C(r)K, i.e., E 0 E 1 l r. Clearly that (ii) follows by (i) and the remarks in Section 2. (iii). It is shown in [27] that if 1/p =(1 θ)/p 0 + θ/p 1, then the formula X E0,E 1 = X θ,p, holds with q = e. It is easy to see that the proof works for any q>1. Theorem 3.2. Assume that X =(X 0,X 1 ), Y =(Y 0,Y 1 ) and Z =(Z 0,Z 1 ) are quasi-banach spaces and T =(T 0,T 1 ) B(X,Y ; Z) is (s 0,s 1 )-bilinear convex. If p j,q j,r j [1, ) and 1/r j =1/p j +1/q j 1 for j =0, 1 and 1/p =(1 θ)/(s 0 p 0 )+ θ/(s 1 p 1 ), 1/q =(1 θ)/(s 0 q 0 )+θ/(s 1 q 1 ), 1/r =(1 θ)/(s 0 r 0 )+θ/(s 1 r 1 ) and 0 <θ<1, then T extends to a bilinear operator T from X θ,p Y θ,q into Z θ,r which satisfies the norm estimate T max C j T j Xj Y j Z j, j=0,1 for some constant C j > 0(j =0, 1). Proof. The hypothesis on the indices imply by Young s theorem that the convolution operator is bounded from l pj l qj into l rj, and thus also from l pj (a jθ ) l qj (a jθ )intol rj (a jθ ) for any a>0, j =0, 1. Applying Theorem 3.1 and Lemma 3.2, the required conclusion follows. We note that the triple (L p,l q,z)iss-bilinear admissible for any natural quasi-banach space Z, when 1/s =1/u +1/v, with (u, v) =(p, q) whenever 0 <p,q 2, (u, v) =(2, 2) whenever 2 p, q <, and (u, v) =(p, 2) whenever 0 <p 2 q<. Thus the obtained results may be applied to many bilinear operators such as bilinear multipliers. Recall that a bounded measurable function σ on R n R n gives rise to a bilinear operator W σ defined by W σ (f,g) = σ(ξ,η) f(ξ) ĝ(η)e 2πi x,ξ+η dξdη R n R n

11 Vol. 10 (2006) Interpolation of Bilinear Operators 419 where f,g are Schwartz functions and, denotes the inner product in R n. In this case σ is called the symbol of W σ. The study of such bilinear multiplier operators was initiated by Coifman and Meyer. A theorem of them [6] says that if 1 <p,q<, 1/r =1/p +1/q and the function σ on R n R n satisfies ξ α η β σ(ξ,η) C α,β ( ξ + η ) α β, for sufficiently large multi-indices α and β, then W σ extends to a bilinear operator from L p (R n ) L q (R n )intol r, (R n ) whenever r 1. Here as usual L r, denotes the space weak L r. This result was later extended to the range 1 >r 1/2 by Grafakos and Torres [8] and Kenig and Stein [16]. Multipliers that satisfy the Marcinkiewicz condition were studied by Grafakos and Kalton [9]. The first significant boundedness results concerning non-smooth symbols were proved by Lacey and Thiele [18], [19] who established that W σ, with σ(ξ,η) = sign(ξ+αη), α R\{0, 1} has a bounded extension from L p (R n ) L q (R n )tol r (R n )) when r>2/3. Extensions of this result were subsequently obtained by Gilbert and Nahmod [7]. Bilinear operators can also be defined on quasi-banach spaces, such as the Hardy spaces H p ; see for instance [10] for the action of bilinear Calderón-Zygmund operators on real Hardy spaces. We discuss here only a general application. Theorem 3.3. Let p j,q j,r j [1, ) and 1/r j =1/p j +1/q j 1 for j =0, 1 and let 1/p =(1 θ)/p 0 + θ/(2p 1 ), 1/q =(1 θ)/q 0 + θ/(2q 1 ), 1/r =(1 θ)/r 0 + θ/(2r 1 ) and 0 <θ<1. IfX =(X 0,X 1 ), Y =(Y 0,Y 1 ) are Banach spaces such that both X 0 and Y 0 are of type 2 and Z =(Z 0,Z 1 ) is a couple of natural quasi-banach spaces, then any T B(X,Y ; Z) extends to a bilinear operator T from X θ,p Y θ,q into Z θ,r which satisfies the norm estimate T C max T j Xj Y j Z j j=0,1 for some constant C>0. Proof. Using the aforementioned result of Kalton s, we conclude that the triple (X 0,Y 0,Z 0 ) is admissible and (X 1,Y 1,Z 1 )is1/2-admissible, thus Theorem 3.1 applies. Using the well-known results on interpolation by the real method between L p spaces (see, e.g., [2], Theorem 5.3.1) and the facts that any L p -space with 2 p< is of type 2 and any L q, with 0 <q< is L-convex, we obtain the following corollary for Lorentz spaces: Corollary 3.2. Let p j,q j,r j [1, ) and 1/r j =1/p j +1/q j 1 for j =0, 1 and also let 1/p =(1 θ)/p 0 + θ/p 1, 1/q =(1 θ)/q 0 + θ/q 1, 1/r =(1 θ)/r 0 + θ/r 1 and 0 <θ<1. If2 u j,v j < (j =0, 1) and 0 <t 0,t 1, then any bilinear operator T :(L u0,l u1 ) (L v0,l v1 ) (L t0,,l t1, ) has a bounded extension from L u,p L v,q into L t,r,where1/u =(1 θ)/u 0 + θ/u 1, 1/v =(1 θ)/v 0 + θ/v 1 and 1/t =(1 θ)/t 0 + θ/t 1.

12 420 L. Grafakos and M. Masty lo Positivity Corollary 3.2 yields, in particular, bounds for the bilinear Hilbert transforms and bilinear Calderón-Zygmund operators from products of Lorentz spaces into another Lorentz space. 4. Applications to Calderón-Lozanovsky Spaces In this section we prove a bilinear interpolation theorem for Calderón-Lozanovsky spaces. We show that under certain geometric conditions continuous inclusions hold between the method of means spaces and the Calderón-Lozanovsky spaces. In the case of quasi-banach couples of weighted L p -spaces, we obtain equalities of these spaces. Certain results in this direction for Banach spaces were shown in [24]. Following these ideas we extend some of these results for quasi-banach lattices (see, Theorem 4.1). Throughout this paper we denote by P (resp., U) the set of all functions ϕ : R + R + R + that are positive (resp., concave), non-decreasing in each variable, and homogeneous of degree one (that is, ϕ(λs, λt) = λϕ(s, t) for all λ, s, t 0). Let ϕ U and X =(X 0,X 1 ) be a couple of quasi-banach spaces on a measure space (Ω,µ). Following Calderón [4] and Lozanovsky [21], we define the space ϕ(x) =ϕ(x 0,X 1 ) of all x L 0 (µ) such that x = ϕ( x 0, x 1 ) for some x j X j, j =0, 1. We note that ϕ(x) is a quasi-banach (resp., Banach whenever X is a Banach couple) lattice equipped with the quasi-norm (resp., norm) x =inf { max{ x 0 X0, x 1 X1 }; x = ϕ( x 0, x 1 ) x j X j,j=0, 1 }. In particular, if we take ϕ(s, t) =s 1 θ t θ,0<θ<1, we obtain in this way the spaces X0 1 θ X1 θ introduced by Calderón [4]. The properties of the Banach lattice ϕ(x) have been studied in Lozanovsky (see [21] and references given therein). Following Kalton [13], a quasi-banach lattice X is said to be p-convex, 0 < p<, respectively q-concave, 0 <q<, if there exists a constant C>0such that ( ( n n ) 1/p x k p) 1/p C x k p respectively, k=1 ( n k=1 k=1 ) 1/q x k q C ( n k=1 x k q ) 1/q for every choice of elements x 1,..., x n X. A quasi-banach lattice X is said to be satisfy an upper p-estimate,0 < p <, respectively alowerq-estimate, 0 <q<, if there exists a constant C>0 such that for any choice of elements x 1,...,x n X.

13 Vol. 10 (2006) Interpolation of Bilinear Operators 421 respectively sup x k ( n ) 1/p C x k p, 1 k n k=1 ( n ) 1/q x k q C n x k. k=1 It is clear that if X is maximal, then the notion of an upper p-estimation is equivalent to the condition that sup x k ( ) 1/p C x k p k 1 k=1 holds for all disjointly supported infinite sequences. We note that p-convexity implies p-normability and this in turn yields an upper p-estimate. For p = 1, 1-convexity is equivalent to normability (as a Banach lattice). In the sequel, a function ϕ Pis said to be a quasi-power provided that the function t ϕ(1,t) is a quasi-power. It follows by Lemma 3.2 that if ϕ is a quasi-power, then for any 0 <p 0,p 1 the couple (E 0,E 1 )=(l p0 (1/ϕ(1, 2 n )), l p1 (2 n /ϕ(1, 2 n ))) is a parameter of the method of means on any couple (X 0,X 1 ) of quasi-banach spaces. The space (X 0,X 1 ) E0,E 1 is denoted by ϕ(x 0,X 1 ) p0,p 1. If X is an intermediate quasi-banach space with respect to a quasi-banach couple X =(X 0,X 1 ), we define its Gagliardo completion X c to be the space of all limits in X 0 + X 1 of sequences {x n } that are bounded in X, equipped with the quasi-norm x X c = inf sup x n X, {x n} n 1 where {x n } X has the same meaning as above. It is easy to check that if X is a maximal quasi-banach lattice on a measure space, then its Gagliardo completion X c equals to X. We have the following result: Theorem 4.1. Assume that (X 0,X 1 ) is a couple of quasi-banach lattices on a measure space (Ω,µ). Then the following continuous inclusions hold for any quasipower function ϕ U: (i) If X j satisfy an upper p j -estimate (j =0, 1), then k=1 ϕ(x 0,X 1 ) p0,p 1 ϕ(x 0,X 1 ) c. (ii) If X j is maximal and satisfy an upper p j -estimate (j =0, 1), then ϕ(x 0,X 1 ) p0,p 1 ϕ(x 0,X 1 ).

14 422 L. Grafakos and M. Masty lo Positivity (iii) If X j satisfy a lower q j -estimate (j =0, 1), then ϕ(x 0,X 1 ) ϕ(x 0,X 1 ) q0,q 1. Proof. (i) Let x ϕ(x 0,X 1 ) p0,p 1 with x < 1. Then m x = u k (convergence in X 0 + X 1 ) lim m,n k= n with {u n /ϕ(1, 2 n )} lp0 (X 0) 1and {2 n u n /ϕ(1, 2 n )} lp1 (X 1) 1. Since ϕ is a quasi-power, the series n Z u n is r-absolutely convergent in X 0 + X 1 for some 0 <r 1. Thus, in particular, { u n (ω) } l 1 for almost all ω Ω. Since X j satisfy an upper p j -estimate (j =0, 1), there are positive constants C 0 and C 1 such that for and x 0 n := sup k n x 1 n := sup k n u k ϕ(1, 2 k ) X 0 2 k u k ϕ(1, 2 k ) X 1 and we have x 0 n X0 C 0 and x 1 n X1 C 1 for all n N. We apply Carlson s inequality (see [12], Corollary 3.1) which states that for any quasi-power function ϕ U there exists a constant C>0such that for any finite positive sequence {a n } the following inequality holds ( a k Cϕ sup k k a k ϕ(1, 2 k ), sup k 2 k a k ϕ(1, 2 k ) Combining this inequality with the above estimates yields n u k Cϕ(x 0 n,x 1 n), k= n i.e., n k= n u k ϕ(x 0,X 1 ) with n k= n u k C maxj=0,1 C j for all n N. Since lim n u k x n X0+X =0 1 k= n the proof of (i) is complete. (ii) The result follows by a minor modification of the proof of (i). (iii) Let 0 x ϕ(x) and x ϕ(x) < 1. Then x = ϕ(x 0,x 1 ) for some 0 x j X j such that x j Xj < 1, j =0, 1. Since ϕ is a quasi-power function, it follows that the support of x is contained in the intersection of the supports of x 0 and x 1. Hence, without loss of generality, we may suppose that x, x 0,x 1 are not equal to zero on the domain Ω. ).

15 Vol. 10 (2006) Interpolation of Bilinear Operators 423 Define for any k Z, A k = { ω Ω; 2 k x 1 (ω)/x 0 (ω) < 2 k+1} and y k = xχ Ak,u k = x 0 χ Ak, v k = x 1 χ Ak. Clearly y k X 0 X 1. Is is easily seen that for any k Z, wehave y k 2ϕ(1, 2 k ) u k and y k ϕ(1, 2k ) 2 k v k. This implies that for any positive integer n the following estimates hold 0 y k ϕ(1, 2 n ) y k ϕ(1, 2 k ) 2ϕ(1, 2 n ) x 0, k n k n 0 y k ϕ(1, 2n ) 2 n k n k n Combining these estimates, we obtain N x y k C X0+X 1 k= M 2 k y k ϕ(1, 2 k ) ϕ(2 n, 1) x 1. ( M 1 k= X0 y k + k=n+1 y k X1 ) 2Cϕ(1, 2 M 1 )+2Cϕ(2 N 1, 1) for any positive integers M and N. Since ϕ is quasi-power, the right hand of the above inequality approaches 0 whenever M,N This implies that the series k Z y n converges to x in X 0 + X 1. Furthermore, by the fact that {A n } is a sequence of pairwise disjoint measurable subsets whose union is equal to Ω, we have y k ϕ(1, 2 k ) 2u k 2x 0 k k and 2 k y k ϕ(1, 2 k ) v k x 1. k k Now assume that X j satisfy a lower q j -estimate (j =0, 1). Combining the above inequalities yields { xk /ϕ(1, 2 k ) } l q0 (X 0 )and { 2 k x k /ϕ(1, 2 k ) } l q1 (X 1 ). Consequently x ϕ(x 0,X 1 ) q0,q 1. Since any L p -space is maximal and satisfies both a lower p-estimate and an upper p-estimate for any 0 <p<, the following corollary is an immediate consequence of Theorem 4.1.

16 424 L. Grafakos and M. Masty lo Positivity Corollary 4.1. If ϕ U is a quasi-power function, then for any 0 <p 0,p 1 < and weights w 0 and w 1 ϕ(l p0 (w 0 ),L p1 (w 1 )) p0,p 1 = ϕ(l p0 (w 0 ),L p1 (w 1 )). It is well known (see, e.g., [26]) that for any ϕ U and any couple (L p0 (w 0 ), L p1 (w 1 )) on (Ω,µ) with 0 < p 0 < p 1, the Calderón-Lozanovsky space ϕ(l p0 (w 0 ),L p1 (w 1 )) coincides up to equivalence of norms with the generalized Orlicz space of all f L 0 (µ) such that M (( w 1/p1 1 w 1/p0 0 ) q f /λ ) (w 0 /w 1 ) q dµ Ω for some λ>0. Here 1/q =1/p 0 1/p 1 and M is an Orlicz function such that M 1 (t) ϕ(t 1/p0,t 1/p1 )fort>0. We conclude this section by showing a particular application of Theorems 4.1 and 3.1 to bilinear operators on Orlicz spaces. For others results we refer to [23]. Theorem 4.2. Let ϕ 0,ϕ 1,ϕ U be quasi-power functions such that ϕ(1,st) Cϕ 0 (1,s) ϕ 1 (1,t) for some C > 0 and all s, t > 0. If 1 p j,q j <, 1 r j (j = 0, 1) are such that 1/r j = 1/p j +1/q j 1, then any operator T : (L p0 (u 0 ),L p1 (u 1 )) (L q0 (v 0 ),L q1 (v 1 )) (L r0 (w 0 ),L r1 (w 1 )) extends to a bounded bilinear operator from ϕ 0 (L p0 (u 0 ),L p1 (u 1 )) ϕ 1 (L q0 (v 0 ),L q1 (v 1 )) into ϕ(l r0 (w 1 ),L r1 (w 1 )). Proof. It is easy to see that if the convolution operator τ is bounded from E F into G, then it is bounded from E(u) F (v) intog(w) whenever there exists a constant C>0such that the sequences u = {u k }, v = {v k } and w = {w k } satisfy the condition w n Cu n k v k for some C>0and all k, n Z. Our hypothesis implies that the convolution operator is bounded from l pj l qj into l rj (j =0, 1), and thus Theorem 3.1 and Corollary 4.1 apply. 5. Bilinear Interpolation Between J and K-Method Spaces In this section we show that bilinear interpolation is possible under weaker assumptions on quasi-banach couples. We recall that if X =(X 0,X 1 ) is a couple of quasi- Banach spaces and E is a parameter of the K-method (i.e., E is a quasi-banach sequence space on Z such that {min(1, 2 n )} E), then the K-method space is a quasi-banach space K E (X) (denoted also by X E ) consists of all x X 0 + X 1 such that {K(2 n,x; X)} E. The space is equipped with the quasi-norm x := {K(2 n,x; X)} E. In what follows the method of means J E (X) (on a quasi-banach couple X) generated by a couple E =(E,E(2 n )) is called J-method space (on X) andis denoted by J E (X) ande is called a parameter of the J-method on X (resp., a parameter of J-method if it is a parameter of J-method on any quasi-banach couple X). For the study of abstract J and K Banach method spaces we refer to [5] and [3].

17 Vol. 10 (2006) Interpolation of Bilinear Operators 425 In the spirit of the previous terminology we introduce the following: Let X =(X 0,X 1 ), Y =(Y 0,Y 1 ), and (Z 0,Z 1 ) be couples of quasi-banach spaces. We say that a bilinear operator T =(T 0,T 1 ):X Y Z is right (resp., left) s-convex (0 <s 1) if there exists a constant C>0 such that, for any x X 0 X 1 and any finite sequence {y j } Y 0 Y 1 (resp., any y Y 0 Y 1 and any finite sequence {x j } n j=1 X 0 X 1 )wehave ( resp., n T 0 (x, y j ) ( n Z0 C T 0 X0 Y 0 Z 0 x X0 y j s ) 1/s Y 0 j=1 j=1 n j=1 T 1 (x j,y) ( n Z1 C T 1 X1 Y 1 Z 1 y Y1 x j s ) 1/s ) X 1. In the case when s = 1, we simply say that T is right (resp., left) convex. Clearly if T B(X,Y ; Z) is(s, s)-convex, then it is right and left s-convex. In particular if X =(X 0,X 1 ), Y =(Y 0,Y 1 ) are couples of Banach spaces of type 2 and Z is any couple of natural quasi-banach spaces, then any operator T B(X,Y ; Z) isconvex. If a quasi-banach space X is intermediate with respect to a quasi-banach couple (X 0,X 1 ), the closed convex hull of X 0 X 1 in X is denoted by X. The following theorem is an extension of the classical Lions-Peetre result (see, e.g., Bergh and Löfstrom[2], Theorem and Exercise , or Lions and Peetre [20], Zafran [28] and Astashkin [1]). Theorem 5.1. Let X =(X 0,X 1 ), Y =(Y 0,Y 1 ) and Z =(Z 0,Z 1 ) be quasi-banach space. Assume that E s is a parameter of the J-method space on X and both F s, G s with 0 <s<1 are parameters of the K-method such that the convolution operator τ is bounded from E F into G. Then the following statements are valid: (i) If T B(X,Y ; Z) is left s-convex, then it extends to a bilinear operator from J E s(x) K F s(y ) into K E s(z). (ii) If T B(X,Y ; Z) is right s-convex, then it extends to a bilinear operator from J E s(x) K F s(y ) into K G s(z). Proof. (i) Fix ε>0, x J E s(x) andy Y 0 Y 1. Then there exists {u k } X 0 X 1 such that {J(2 k,u k ; X)} E with j=1 x JE(X) (1 + ε) {J(2k,u k ; X)} E. Let T 0 :(X 0 +X 1 ) (Y 0 Y 1 ) Z 0 +Z 1 be a natural bilinear extension of T. Since T is s-convex, there exists a constant C>0 such that for any n Z, y 0 Y 0

18 426 L. Grafakos and M. Masty lo Positivity and y 1 Y 1 with y 0 + y 1 = y, we have with T := max j=0,1 T j Xj Y j Z j K(2 n,t 0 (x, y); Z) s T 0 (x, y 0 ) s Z 0 +2 sn T 0 (x, y 1 ) s ( Z 1 ) (C T ) s u k s X 0 y 0 s Y 0 +2 sn u k s X 1 y 1 s Y 1 k Z 2 1 s (C T ) s( J(2 k,u k ; X) s ( y 0 Y0 +2 n k y k Y1 ) s). k Z Taking the infimum over all decompositions y = y 0 + y 1, we obtain K(2 n,t 0 (x, y); Z) s 2 1 s (C T ) s J(2 k,u k ; X) s K(2 n k,y; Y ) s. k Z Combining these relations with the fact that the convolution operator τ is bounded from E F into G and ε is arbitrary we obtain T 0 (x, y) KG s (Z) 2 1 s 1 C T τ E F G x JE s (X) y K F s (X) This concludes the proof of (i). Using a natural bilinear extension T 1 :(X 0 X 1 ) (Y 0 + Y 1 ) Z 0 + Z 1, we prove (ii) in a similar way. From the point of view of applications in the above theorem the case E = F = G seems interesting. Let us remark that from the proof of Lemma 3.2, it follows that for any quasi-power function ρ and 0 < p the weighted quasi-banach sequence space E = l p (1/ρ(2 n )) is a parameter of both the J and K-methods of interpolation. Moreover, we have J E (X) =K E (X) for any quasi-banach couple X =(X 0,X 1 ) (see [11], [22]), and therefore we write X ρ,p instead of J E (X) or K E (X). It is easy to check that X 0 X 1 is dense in X ρ,p whenever 0 <p<. Combining these remarks with Theorem 5.1, we obtain immediately the following: Corollary 5.1. If 1 p, q, r satisfy 1/r =1/p +1/q 1, then any left or right convex operator T B(X,Y ; Z) extends to a bilinear operator from X θ,p Y θ,q into Z θ,r for any 0 <θ<1. Corollary 5.2. If 0 < p and ρ is a quasi-power function such that 1 C(ρ) :=sup n Z ρ(2 n { ρ(2 k ) ρ(2 n k ) } ) k <, (lp) then any left or right convex operator T B(X,Y ; Z) extends to a bilinear operator from X ρ,p Y ρ,p into Z ρ,p. Proof. The proof closely follows the proof of the result of [1] for the Banach case. Let E := l p (1/ρ(2 n )), 0 <p.fixx = {ξ n } E and y = {η n } E. Then we have τ(x, y)n ξ k η n k ρ(2 k ) ρ(2 n k ρ(2 k ) ρ(2 n k )) ) k Z { ξk η n k { ρ(2 k ) ρ(2 }k n k ρ(2 k ) ρ(2 n k ) } lp k. (lp)

19 Vol. 10 (2006) Interpolation of Bilinear Operators 427 This implies that τ(x, y) E C(ρ) x E y E. Therefore the convolution operator τ is bounded from E E into E, and Theorem 5.1 applies. We conclude the paper by discussing some applications to Lorentz-Zygmund spaces. Let (Ω,µ) be a measure space. Let 0 <p,0<q,andγ R. Recall that the Lorentz-Zygmund space L p,q (log L) γ is defined as the space of all functions that satisfy ( µ(ω) ( f p,q,γ := t 1/p (1 + log t ) γ f (t) ) q dt ) 1/q < 0 t for 0 <q< and ( f p,,γ := sup t 1/p (1 + log t ) γ f (t) ) < 0<t<µ(Ω) whenever q =. This space coincides with the classical Lorentz space L p,q if γ =0. In the next and final result all considered couples are defined on any finite measure space. Theorem 5.2. Assume that 2 p 0 <p 1 <, 2 q 0 <q 1 <, 0 <r 0 <r 1 and 1/p =(1 θ)/p 0 + θ/p 1, 1/q =(1 θ)/q 0 + θ/q 1, 1/r =(1 θ)/r 0 + θ/r 1 with 0 <θ<1. IfT :(L p0,l p1 ) (L q0,l q1 ) (L r0,l r1 ), then T has a bounded extension from L p,s (log L) γ L q,s (log L) γ to L r,s (log L) γ for any γ < 1 and 0 <s. Proof. It is easy to check that if f(t) = t α (1 + log t ) γ, where 0 < α <, γ R, then s f (t) =t α (1 + log t ) γ.thusf is a quasi-power function whenever 0 <α<1, γ R. Further it is well known (see, e.g., [25]) that if 0 <v,u 0,u 1, u 0 u 1 and f(t) =t θ (1 + log t ) γ (0 <θ<1, γ R), then (L u0,l u1 ) f,v = L u,v (log L) γ where 1/u =(1 θ)/u 0 + θ/u 1. Now, following [1] we define a function ψ by ψ(t) =t a ln c (C 1 /t) for0<t 1 and ψ(t) =t b ln d (C 2 t)fort>1, where 0 <a<b<1, c>1, d>1andc 1 >e c/a, C 2 >e d d/(1 b). Then ψ is a quasi-power function and for 0 <p the function ρ defined by ρ(t) = t/ψ(t) satisfies C(ρ) =sup n Z 1 ρ(2 n ) { ρ(2 k ) ρ(2 n k ) } k <. (lp) Observe that if A =(A 0,A 1 ) is a quasi-banach space such that A 1 A 0, then for any quasi-power function ρ and 0 < p the real method space (A 0,A 1 ) ρ,p consists of all a A 0 equipped with the quasi-norm ( 1 ( K(t, a; A) ) p dt ) 1/p. a = ρ(t) t 0

20 428 L. Grafakos and M. Masty lo Positivity Now, fix 0 <θ<1andγ< 1. Taking a =1 θ and c = γ, we conclude that the real method space (A 0,A 1 ) ρ,p generated by a quasi-power function ρ = t/ψ(t) defined above depends only on ρ restricted to (0, 1). Clearly on the interval (0, 1) the function ρ is equivalent to f(t) = t θ (1 + log t ) γ, thus using the interpolation formula of Merucci [25] and the fact that our hypothesis 2 p 0 <, 2 q 0 < implies by Kalton s result [13] (by L pj and L qj, j =0, 1areoftype 2) that T is bilinear convex, we may apply Corollary 5.2 to conclude the proof of the theorem. References [1] S.V. Astashkin, On Interpolation of Bilinear Operators by the Real Method of Interpolation, Mat. Zametki, 52 (1992), (Russian). [2] J.Bergh,J.Löfström, Interpolation Spaces. An Introduction, Springer, Berlin (1976). [3] A.Yu. Brudnyi, N.Ya. Krugljak, Interpolation Functors and Interpolation Spaces I, North-Holland, Amsterdam, (1991). [4] A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), [5] M. Cwikel, J. Peetre, Abstract K and J spaces, J. Math. Pures. Appl., 60 (1981), [6] R.R. Coifman, Y. Meyer, Commutateurs d intègrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28 (1978), [7] J. Gilbert, A. Nahmod, Bilinear operators with non-smooth symbols, J. Fourier Anal. Appl. 7 (2001), [8] L. Grafakos, R. Torres, Multilinear Calderón Zygmund theory, Adv. in Math. 40 (1996), [9] L. Grafakos, N.J. Kalton, The Marcinkiewicz multiplier condition for bilinear operators, Studia Math. 146 (2001), [10] L. Grafakos, N.J. Kalton, Multilinear Calderón-Zygmund operators on Hardy spaces, Collect. Math., 52 (2001), [11] J. Gustavsson, A function parameter in connetion with interpolation of Banach spaces, Math. Scand., 42 (1978), [12] J. Gustavsson, J. Peetre, Interpolation of Orlicz spaces, Studia Math., 60 (1977), [13] N.J. Kalton, Convexity conditions for non-locally convex lattices, Glasgow Math. J., 25 (1984), [14] N.J. Kalton, N.T. Peck, J.W. Roberts, An F -space Sampler, London Math. Soc. Lecture Notes 89, Cambridge University Press, (1985). [15] N.J. Kalton, Plurisubharmonic functions on quasi-banach spaces, Studia Math. 84 (1986), [16] C. Kenig, E.M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), [17] S.G. Krein, Yu.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, Nauka, Moscow, 1978 (in Russian); English transl.: Amer. Math. Soc., Providence, (1982).

21 Vol. 10 (2006) Interpolation of Bilinear Operators 429 [18] M.T. Lacey, C.M. Thiele, L p bounds for the bilinear Hilbert transform, p>2, Ann. of Math., 146 (1997), [19] M.T. Lacey, C.M. Thiele, On Calderón s conjecture, Ann. of Math., 149 (1999), [20] J.L. Lions, J. Peetre, Sur une classe d espaces d interpolation, Inst. Hautes Etudes Sci. Publ. Math., 19 (1964), [21] G.Ya. Lozanovsky, On some Banach lattices IV, Sibirsk. Mat. Z. 14 (1973), (in Russian); English transl.: Siberian. Math. J. 14 (1973), [22] M. Masty lo, On interpolation of some quasi-banach spaces, J. Math. Anal. Appl. 147 (1990), [23] M. Masty lo, On interpolation of bilinear operators, J. Funct. Anal., 214 (2004), [24] M. Masty lo, Interpolation methods of means and orbits, Studia Math., 17 (2005), [25] C. Merucci, Application of interpolation with function parameter to Lorentz, Sobolev and Besov spaces, In: Interpolation Spaces and Allied Topics in Analysis, Lecture Notes in Math (1984), [26] P. Nilsson, Interpolation of Banach lattices, Studia Math., 82 (1985), [27] Y. Sagher, Interpolation of r-banach spaces, Studia Math., 26 (1966), [28] M. Zafran, A multilinear interpolation theorem, Studia Math., 62 (1978), Loukas Grafakos Department of Mathematics University of Missouri Columbia, MO USA loukas@math.missouri.edu Mieczys law Masty lo Faculty of Mathematics and Computer Science A. Mickiewicz University and Institute of Mathematics Polish Academy of Science (Poznań) Umultowska Poznań Poland mastylo@amu.edu.pl Received 16 January 2004; accepted 21 August 2005 To access this journal online:

Matematik Mühendisliği - Mesleki İngilizce

Matematik Mühendisliği - Mesleki İngilizce Matematik Mühendisliği - Mesleki İngilizce Tanım - Definition Tanım nasıl verilmelidir? Tanım tanımlanan ismi veya sıfatı yeterince açıklamalı, gereğinden fazla detaya girmemeli ve açık olmalıdır. Bir

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ 2015.11.10 MAT461 Fonksiyonel Analiz I Arasınav N. Course Adi: Soyadi: Öğrenc i No: İmza: Ö R N E K T İ R S A M P L E

Detaylı

BBM Discrete Structures: Midterm 2 Date: , Time: 16:00-17:30. Question: Total Points: Score:

BBM Discrete Structures: Midterm 2 Date: , Time: 16:00-17:30. Question: Total Points: Score: BBM 205 - Discrete Structures: Midterm 2 Date: 8.12.2016, Time: 16:00-17:30 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 Total Points: 12 22 10 10 15 16 15 100 Score: 1. (12 points)

Detaylı

Properties of Regular Languages. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği - TY 1

Properties of Regular Languages. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği - TY 1 Properties of Regular Languages Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği - TY 1 Properties of Regular Languages Pumping Lemma. Every regular language satisfies the pumping lemma. If somebody

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR ÖRNEKTİR OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ 03.11.2011 MAT 461 Fonksiyonel Analiz I Ara Sınav N. Course ADI SOYADI ÖĞRENCİ NO İMZA Do not open

Detaylı

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1

FINITE AUTOMATA. Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 FINITE AUTOMATA Mart 2006 Ankara Üniversitesi Bilgisayar Mühendisliği 1 Protocol for e-commerce using e-money Allowed events: P The customer can pay the store (=send the money- File to the store) C The

Detaylı

Tez adı: Orlicz uzaylarında polinom ve rasyonel fonksiyonlarla yaklaşımlar (2004) Tez Danışmanı:(İLKAY KARACA,DANİYAL İSRAFİLZADE)

Tez adı: Orlicz uzaylarında polinom ve rasyonel fonksiyonlarla yaklaşımlar (2004) Tez Danışmanı:(İLKAY KARACA,DANİYAL İSRAFİLZADE) ALİ GÜVEN PROFESÖR E-Posta Adresi guvennali@gmail.com Telefon (İş) Telefon (Cep) Faks Adres 2666121000-1211 2666121215 Balıkesir Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü 10145 Balıkesir Öğrenim

Detaylı

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grammars and Languages We have seen that many languages cannot be regular. Thus we need to consider larger classes of langs, called Context- Free Languages (CFL). These langs have a natural,

Detaylı

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m

1 I S L U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 1 I S L 8 0 5 U Y G U L A M A L I İ K T İ S A T _ U Y G U L A M A ( 5 ) _ 3 0 K a s ı m 2 0 1 2 CEVAPLAR 1. Tekelci bir firmanın sabit bir ortalama ve marjinal maliyet ( = =$5) ile ürettiğini ve =53 şeklinde

Detaylı

Unlike analytical solutions, numerical methods have an error range. In addition to this

Unlike analytical solutions, numerical methods have an error range. In addition to this ERROR Unlike analytical solutions, numerical methods have an error range. In addition to this input data may have errors. There are 5 basis source of error: The Source of Error 1. Measuring Errors Data

Detaylı

First Stage of an Automated Content-Based Citation Analysis Study: Detection of Citation Sentences

First Stage of an Automated Content-Based Citation Analysis Study: Detection of Citation Sentences First Stage of an Automated Content-Based Citation Analysis Study: Detection of Citation Sentences Zehra Taşkın, Umut Al & Umut Sezen {ztaskin, umutal, u.sezen}@hacettepe.edu.tr - 1 Plan Need for content-based

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS II. Dersin Kodu: MAT 1002

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Orjinal Adı: CALCULUS II. Dersin Kodu: MAT 1002 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK II Dersin Orjinal Adı: CALCULUS II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 100 Dersin Öğretim

Detaylı

CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population

CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS Sampling from a Population Örnek: 2, 4, 6, 6, 7, 8 say lar ndan oluşan bir populasyonumuz olsun Bu say lardan 3 elemanl bir örneklem (sample) seçebiliriz. Bu

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4

Yarışma Sınavı A ) 60 B ) 80 C ) 90 D ) 110 E ) 120. A ) 4(x + 2) B ) 2(x + 4) C ) 2 + ( x + 4) D ) 2 x + 4 E ) x + 4 1 4 The price of a book is first raised by 20 TL, and then by another 30 TL. In both cases, the rate of increment is the same. What is the final price of the book? 60 80 90 110 120 2 3 5 Tim ate four more

Detaylı

Kişisel Bilgiler. Akademik Durum

Kişisel Bilgiler. Akademik Durum ÖZGEC. MİŞ Kişisel Bilgiler Adı Soyadı : Emin ÖZC. AĞ Doğumyeri : Mersin Doğum Tarihi : 22 Eylül, 1961 Uyruğu : T.C. Medeni Hali : Evli Adress : Hacettepe Üniversitesi, Matematik Bölümü, Beytepe-Ankara

Detaylı

YÜKSEKÖĞRETİM KURULU PROFESÖR : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ 57000/SİNOP

YÜKSEKÖĞRETİM KURULU PROFESÖR : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ 57000/SİNOP KAMİL DEMİRCİ ÖZGEÇMİŞ YÜKSEKÖĞRETİM KURULU PROFESÖR 24.11.2014 Adres : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ 57000/SİNOP Telefon : 0368271551-4001 E-posta : kamild@sinop.edu.tr

Detaylı

Help Turkish -> English

Help Turkish -> English Help Turkish -> English Günümüzde matematik makalelerinin çok önemli bir kısmı İngilizce yazılıyor. Türkçe düşünmeye alışmış olanlarımız için bu pek de kolay olmayabilir. Bir yazıda elbette İngilizce öğretmek

Detaylı

It is symmetrical around the mean The random variable has an in nite theoretical range: 1 to +1

It is symmetrical around the mean The random variable has an in nite theoretical range: 1 to +1 The Normal Distribution f(x) µ s x It is bell-shaped Mean = Median = Mode It is symmetrical around the mean The random variable has an in nite theoretical range: 1 to +1 1 If random variable X has a normal

Detaylı

UBE Machine Learning. Kaya Oguz

UBE Machine Learning. Kaya Oguz UBE 521 - Machine Learning Kaya Oguz Support Vector Machines How to divide up the space with decision boundaries? 1990s - new compared to other methods. How to make the decision rule to use with this boundary?

Detaylı

GebzeYüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli

GebzeYüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli GebzeYüksek Teknoloji Enstitüsü Bilgisayar Mühendisliği Bölümü PK.141 41400 Gebze/Kocaeli TM # : [Boş Bõrakõn] Başlõk : Rapor Başlõğõ Teknik Rapor! Seminer Raporu! Anahtar Kelimeler : Yazarlar : A. Çokçalõşkan,

Detaylı

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. yasinortakci@karabuk.edu.tr 1. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi DIVIDED DIFFERENCE INTERPOLATION Forward Divided Differences

Detaylı

EGE UNIVERSITY ELECTRICAL AND ELECTRONICS ENGINEERING COMMUNICATION SYSTEM LABORATORY

EGE UNIVERSITY ELECTRICAL AND ELECTRONICS ENGINEERING COMMUNICATION SYSTEM LABORATORY EGE UNIVERSITY ELECTRICAL AND ELECTRONICS ENGINEERING COMMUNICATION SYSTEM LABORATORY INTRODUCTION TO COMMUNICATION SYSTEM EXPERIMENT 4: AMPLITUDE MODULATION Objectives Definition and modulating of Amplitude

Detaylı

Positive solutions of nonlocal boundary value problems involving integral conditions

Positive solutions of nonlocal boundary value problems involving integral conditions NoDEA Nonlinear differ. equ. appl. 15 (28) 45 67 121 9722/8/245 23 DOI 1.17/s3-7-467-7 c Birkhäuser Verlag, Basel, 28 Positive solutions of nonlocal boundary value problems involving integral conditions

Detaylı

BBM Discrete Structures: Final Exam - ANSWERS Date: , Time: 15:00-17:00

BBM Discrete Structures: Final Exam - ANSWERS Date: , Time: 15:00-17:00 BBM 205 - Discrete Structures: Final Exam - ANSWERS Date: 12.1.2017, Time: 15:00-17:00 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 6 16 8 8 10 9 6 8 14 5 10

Detaylı

ATILIM UNIVERSITY Department of Computer Engineering

ATILIM UNIVERSITY Department of Computer Engineering ATILIM UNIVERSITY Department of Computer Engineering COMPE 350 Numerical Methods Fall, 2011 Instructor: Fügen Selbes Assistant: İsmail Onur Kaya Homework: 1 Due date: Nov 14, 2011 You are designing a spherical

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: R. TUNÇ MISIRLIOĞLU Doğum Tarihi: 1971 Adres: İstanbul Kültür Üniversitesi Fen-Edebiyat Fakültesi Matematik-Bilgisayar Bölümü Ataköy Kampüsü, 34156 Bakırköy-İstanbul

Detaylı

BBM Discrete Structures: Final Exam Date: , Time: 15:00-17:00

BBM Discrete Structures: Final Exam Date: , Time: 15:00-17:00 BBM 205 - Discrete Structures: Final Exam Date: 12.1.2017, Time: 15:00-17:00 Ad Soyad / Name: Ögrenci No /Student ID: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 6 16 8 8 10 9 6 8 14 5 10 100 Score:

Detaylı

T.C. İSTANBUL AYDIN ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ BİREYSEL DEĞERLER İLE GİRİŞİMCİLİK EĞİLİMİ İLİŞKİSİ: İSTANBUL İLİNDE BİR ARAŞTIRMA

T.C. İSTANBUL AYDIN ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ BİREYSEL DEĞERLER İLE GİRİŞİMCİLİK EĞİLİMİ İLİŞKİSİ: İSTANBUL İLİNDE BİR ARAŞTIRMA T.C. İSTANBUL AYDIN ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ BİREYSEL DEĞERLER İLE GİRİŞİMCİLİK EĞİLİMİ İLİŞKİSİ: İSTANBUL İLİNDE BİR ARAŞTIRMA DOKTORA TEZİ Cafer Şafak EYEL İşletme Ana Bilim Dalı İşletme

Detaylı

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

Yüz Tanımaya Dayalı Uygulamalar. (Özet) 4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama

Detaylı

Yrd.Doç.Dr. YILMAZ ERDEM

Yrd.Doç.Dr. YILMAZ ERDEM Yrd.Doç.Dr. YILMAZ ERDEM Ekonomi Ve Finans Bölümü Eğitim Bilgileri 1996-2000 Lisans Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Matematik Ve Fen Bilimleri Eğitimi Bölümü Matematik Öğretmenliği Pr. 2001-2005

Detaylı

Adres : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ

Adres : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ KAMİL DEMİRCİ PROFESÖR E-Posta Adresi : kamild@sinop.edu.tr Telefon (İş) : 3682715516-4001 Adres : SİNOP ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK BÖLÜMÜ Öğrenim Bilgisi Doktora 1992-1998

Detaylı

c Birkhäuser Verlag, Basel 2005 GAFA Geometric And Functional Analysis

c Birkhäuser Verlag, Basel 2005 GAFA Geometric And Functional Analysis GAFA, Geom. funct. anal. DOI 10.1007/s00039-005-0538-3 ONLINE FIRST c Birkhäuser Verlag, Basel 2005 GAFA Geometric And Functional Analysis INVOLUTIONS AND LINEAR SYSTEMS ON HOLOMORPHIC SYMPLECTIC MANIFOLDS

Detaylı

Yaz okulunda (2014 3) açılacak olan 2360120 (Calculus of Fun. of Sev. Var.) dersine kayıtlar aşağıdaki kurallara göre yapılacaktır:

Yaz okulunda (2014 3) açılacak olan 2360120 (Calculus of Fun. of Sev. Var.) dersine kayıtlar aşağıdaki kurallara göre yapılacaktır: Yaz okulunda (2014 3) açılacak olan 2360120 (Calculus of Fun. of Sev. Var.) dersine kayıtlar aşağıdaki kurallara göre yapılacaktır: Her bir sınıf kontenjanı YALNIZCA aşağıdaki koşullara uyan öğrenciler

Detaylı

Bağlaç 88 adet P. Phrase 6 adet Toplam 94 adet

Bağlaç 88 adet P. Phrase 6 adet Toplam 94 adet ÖNEMLİ BAĞLAÇLAR Bu liste YDS için Önemli özellikle seçilmiş bağlaçları içerir. 88 adet P. Phrase 6 adet Toplam 94 adet Bu doküman, YDS ye hazırlananlar için dinamik olarak oluşturulmuştur. 1. although

Detaylı

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University

Eco 338 Economic Policy Week 4 Fiscal Policy- I. Prof. Dr. Murat Yulek Istanbul Ticaret University Eco 338 Economic Policy Week 4 Fiscal Policy- I Prof. Dr. Murat Yulek Istanbul Ticaret University Aggregate Demand Aggregate (domestic) demand (or domestic absorption) is the sum of consumption, investment

Detaylı

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES

A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES A UNIFIED APPROACH IN GPS ACCURACY DETERMINATION STUDIES by Didem Öztürk B.S., Geodesy and Photogrammetry Department Yildiz Technical University, 2005 Submitted to the Kandilli Observatory and Earthquake

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../..

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../.. Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Grup Adı: Sıvı Seviye Kontrol Deneyi.../../2015 KP Pompa akış sabiti 3.3 cm3/s/v DO1 Çıkış-1 in ağız çapı 0.635 cm DO2

Detaylı

Tez adı: Smirnov-Orlicz uzaylarında polinomlarla yaklaşım (2007) Tez Danışmanı:(PROF.DR. DANİYAL İSRAFİLOV)

Tez adı: Smirnov-Orlicz uzaylarında polinomlarla yaklaşım (2007) Tez Danışmanı:(PROF.DR. DANİYAL İSRAFİLOV) RAMAZAN AKGÜN PROFESÖR 2002-2019 yılları arasında özgeçmiş E-Posta Adresi rakgun@balikesir.edu.tr Telefon (İş) Telefon (Cep) Faks Adres 2666121000-1214 2666121215 BALIKESİR ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK

Detaylı

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER

İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER ANKARA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ HALKLA İLİŞKİLER VE TANITIM ANA BİLİM DALI İŞLETMELERDE KURUMSAL İMAJ VE OLUŞUMUNDAKİ ANA ETKENLER BİR ÖRNEK OLAY İNCELEMESİ: SHERATON ANKARA HOTEL & TOWERS

Detaylı

c Birkhäuser Verlag, Basel 2003 GAFA Geometric And Functional Analysis

c Birkhäuser Verlag, Basel 2003 GAFA Geometric And Functional Analysis GAFA, Geom. funct. anal. Vol. 13 (2003) 223 257 1016-443X/03/010223-35 c Birkhäuser Verlag, Basel 2003 GAFA Geometric And Functional Analysis WEAK DENSITY OF SOOTH APS FOR THE DIRICHLET ENERGY BETWEEN

Detaylı

IMBEDDING THEOREM IN VECTOR-VALUED SOBOLEV SPACES AND APPLICATIONS. M.Sc. Thesis by Safiye ESGİN. Department : Mathematics

IMBEDDING THEOREM IN VECTOR-VALUED SOBOLEV SPACES AND APPLICATIONS. M.Sc. Thesis by Safiye ESGİN. Department : Mathematics İSTANBUL TECHNICAL UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY IMBEDDING THEOREM IN VECTOR-VALUED SOBOLEV SPACES AND APPLICATIONS M.Sc. Thesis by Safiye ESGİN Department : Mathematics Programme : Mathematical

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Ali AKBULUT İletişim Bilgileri : Ahi Evran Üniversitesi Fen debiyat Fakültesi Adres Matematik Bölümü KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Ali AKBULUT İletişim Bilgileri : Ahi Evran Üniversitesi Fen debiyat Fakültesi Adres Matematik Bölümü KIRŞEHİR ÖZGEÇMİŞ 1. Adı Soyadı : Ali AKBULUT İletişim Bilgileri : Ahi Evran Üniversitesi Fen debiyat Fakültesi Adres Matematik Bölümü KIRŞEHİR Telefon : (0386) 280 4565 Mail : aakbulut@ahievran.edu.tr 2. Doğum

Detaylı

Tanrının Varlığının Ontolojik Kanıtı a

Tanrının Varlığının Ontolojik Kanıtı a Iğd Üniv Sos Bil Der / Igd Univ Jour Soc Sci Sayı / No. 8, Ekim / October 2015: 13-19 Entelekya / Entelecheia Tanrının Varlığının Ontolojik Kanıtı a Çeviren İLYAS ALTUNER b Geliş Tarihi: 01.10.2015 Kabul

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Joural of Egieerig ad Naural Scieces Mühedislik ve Fe Bilimleri Dergisi Sigma 004/ ON THE GENERALIZATION OF CARTESIAN PRODUCT OF FUZZY SUBGROUPS AND IDEALS Bayram Ali ERSOY * Deparme of Mahemaics, Faculy

Detaylı

BBS 514 YAPISAL PROGRAMLAMA (STRUCTURED PROGRAMMING)

BBS 514 YAPISAL PROGRAMLAMA (STRUCTURED PROGRAMMING) 1 BBS 514 YAPISAL PROGRAMLAMA (STRUCTURED PROGRAMMING) LECTURE 3: ASSIGNMENT OPERATOR Lecturer: Burcu Can BBS 514 - Yapısal Programlama (Structured Programming) 2 Lexical Elements (Sözcüksel Elemanlar)

Detaylı

Tez adı: Çift diziler için A-kuvvetli yakınsaklık karakterizasyonu (2013) Tez Danışmanı:(CİHAN ORHAN)

Tez adı: Çift diziler için A-kuvvetli yakınsaklık karakterizasyonu (2013) Tez Danışmanı:(CİHAN ORHAN) MEHMET ÜNVER YARDIMCI DOÇENT E-Posta Adresi munver@ankara.edu.tr Telefon (İş) Telefon (Cep) Faks Adres 3122126720-1227 5077860392 Ankara Üniversitesi Fen Fakültesi Matematik Bölümü Tandoğan ANKARA Öğrenim

Detaylı

PARABOLİK DENKLEMLERDE BİLİNMEYEN KAYNAK TERİMLERİNİN BULUNMASI İÇİN PROSEDÜR VE PROGRAMLAR. Alper Bostancı

PARABOLİK DENKLEMLERDE BİLİNMEYEN KAYNAK TERİMLERİNİN BULUNMASI İÇİN PROSEDÜR VE PROGRAMLAR. Alper Bostancı öz PARABOLİK DENKLEMLERDE BİLİNMEYEN KAYNAK TERİMLERİNİN BULUNMASI İÇİN PROSEDÜR VE PROGRAMLAR Alper Bostancı BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI YÜKSEK LİSANS TEZİ Şubat 2002 Bu tez çalışmasında parabolik

Detaylı

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE

DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKTRUMLARI ÜZERİNE Ekim 25 Cilt:3 No:2 Kastamonu Eğitim Dergisi 547-554 DEĞİŞMELİ BANACH CEBİRLERİNİN GELFAND SPEKRUMLARI ÜZERİNE Hayri AKAY, Ziya ARGÜN Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Bölümü,

Detaylı

DOÇ. DR. BANU UZUN Işık Üniversitesi Matematik Bölümü

DOÇ. DR. BANU UZUN Işık Üniversitesi Matematik Bölümü DOÇ. DR. BANU UZUN Işık Üniversitesi Matematik Bölümü buzun@isikun.edu.tr 1. Adı Soyadı : Banu UZUN 2. Doğum Tarihi : 22.09.1971 3. Ünvanı : Doçent 4. Öğrenim Durumu : ÖĞRENİM DÖNEMİ DERECE ÜNİVERSİTE

Detaylı

BİR BASKI GRUBU OLARAK TÜSİADTN TÜRKİYE'NİN AVRUPA BİRLİĞl'NE TAM ÜYELİK SÜRECİNDEKİ ROLÜNÜN YAZILI BASINDA SUNUMU

BİR BASKI GRUBU OLARAK TÜSİADTN TÜRKİYE'NİN AVRUPA BİRLİĞl'NE TAM ÜYELİK SÜRECİNDEKİ ROLÜNÜN YAZILI BASINDA SUNUMU T.C. ANKARA ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ HALKLA İLİŞKİLER VE TANITIM ANABİLİM DALI BİR BASKI GRUBU OLARAK TÜSİADTN TÜRKİYE'NİN AVRUPA BİRLİĞl'NE TAM ÜYELİK SÜRECİNDEKİ ROLÜNÜN YAZILI BASINDA

Detaylı

"Şirket" Sunucusu ve Başarı Mobile Arasındaki HTTP Veri Aktarımı için Etkileşim Teknik Protokolü

Şirket Sunucusu ve Başarı Mobile Arasındaki HTTP Veri Aktarımı için Etkileşim Teknik Protokolü "Şirket" Sunucusu ve Başarı Mobile Arasındaki HTTP Veri Aktarımı için Etkileşim Teknik Protokolü BAŞARI Mobile tarafından desteklenmektedir. 1. Genel Bakış Bu döküman ile Şirket Adı nın ve Basari Mobile

Detaylı

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201

MATEMATİK BÖLÜMÜ BÖLÜM KODU:3201 BÖLÜM KODU:01 011-01 01.Yarıyıl Dersleri 0.Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 10 Analiz II Analysis II 4 1 5 6 MTK 11 Lineer Cebir I Linear Algebra I 1 4 MTK 1 Lineer Cebir II Linear

Detaylı

ENG ACADEMIC YEAR SPRING SEMESTER FRESHMAN PROGRAM EXEMPTION EXAM

ENG ACADEMIC YEAR SPRING SEMESTER FRESHMAN PROGRAM EXEMPTION EXAM ENG111 2016-2017 ACADEMIC YEAR SPRING SEMESTER FRESHMAN PROGRAM EXEMPTION EXAM Exam Type Date / Classes / Time Written Thursday, September 22 nd, 2016 Classes & Time to be announced on September 20th.

Detaylı

Numune Kodu ve parti no

Numune Kodu ve parti no Numune Kodu ve parti no Numune tipi Kimin tarafından üretildiği Numune formu ve şekli Sertifikalandıran Kurum Konsantrasyonlar Elde edilen konsantrasyon değerleri Ortalama Standart Sapmalar % 95 Karbon

Detaylı

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl Lisans Matematik Kocaeli Üniversitesi 2007 Y. Lisans Uygulamalı Matematik Analiz ve Fonksiyonlar Teorisi

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl Lisans Matematik Kocaeli Üniversitesi 2007 Y. Lisans Uygulamalı Matematik Analiz ve Fonksiyonlar Teorisi ÖZGEÇMİŞ 1. Adı Soyadı: Sercan TURHAN 2. Doğum Tarihi: 03. 09. 1985 3. Unvanı: Dr. Öğr. Üyesi 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Matematik Kocaeli Üniversitesi 2007 Y. Lisans Uygulamalı

Detaylı

AB surecinde Turkiyede Ozel Guvenlik Hizmetleri Yapisi ve Uyum Sorunlari (Turkish Edition)

AB surecinde Turkiyede Ozel Guvenlik Hizmetleri Yapisi ve Uyum Sorunlari (Turkish Edition) AB surecinde Turkiyede Ozel Guvenlik Hizmetleri Yapisi ve Uyum Sorunlari (Turkish Edition) Hakan Cora Click here if your download doesn"t start automatically AB surecinde Turkiyede Ozel Guvenlik Hizmetleri

Detaylı

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ

PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TOPLANABİLEN VEYA SINIRLI OLAN DİZİ UZAYLARI ARASINDAKİ DÖNÜŞÜMLERİN ÖZELLİKLERİ YÜKSEK LİSANS TEZİ İnci BİRGİN Anabilim Dalı : Matematik Programı : Matematik

Detaylı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı X, Y, Z KUŞAĞI TÜKETİCİLERİNİN YENİDEN SATIN ALMA KARARI ÜZERİNDE ALGILANAN MARKA DENKLİĞİ ÖĞELERİNİN ETKİ DÜZEYİ FARKLILIKLARININ

Detaylı

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT

A Y I K BOYA SOBA SOBA =? RORO MAYO MAS A A YÖS / TÖBT 00 - YÖS / TÖBT. ve. sorularda, I. gruptaki sözcüklerin harfleri birer rakamla gösterilerek II. gruptaki sayılar elde edilmiştir. Soru işaretiyle belirtilen sözcüğün hangi sayıyla gösterildiğini bulunuz.

Detaylı

10.7442 g Na2HPO4.12H2O alınır, 500mL lik balonjojede hacim tamamlanır.

10.7442 g Na2HPO4.12H2O alınır, 500mL lik balonjojede hacim tamamlanır. 1-0,12 N 500 ml Na2HPO4 çözeltisi, Na2HPO4.12H2O kullanılarak nasıl hazırlanır? Bu çözeltiden alınan 1 ml lik bir kısım saf su ile 1000 ml ye seyreltiliyor. Son çözelti kaç Normaldir? Kaç ppm dir? % kaçlıktır?

Detaylı

ÖZGEÇMİŞ ve YAYIN LİSTESİ

ÖZGEÇMİŞ ve YAYIN LİSTESİ ÖZGEÇMİŞ ve YAYIN LİSTESİ Adı Soyadı: AYHAN ŞERBETÇİ Doğum Tarihi: 16 Temmuz 1959 Adres : Ev: Kalaba Mahallesi Şair Sokak No: 3/2, Keçiören-ANKARA İş: Ankara Üniversitesi Fen Fakültesi Matematik Bölümü,

Detaylı

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU)

Tez adı: Genelleştirilmiş büzülme dönüşümleri için bazı sabit nokta teoremleri (2016) Tez Danışmanı:(ARAP DURAN TÜRKOĞLU) HÜSEYİN IŞIK YARDIMCI DOÇENT E-Posta Adresi : h.isik@alparslan.edu.tr Telefon (İş) Telefon (Cep) Faks Adres : : : : 3122021084-5071865605 MUŞ ALPARSLAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ Öğrenim Durumu

Detaylı

Argumentative Essay Nasıl Yazılır?

Argumentative Essay Nasıl Yazılır? Argumentative Essay Nasıl Yazılır? Hüseyin Demirtaş Dersimiz: o Argumentative Essay o Format o Thesis o Örnek yazı Military service Outline Many countries have a professional army yet there is compulsory

Detaylı

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION

CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION CHAPTER 8: CONFIDENCE INTERVAL ESTIMATION: ONE POPULATION A point estimator of a population parameter is a function of the sample information that yields a single number An interval estimator of a population

Detaylı

Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi

Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi Bölüm Özeti Kümeler Kümelerin Dili Küme İşlemleri Küme Özdeşlikleri Fonksiyonlar Fonksiyon Tipleri Fonksiyonlar Üzerindeki İşlemler Hesaplanabilirlik Diziler ve Toplamlar Dizilerin Tipleri Toplamları Formülleştirme

Detaylı

D-Link DSL 500G için ayarları

D-Link DSL 500G için ayarları Celotex 4016 YAZILIM 80-8080-8081 İLDVR HARDWARE YAZILIM 80-4500-4600 DVR2000 25 FPS YAZILIM 5050-5555-1999-80 EX-3004 YAZILIM 5555 DVR 8008--9808 YAZILIM 80-9000-9001-9002 TE-203 VE TE-20316 SVDVR YAZILIM

Detaylı

MM103 E COMPUTER AIDED ENGINEERING DRAWING I

MM103 E COMPUTER AIDED ENGINEERING DRAWING I MM103 E COMPUTER AIDED ENGINEERING DRAWING I ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Weeks: 3-6 ORTHOGRAPHIC (MULTIVIEW) PROJECTION (EŞLENİK DİK İZDÜŞÜM) Projection: A view of an object

Detaylı

Imagine that there are 6 red, 3 green and 2 blue balls in a bag. What is the probability of not drawing a blue ball if you draw 4 ball in a row

Imagine that there are 6 red, 3 green and 2 blue balls in a bag. What is the probability of not drawing a blue ball if you draw 4 ball in a row Örnek Sorular Imagine that there are 6 red, 3 green and 2 blue balls in a bag. What is the probability of not drawing a blue ball if you draw 4 ball in a row without putting them back into the bag? Bir

Detaylı

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni.

Üye : Yrd. Doç. Dr. Erdal ÖZYURT Adnan Menderes Üni. Üye : Yrd. Doç. Dr. Fatih KOYUNCU Muğla Üni. iii T.C. ADNAN MENDERES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜNE AYDIN Matematik Anabilim Dalı Yüksek Lisans Programı öğrencisi Koray KARATAŞ tarafından hazırlanan Genel Lineer Grupların Sylow

Detaylı

Present continous tense

Present continous tense Present continous tense This tense is mainly used for talking about what is happening now. In English, the verb would be changed by adding the suffix ing, and using it in conjunction with the correct form

Detaylı

Bu durumda ya cozum yoktur veya sonsuz cozum vardir. KIsaca cozum tek degildir. Veya cozumler birbirine lineer bagimlidir.

Bu durumda ya cozum yoktur veya sonsuz cozum vardir. KIsaca cozum tek degildir. Veya cozumler birbirine lineer bagimlidir. Vektorlerin lineer bagimsiligi Ornek, Denklem Takimini Coun > - Ikinci denklemde erine ko (-) -) Sonuc: > - sartini saglaan butun ve ler her iki denklemi de coer. (, ), (, ), (, ),... Denklem takiminin

Detaylı

ZTM112 BİLGİSAYAR DESTETEKLİ ÇİZİM TEKNİĞİ

ZTM112 BİLGİSAYAR DESTETEKLİ ÇİZİM TEKNİĞİ ZTM112 BİLGİSAYAR DESTETEKLİ ÇİZİM TEKNİĞİ Yrd.Doç.Dr.Caner KOÇ Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü ckoc@ankara.edu.tr Teknik çizim nedir? Bir çizim

Detaylı

Bölüm 6. Diziler (arrays) Temel kavramlar Tek boyutlu diziler Çok boyutlu diziler

Bölüm 6. Diziler (arrays) Temel kavramlar Tek boyutlu diziler Çok boyutlu diziler Bölüm 6 Diziler (arrays) Temel kavramlar Tek boyutlu diziler Çok boyutlu diziler Chapter 6 Java: an Introduction to Computer Science & Programming - Walter Savitch 1 Genel Bakış Dizi: Hepsi aynı türde

Detaylı

Cases in the Turkish Language

Cases in the Turkish Language Fluentinturkish.com Cases in the Turkish Language Grammar Cases Postpositions, circumpositions and prepositions are the words or morphemes that express location to some kind of reference. They are all

Detaylı

Arýza Giderme. Troubleshooting

Arýza Giderme. Troubleshooting Arýza Giderme Sorun Olasý Nedenler Giriþ Gerilimi düþük hata mesajý Þebeke giriþ gerilimi alt seviyenin altýnda geliyor Þebeke giriþ gerilimi tehlikeli derecede Yüksek geliyor Regülatör kontrol kartý hatasý

Detaylı

Özgeçmi³. Mart 2014'e kadar AHMET YANTIR. Ya³ar Üniversitesi Matematik Bölümü, zmir Tel: +90 232 411 5107 Email: ahmet.yantir@yasar.edu.

Özgeçmi³. Mart 2014'e kadar AHMET YANTIR. Ya³ar Üniversitesi Matematik Bölümü, zmir Tel: +90 232 411 5107 Email: ahmet.yantir@yasar.edu. Özgeçmi³ Mart 2014'e kadar AHMET YANTIR Ya³ar Üniversitesi Matematik Bölümü, zmir Tel: +90 232 411 5107 Email: ahmet.yantir@yasar.edu.tr kí³ísel bílgíler Do um Yeri: Ekim, 1975 Do um Tarihi: Nazilli -

Detaylı

Doğum Yeri (Place of Birth) EĞİTİM DURUMU (EDUCATIONAL STATUS) İnönü Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü ( )

Doğum Yeri (Place of Birth) EĞİTİM DURUMU (EDUCATIONAL STATUS) İnönü Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü ( ) Adı ve Soyadı (Name and Surname) Doğum Yeri (Place of Birth) : Hacer ŞENGÜL : MALATYA EĞİTİM DURUMU (EDUCATIONAL STATUS) Lisans (Undergraduate) Yüksek Lisans (Post Graduate) Yüksek Lisans Tez Konusu (Subject

Detaylı

BPR NİN ETKİLERİ. Selim ATAK Çevre Mühendisi Environmental Engineer

BPR NİN ETKİLERİ. Selim ATAK Çevre Mühendisi Environmental Engineer BPR NİN ETKİLERİ Impacts of the BPR Selim ATAK Çevre Mühendisi Environmental Engineer 98/8/EC sayılı Biyosidal Ürünlerin Piyasaya Arzına İlişkin Avrupa Parlamentosu ve Konseyi Direktifi, Avrupa Birliği

Detaylı

Torsion(Moment along the longitudinal axis)

Torsion(Moment along the longitudinal axis) Torsion(Moment along the longitudinal axis) In this section we will be studying what happens to shafts under torsional effects. We will limit ourselves with elements having circular cross sections. How

Detaylı

NATURAL LANGUAGE PROCESSING

NATURAL LANGUAGE PROCESSING NATURAL LANGUAGE PROCESSING LESSON 8 : LEXICAL SIMILARITY OUTLINE Lexical vs. Semantic Similarity Similarity Levenstein Distance Jaccard Similarity Cosine Similarity Vector Space Model Binary Weighting

Detaylı

Kişisel Bilgiler. Eğitim

Kişisel Bilgiler. Eğitim Kişisel Bilgiler İsim : Arzu Yemişci ŞEN Tel no : +90 212 498 43 57 E-mail : a.sen@iku.edu.tr Web : http://www.iku.edu.tr/tr/10-10-161-2-0-201-1467-598-1-1-1/ogretim- Elemanlari#Arzu-SEN Adres : İstanbul

Detaylı

Bölüm 2 Matematik Dili

Bölüm 2 Matematik Dili Bölüm 2 Matematik Dili Kümeler p Küme(Set) = ayrık nesnelerden oluşmuş topluluğa küme denir p Kümenin elemanları element olarak adlandırılır p Kümeler nasıl gösterilir Liste şeklinde p Örnek: A = {,3,5,7}

Detaylı

SBR331 Egzersiz Biyomekaniği

SBR331 Egzersiz Biyomekaniği SBR331 Egzersiz Biyomekaniği Açısal Kinematik 1 Angular Kinematics 1 Serdar Arıtan serdar.aritan@hacettepe.edu.tr Mekanik bilimi hareketli bütün cisimlerin hareketlerinin gözlemlenebildiği en asil ve kullanışlı

Detaylı

Virtualmin'e Yeni Web Sitesi Host Etmek - Domain Eklemek

Virtualmin'e Yeni Web Sitesi Host Etmek - Domain Eklemek Yeni bir web sitesi tanımlamak, FTP ve Email ayarlarını ayarlamak için yapılması gerekenler Öncelikle Sol Menüden Create Virtual Server(Burdaki Virtual server ifadesi sizi yanıltmasın Reseller gibi düşünün

Detaylı

Relational Algebra. Algebra of Bags

Relational Algebra. Algebra of Bags Relational Algebra Basic Operations Algebra of Bags 1 What is an Algebra Mathematical system consisting of: Operands --- variables or values from which new values can be constructed. Operators --- symbols

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ PARAMETRELİ VLASOV ZEMİNİNE OTURAN HOMOJEN İZOTROP PLAKLARIN, KARIŞIK SONLU ELEMANLAR METODU İLE ANALİZİ YÜKSEK LİSANS TEZİ İnş. Müh. Ahmet Anıl

Detaylı

DOKUZ EYLUL UNIVERSITY FACULTY OF ENGINEERING OFFICE OF THE DEAN COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER

DOKUZ EYLUL UNIVERSITY FACULTY OF ENGINEERING OFFICE OF THE DEAN COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER Offered by: Bilgisayar Mühendisliği Course Title: COMPUTER PROGRAMMING Course Org. Title: COMPUTER PROGRAMMING Course Level: Course Code: CME 0 Language of Instruction: İngilizce Form Submitting/Renewal

Detaylı

FATMA KANCA. Derece Alan Üniversite Yıl Doktora Matematik Gebze Yüksek Teknoloji Enstitüsü Yüksek Lisans Matematik Kocaeli Üniversitesi 2004

FATMA KANCA. Derece Alan Üniversite Yıl Doktora Matematik Gebze Yüksek Teknoloji Enstitüsü Yüksek Lisans Matematik Kocaeli Üniversitesi 2004 FATMA KANCA EĞİTİM Derece Alan Üniversite Yıl Doktora Matematik Gebze Yüksek Teknoloji Enstitüsü 2011 Yüksek Lisans Matematik Kocaeli 2004 Lisans Matematik Kocaeli 2001 AKADEMİK UNVANLAR Kurum/Kuruluş

Detaylı

Uygulama, bir öğrencinin dersi bırakıp aynı anda bir arkadaşının dersi almasına engel olacak şekilde kurgulanmıştır. Buna göre:

Uygulama, bir öğrencinin dersi bırakıp aynı anda bir arkadaşının dersi almasına engel olacak şekilde kurgulanmıştır. Buna göre: YAZ OKULUNDA AÇILAN MATEMATİK SERVİS DERSLERİNE KAYIT Matematik Bölümü tarafından verilen servis derslerinde kontenjanlar sınırlıdır. Taleplerin tümünün karşılanması mümkün olmayacaktır. Belirtilen derslerde

Detaylı

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences

Kahramanmaras Sutcu Imam University Journal of Engineering Sciences KSU Mühendislik Bilimleri Dergisi, 0(), 017 16 KSU Journal of Engineering Sciences, 0(), 017 Kahramanmaras Sutcu Imam University Journal of Engineering Sciences G-Metrik Uzayda Zayıf Uyumlu Dönüşümler

Detaylı

OBSERVER DESIGN AND OUTPUT FEEDBACK STABILIZATION OF TIME VARYING SYSTEMS

OBSERVER DESIGN AND OUTPUT FEEDBACK STABILIZATION OF TIME VARYING SYSTEMS OBSERVER DESIGN AND OUTPUT FEEDBACK STABILIZATION OF TIME VARYING SYSTEMS Saeed Ahmed To cite this version: Saeed Ahmed. OBSERVER DESIGN AND OUTPUT FEEDBACK STABILIZATION OF TIME VARYING SYSTEMS. Automatic

Detaylı

L2 L= nh. L4 L= nh. C2 C= pf. Term Term1 Num=1 Z=50 Ohm. Term2 Num=2 Z=50 Oh. C3 C= pf S-PARAMETERS

L2 L= nh. L4 L= nh. C2 C= pf. Term Term1 Num=1 Z=50 Ohm. Term2 Num=2 Z=50 Oh. C3 C= pf S-PARAMETERS 1- Design a coupled line 5th order 0.5 db equal-ripple bandpass filter with the following characteristics: Zo = 50 ohm, band edges = 3 GHz and 3.5 GHz, element values of LPF prototype are with N = 5: g1

Detaylı

Prof. Dr. N. Lerzan ÖZKALE

Prof. Dr. N. Lerzan ÖZKALE ERASMUS + YÜKSEKÖĞRETİM YIL SONU DEĞERLENDİRME TOPLANTISI Akdeniz Üniversitesi, Antalya AKADEMİK TANINMA Prof. Dr. N. Lerzan ÖZKALE İstanbul Teknik Üniversitesi ve Kadir Has Üniversitesi 21 Aralık 2017

Detaylı

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *9844633740* FIRST LANGUAGE TURKISH 0513/02 Paper 2 Writing May/June 2017 2 hours Candidates answer

Detaylı

Delta Pulse 3 Montaj ve Çalıstırma Kılavuzu. www.teknolojiekibi.com

Delta Pulse 3 Montaj ve Çalıstırma Kılavuzu. www.teknolojiekibi.com Delta Pulse 3 Montaj ve Çalıstırma Kılavuzu http:/// Bu kılavuz, montajı eksiksiz olarak yapılmış devrenin kontrolü ve çalıştırılması içindir. İçeriğinde montajı tamamlanmış devrede çalıştırma öncesinde

Detaylı

Sürekli-Zaman Sinyallerinin Matematiksel Tanımlanması

Sürekli-Zaman Sinyallerinin Matematiksel Tanımlanması Sürekli-Zaman Sinyallerinin Matematiksel Tanımlanması Tipik Sürekli-Zaman Sinyalleri 2 Süreklilik ve Sürekli-Zaman Sinyalleri Karşılaştırması Zamanda sürekli olan fonksiyonların hepsi sürekli-zamanlıdır,

Detaylı

UKRAYNA BİLİMLER AKADEMİSİ UYGULAMALI MATEMATİK VE MEKANİK ENSTİTÜSÜ

UKRAYNA BİLİMLER AKADEMİSİ UYGULAMALI MATEMATİK VE MEKANİK ENSTİTÜSÜ 2017 yılı için özgeçmiş DANİYAL İSRAFİLZADE PROFESÖR E-Posta Adresi mdaniyal@balikesir.edu.tr Telefon (İş) Telefon (Cep) Faks Adres 2666121215-4405 2666121215 Balıkesir Üniversitesi Fen Edebiyat Fakültesi

Detaylı