İstatistiksel Kavramların Gözden Geçirilmesi
|
|
|
- Çağatay Erdinç
- 9 yıl önce
- İzleme sayısı:
Transkript
1 İstatistiksel Kavramların Gözden Geçirilmesi Bazı Kuramsal Olasılık Dağılımları Ekonometri 1 Konu 2 Sürüm 2,0 (Ekim 2011)
2 UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) lisansı altında bir açık ders malzemesi olarak genel kullanıma sunulmuştur. Eserin ilk sahibinin belirtilmesi ve geçerli lisansın korunması koşulu ile özgürce kullanılabilir, çoğaltılabilir ve değiştirilebilir. Creative Commons örgütü ve CC-BY-NC-SA lisansı ile ilgili ayrıntılı bilgi adresinde bulunmaktadır. Bu ekonometri ders notları setinin tamamına adresinden ulaşılabilir. A. Talha Yalta TOBB Ekonomi ve Teknoloji Üniversitesi Ekim 2011
3 Ders Planı 1 Bazı Kuramsal Olasılık Dağılımları
4 Normal Dağılım Normal Dağılım Ortalaması ve varyansı sırasıyla µ ve σ 2 olan normal dağılım (normal distribution) aşağıdaki OYİ ile gösterilir: f (x) = 1 ( σ 2π exp 1 2 (x µ) 2 σ 2 ), x Normal dağılan bir rd, X N(µ, σ 2 ) şeklinde gösterilir. Normal eğri altında kalan alanın yaklaşık yüzde 68 i µ ± σ değerleri, yüzde 95 kadarı µ ± 2σ değerleri ve yüzde 99,7 kadarı da µ ± 3σ değerleri arasında yer alır.
5 Ölçünlü Normal Dağılım Ölçünlü Normal Dağılım Ölçünlü normal dağılım (standard normal distribution) için µ = 0, σ 2 = 1 dir ve X N(0, 1) diye gösterilir. OYİ si şudur: f (x) = 1 exp ( 12 ) Z 2, Z = x µ 2π σ Formülde görülen exp işlemcisi, e üzeri anlamına gelir. µ ve σ 2 değerleri verili ve normal dağılan X rd si, Z = x µ σ formülü ile ölçünlü normal değişken Z ye dönüştürülür. Örnek: X N(8, 4) olsun. X in [6, 12] arası değerler alma olasılığı için Z 1 = = 1 ve Z 2 = = 2 dir. Çizelgeden P(0 Z 2) = 0,4772 olduğunu görürüz. Bakışım nedeniyle P( 1 Z 0) = 0,3413 bulunur. Demek ki istenilen olasılık 0, ,4772 = 0,8185 tir.
6 Ölçünlü Normal Dağılım Örnek ÖLÇÜNLÜ NORMAL DAĞILIM 0,4 N(0, 1) 0,35 0,3 Yoğunluk 0,25 0,2 0,15 0,1 0, X
7 Normal Dağılımın Özellikleri Normal dağılıma ilişkin bazı özellikler şunlardır: 1 Normal dağılımın 3. ve 4. merkezi beklemleri şöyledir: 3. merkezi beklem: E(X µ) 3 = 0 4. merkezi beklem: E(X µ) 4 = 3σ 4 Buna göre, ölçünlü normal dağılımın basıklığı 3 tür. Ayrıca çarpıklığı 0 olduğu için bakışımlı (symmetric) olur. 2 Normal dağılan bir rd nin tek sayılı tüm beklemleri sıfırdır. 3 Normal rd lerin doğrusal bileşimleri de normal dağılır. Örnek: X 1 N(µ 1, σ1 2) ve X 2 N(µ 2, σ2 2 ) iki bağımsız rd olsun. Eğer Y = ax 1 + bx 2 ise, Y N [ (aµ 1 + bµ 2 ), (a 2 σ b2 σ 2 2 )] olur.
8 Merkezi Limit Kanıtsavı Normal dağılıma ilişkin önemli bir nokta da Merkezi limit kanıtsavı (central limit theorem) ya da kısaca MLK (CLT) konusudur. Merkezi limit kanıtsavı günümüz olasılık kuramının yapı taşlarından biridir. MLK yi kısaca açıklamak için, bağımsız ve benzer şekilde dağılan (ortalama = µ, varyans = σ 2 ) n sayıda X 1,..., X n rastsal değişken varsayalım. Kanıtsava göre bu rd ler, n sonsuza giderken ortalaması µ ve varyansı da σ 2 /n olan normal dağılıma yakınsarlar. Başlangıçtaki OYİ ne olursa olsun bu sonuç geçerlidir.
9 χ 2 (Ki-Kare) Dağılımı χ 2 (Ki-Kare) Dağılımı Z 1, Z 2, Z 3,..., Z k, k sayıda ölçünlü normal değişken olsun. Bu durumda k χ 2 = rastsal değişkeni, χ 2 şeklinde gösterilen ki-kare (chi-square) dağılımına uyar. i=1 Buradaki k değeri, ki-kare değişkenine ait serbestlik derecesi (degrees of freedom) ya da kısaca sd (df) olarak tanımlanır. Z 2 i
10 χ 2 (Ki-Kare) Dağılımının Özellikleri Ki-kare dağılımına ilişkin bazı özellikler şunlardır: 1 Ki-kare, sağa çarpık (right-skewed) bir dağılımdır ancak serbestlik derecesi arttıkça bakışıma yaklaşır. 2 k sd li bir χ 2 dağılımının ortalaması k, varyansı ise 2k dir. 3 Eğer Z 1 ve Z 2 iki bağımsız dağılan ki-kare değişkeniyse, Z 1 + Z 2 toplamı da sd = k 1 + k 2 olan bir χ 2 değişkeni olur.
11 χ 2 (Ki-Kare) Dağılımı Örnek Kİ-KARE DAĞILIMI 0,5 0,45 0,4 Ki-kare(2) Ki-kare(5) Ki-kare(10) 0,35 Yoğunluk 0,3 0,25 0,2 0,15 0,1 0, X
12 Student T Dağılımı Student T Dağılımı Z 1 bir ölçünlü normal değişken ve Z 2 de Z 1 den bağımsız bir ki-kare değişkeni olsun. Bu durumda: t = Z 1 Z2 /k değişkeni, k sd ile Student t (Student s t) dağılımına uyar. Neredeyse tüm çalışmalarını Student takma adı ile yazmış olan istatistikçi William Sealy Gosset ( ) tarafından bulunmuştur. t dağılımı da normal dağılım gibi bakışımlı ancak daha basıktır. Sd si yükseldikçe normal dağılıma yakınsar. Ortalaması 0, varyansı ise k > 2 için k/(k 2) dir.
13 Student T Dağılımı Örnek STUDENT T DAĞILIMI 0,5 0,45 0,4 t(120) ~ Normal t(120) t(5) t(1) 0,35 Yoğunluk 0,3 0,25 0,2 0,15 0,1 0, X
14 Fisher-Snedecor F Dağılımı Fisher-Snedecor F Dağılımı Z 1 ve Z 2, k 1 ve k 2 sd li bağımsız iki ki-kare değişkeni olsun. Bu durumda: F = Z 1/k 1 Z 2 /k 2, k 1 ve k 2 sd li bir F dağılımı (F distribution) biçiminde dağılır.
15 Fisher-Snedecor F Dağılımının Özellikleri F dağılımına ilişkin bazı özellikler ise şunlardır: 1 Ki-kare dağılımı gibi F dağılımı da sağa çarpıktır ama k 1 ve k 2 büyüdükçe F dağılımı da normale yakınsar. 2 k 2 > 2 için F dağılımının ortalaması şöyledir: µ = k 2 (k 2 2) 3 k 2 > 4 için F dağılımının varyansı şöyledir: σ 2 = 2k 2 2 (k 1+k 2 2) k 1 (k 1 2) 2 (k 2 4) 4 F ile t dağılımları arasında şu ilişki vardır: t 2 k = F 1,k 5 Eğer payda sd si k 2 yeterince büyükse F ve ki-kare dağılımları arasında şu ilişki vardır: k 1 F k1,k 2 χ 2 k 1
16 Fisher-Snedecor F Dağılımı Örnek 1,6 1,4 F DAĞILIMI F(50, 50) F(10, 10) F(50, 10) 1,2 1 Yoğunluk 0,8 0,6 0,4 0, X
17 Önümüzdeki Dersin Konusu Önümüzdeki ders İstatistiksel çıkarsama
Kukla Değişkenlerle Bağlanım
Kukla Değişkenlerle Bağlanım Kukla Değişken Kullanım Şekilleri Ekonometri 1 Konu 29 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0
İki Değişkenli Bağlanım Modelinin Uzantıları
İki Değişkenli Bağlanım Modelinin Uzantıları Hesaplamaya İlişkin Konular Ekonometri 1 Konu 19 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike
Ekonometri 2 Ders Notları
Ekonometri 2 Ders Notları A. TALHA YALTA TÜRKİYE BİLİMLER AKADEMİSİ AÇIK DERS MALZEMELERİ PROJESİ SÜRÜM 2.0 EKİM 2011 İçindekiler 1 Dizey Cebirinin Gözden Geçirilmesi 1 1.1 Dizeylere İlişkin Temel Kavramlar..................
KATEGORİSEL VERİ ANALİZİ (χ 2 testi)
KATEGORİSEL VERİ ANALİZİ (χ 2 testi) 1 Giriş.. Değişkenleri nitel ve nicel değişkenler olarak iki kısımda inceleyebiliriz. Şimdiye kadar hep nicel değişkenler için hesaplamalar ve testler yaptık. Fakat
Nitel Tepki Bağlanım Modelleri
Nitel Tepki ve Nitel Tepki Bağlanım Modelleri Nitel Tepki ve Ekonometri 2 Konu 17 Sürüm 2,0 (Ekim 2011) Nitel Tepki ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial
İki Değişkenli Bağlanım Çıkarsama Sorunu
İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
Nitel Tepki Bağlanım Modelleri
Doğrusal-Dışı Yaklaşım ve Nitel Tepki Bağlanım Modelleri Doğrusal-Dışı Yaklaşım ve Ekonometri 2 Konu 18 Sürüm 2,0 (Ekim 2011) Doğrusal-Dışı Yaklaşım ve UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons
İYON DEĞİŞİMİ AMAÇ : TEORİK BİLGİLER :
Gazi Üniversitesi Kimya Mühendisliği Bölümü KM 482 Kimya Mühendisliği Laboratuvarı III DENEY NO : 3b İYON DEĞİŞİMİ AMAÇ : İyon değişim kolonunun yükleme ve/veya geri kazanma işlemi sırasındaki davranışını
6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.
6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği
Normallik Varsayımı ve Ençok Olabilirlik Yöntemi
Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike
Almanca da Sıfatlar (Adjektive) ve Sıfat Tamlamaları - Genç Gelişim Kişisel Gelişim
- I. SIFATLAR Varlıkların durumlarını, renklerini, biçimlerini, sayılarını, sıralarını, yerlerini vs. özelliklerini belirten sözcüklere sıfat denir. Sıfatlar, isimlerden önce gelir ve isimlerle birlikte
Vektör Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr.Grv.Dr.Nevin ORHUN
Vektör Uzayları Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; Matematik ve mühendislikte birçok uygulamaları olan cebirsel yapılardan vektör uzayı ve alt uzay kavramlarını
OPERATÖRLER BÖLÜM 4. 4.1 Giriş. 4.2. Aritmetik Operatörler
BÖLÜM 4. OPERATÖRLER 4.1 Giriş Turbo Pascal programlama dilinde de diğer programlama dillerinde olduğu gibi operatörler, yapılan işlem türüne göre aritmetik, mantıksal ve karşılaştırma operatörleri olmak
DERS 1. ki De i kenli Do rusal Denklem Sistemleri ve Matrisler
DERS ki De i kenli Do rusal Denklem Sistemleri ve Matrisler.. Do rusal Denklem Sistemleri. Günlük a amda a a dakine benzer pek çok problemle kar la r z. Problem. Manavdan al veri eden bir mü teri, kg armut
İki Değişkenli Bağlanım Modelinin Uzantıları
İki Değişkenli Bağlanım Modelinin Uzantıları Sıfır Noktasından Geçen Bağlanım Ekonometri 1 Konu 18 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial
Cebir Notları. Bağıntı. 1. (9 x-3, 2) = (27, 3 y ) olduğuna göre x + y toplamı kaçtır? 2. (x 2 y 2, 2) = (8, x y) olduğuna göre x y çarpımı kaçtır?
www.mustafayagci.com, 003 Cebir Notları Mustafa YAĞCI, [email protected] (a, b) şeklinde sıra gözetilerek yazılan ifadeye sıralı ikili Burada a ve b birer sayı olabileceği gibi herhangi iki nesne
TEMEL İSTATİSTİK KAVRAMLAR
TEMEL İSTATİSTİK KAVRAMLAR Y.Doç.Dr. İbrahim Turan Mart 2011 İSTATİSTİK NEDİR? Bir olay veya olguyu sayısal verilere dayanarak açıklamaktır. Metod Olarak İstatistik: İstatistiğe konu olabilen olaylara
MICROSOFT EXCEL SOLVER PROGRAMI. Y. Doç. Dr. Y. İlker Topcu
MICROSOFT EXCEL SOLVER PROGRAMI Y. Doç. Dr. Y. İlker Topcu DOĞRUSAL PROGRAMLAMA MODELLERİNİ HESAP TABLOLARI (SPREADSHEETS) İLE ÇÖZME Hesap tablosu programlarının (Microsoft Excel, Lotus 1-2-3 ve Borland's
Türk Musikisinde Makamların 53 Ton Eşit Tamperamana Göre Tanımlanması Yönünde Bir Adım
Türk Musikisinde Makamların 53 Ton Eşit Tamperamana Göre Tanımlanması Yönünde Bir Adım Türk musikisinde makam tanımları günümüzde çoğunlukla Çargâh makamı temelinde 24 perdeli Arel Ezgi Uzdilek () sistemine
İstatistiksel Kavramların Gözden Geçirilmesi
İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike
Görsel Tasarım İlkelerinin BÖTE Bölümü Öğrencileri Tarafından Değerlendirilmesi
Görsel Tasarım İlkelerinin BÖTE Bölümü Öğrencileri Tarafından Değerlendirilmesi Cahit CENGİZHAN Duygu ATEŞ Öğretim Görevlisi Marmara Üniversitesi Atatürk Eğitim Fakültesi Bilgisayar ve Öğretim Teknolojileri
Temel Kavramlar. Bağlanım Çözümlemesi. Temel Kavramlar. Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011)
Bağlanım Çözümlemesi Temel Kavramlar Ekonometri 1 Konu 6 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
CSD-OS İşletim Sistemi Projesi - Fonksiyon Açıklama Standardı
CSD-OS İşletim Sistemi Projesi - Fonksiyon Açıklama Standardı C ve Sistem Programcıları Derneği Kasım 2002 İçindekiler: 1 -GIRIŞ 3 1.1.NEDEN STANDARTLARA IHTIYACIMIZ VAR? 3 2 -İMLA VE YAZIM 3 2.1.TÜRKÇE
Çok Katlı Yapılarda Perdeye Saplanan Kirişler
Prof. Dr. Günay Özmen Bilsar A.Ş. [email protected] Çok Katlı Yapılarda Perdeye Saplanan Kirişler Doç. Dr. Kutlu Darılmaz İTÜ İnşaat Fakültesi [email protected] Şekil 1 - Tipik kat kalıp planı
Ekonometrinin Konusu ve Yöntembilimi. Ekonometri Nedir? Ekonometrinin Konusu ve Yöntembilimi. Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011)
Ekonometri Nedir? ve Yöntembilimi Ekonometri 1 Konu 4 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) lisansı
Ders içeriği (10. Hafta)
Ders içeriği (10. Hafta) 10. Makro ekonomik kavramlar 10.1. Mikro Ekonomi ve Makro Ekonomi Ayrımı 10.2. Makro Ekonominin İlgilendiği Konular 10.3. Ekonomik Süreç 10.1. Mikro Ekonomi ve Makro Ekonomi Ayrımı
Faaliyet Alanları. 22 Aralık 2014. Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü
22 Aralık 214 Yıldız Teknik Üniversitesi Bilgisayar Mühendisliği Bölümü 214 eğitim yılında doldurulmuş olan Bölümü Değerlendirme Anket Formları Raporu. Öğrencilerin staj yaptıkları firmaların doldurduğu
Bilardo: Simetri ve Pisagor Teoremi
Bilardo: Simetri ve Pisagor Teoremi Meral Tosun 30 Ağustos 2015 Bilardo, uzunluğu genişliğinin iki katı olan masalarda en az 3 top ile oynanır. Oyundaki toplam top sayısına ve vuruş kurallarına göre değişik
Zaman Serileri Ekonometrisine Giriş
Zaman Serileri Ekonometrisine Giriş Yöney Özbağlanım Modeli Ekonometri 2 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
Soma Belediye Başkanlığı. Birleşme Raporu
Soma Belediye Başkanlığı Birleşme Raporu 2012 i GİRİŞ 1 MEVZUAT 2 2 SOMA NIN NÜFUSU 3 SOMA-TURGUTALP ARASINDAKİ MESAFE 4 GENEL İMAR DURUMU 5 TEMEL ALT YAPI HİZMETLERİ 8 DİĞER HUSUSLAR 13 25. Coğrafi Durum;
ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI
ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir
http://acikogretimx.com
09 S 0- İstatistik sorularının cevaplanmasında gerekli olabilecek tablolar ve ormüller bu kitapçığın sonunda verilmiştir.. şağıdakilerden hangisi istatistik birimi değildir? ) Doğum B) ile C) Traik kazası
İstatistiksel Kavramların Gözden Geçirilmesi
İstatistiksel Kavramların Gözden Geçirilmesi Anlamlı Basamaklar Konusu ve Olasılık Ekonometri 1 Konu 1 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial
Ekonometri Ders Notları İçin Önsöz
Ekonometri Ders Notları İçin Önsöz Yrd. Doç. Dr. A. Talha YALTA Ekonometri Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0
-Bursa nın ciroları itibariyle büyük firmalarını belirlemek amacıyla düzenlenen bu çalışma onuncu kez gerçekleştirilmiştir.
Bursa nın 25 Büyük Firması araştırması; -Bursa nın ciroları itibariyle büyük firmalarını belirlemek amacıyla düzenlenen bu çalışma onuncu kez gerçekleştirilmiştir. -Bu çalışma Bursa il genelinde yapılmış,
Zaman Serileri Ekonometrisine Giriş
Zaman Serileri Ekonometrisine Giriş Düzmece Bağlanım ve Eştümleşim Ekonometri 2 Konu 25 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike
SEK Tahmincilerinin Türetilmesi. SEK Tahmincilerinin Türetilmesi. Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011)
İki Değişkenli Bağlanım Modeli SEK Tahmincilerinin Türetilmesi Ekonometri 1 Konu 8 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0
ENF-106 C Programlama Dili Ders İçeriği. Grafik fonksiyonları C Programlama Dili Ders Notları Dr. Oğuz ÜSTÜN
ENF-106 C Programlama Dili Ders İçeriği Programlamaya giriş ve algoritma kavramları Basit ve karmaşık veri tipleri Program kontrol komutları (Döngü ve şart yapıları) Diziler ve karakterler Pointerler Fonksiyonlar
Harita Projeksiyonları
Harita Projeksiyonları Bölüm 4: Konik Projeksiyonlar Doç.Dr. İ. Öztuğ BİLDİRİCİ Koni en genel projeksiyon yüzeyidir. Koninin yüksekliği sıfır alınırsa düzlem, sonsuz alınırsa silindir elde edilir. Genel
Bölüm 2. Faiz Oranları. 2.1 Bugünkü Değer Kavramı (Present Discounted Value)
Bölüm 2 Faiz Oranları Faiz oranlarındaki değişikliklerin ekonomide çok çeşitli etkileri olacağı için faiz oranları yakından takip edilmektedir. Faiz oranları tüketim, tasarruf, yatırım kararlarını etkilediği
Uygulama: Keynesçi Tüketim Kuramı. Ekonometri Nedir? Uygulama: Keynesçi Tüketim Kuramı. Ekonometri 1 Konu 5 Sürüm 2,0 (Ekim 2011)
Ekonometri Nedir? Uygulama: Keynesçi Tüketim Kuramı Ekonometri 1 Konu 5 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC
Çevreye Duyarlı Kapalı Çevrim Tedarik Zinciri Ağı Tasarımı İçin Karma Tamsayılı Bir Doğrusal Programlama Modeli. Kazım KARABOĞA DOÇ. DR.
Çevreye Duyarlı Kapalı Çevrim Tedarik Zinciri Ağı Tasarımı İçin Karma Tamsayılı Bir Doğrusal Programlama Modeli Kazım KARABOĞA DOÇ. DR. TURAN PAKSOY Geri Dönüşüm Merkezi (2) Maliye (TL/ Ton) 0 0,5 1 1,5
ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)
ÖĞENME LNI : FZKSEL OLYL ÜNTE 3 : YŞMIMIZDK ELEKTK (MEB) C SE E PLEL BĞLM (5 ST) 1 Dirençlerin Bağlanması 2 Özdeş mpullerin Bağlanması 3 (*) Özdeş Olmayan mpullerin Bağlanması : 4 Kısa Devre 5 Pillerin
Eşanlı Denklem Modelleri
Eşanlı Denklem Modelleri Tek Denklemli Modellerde Eşanlılık Ekonometri 2 Konu 22 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
2013-2014 SINIF GEÇME HESABI
2013-2014 SINIF GEÇME HESABI TÜM DERSLERDEN BAŞARILI İSE YILSONU BAŞARI PUANI >= 50 İSE YILSONU BAŞARI PUANI < 50 İSE YILSONU BAŞARI PUANI < 50 İSE YILSONU BAŞARI PUANI < 50 İSE DOĞRUDAN SINIF GEÇER. DOĞRUDAN
Neden Ayrı Bir Bilim Dalı? Ekonometri; kuramsal iktisat, matematiksel iktisat ve iktisadi istatistikten ayrı bir bilim dalıdır çünkü:
Bölüm 2 Ekonometri Nedir? 2.1 Ekonometri Nedir? 2.1.1 Ekonometrinin Konusu Ekonometri Sözcük anlamı ile ekonometri, ekonomik ölçüm demektir. Matematiksel araç ve istatistiksel hesaplama yöntemlerinin ekonomi
RİSK ANALİZİ VE. İşletme Doktorası
RİSK ANALİZİ VE MODELLEME İşletme Doktorası Programı Bölüm - 1 Portföy Teorisi Bağlamında Risk Yönetimi ile İlgili Temel Kavramlar 1 F23 F1 Risk Kavramı ve Riskin Ölçülmesi Risk istenmeyen bir olayın olma
PAS oyununda, kırmızı (birinci oyuncu) ve beyaz (ikinci oyuncu) şeklinde adlandırılan 2 oyuncu vardır. Oyun şu şekilde oynanır:
PAS (PArola Serisi) Kişi Sayısı: 2 Yaş grubu: 10 yaş ve üstü Oyun Türü: Şifreleme PAS oyununda, kırmızı (birinci oyuncu) ve beyaz (ikinci oyuncu) şeklinde adlandırılan 2 oyuncu vardır. Oyun şu şekilde
KONTROL ORGANI VE S STEMLER :
KONTROL ORGANI VE S STEMLER : Open and Closed Loop Control(Aç k ve kapal Çevrim) KONTROL STEMLER : 1) Aç k çevrim Kontrol sistemleri 2) Kapal Çevrim Kontrol Sistemleri Kontrol Sistemlerin kullan lmas ve
ĐHRACAT AÇISINDAN ĐLK 250 Prof. Dr. Metin Taş
1 ĐHRACAT AÇISINDAN ĐLK 250 Prof. Dr. Metin Taş Gazi Üniversitesi Arş. Gör. Özgür Şahan Gazi Üniversitesi 1- Giriş Bir ülke ekonomisine ilişkin değerlendirme yapılırken kullanılabilecek ölçütlerden birisi
Alıştırma Toleransı -TERMİNOLOJİ
Alıştırma Toleransı -TERMİNOLOJİ Mil: Dış şekli belirtir. Silindirik olmayan şekilleri de kapsar. Normal Mil (Esas Mil): Bir alıştırma ş sisteminde esas olark seçilen mil. Delik: İç şekli belirtir. Silindirik
Zaman Serileri Ekonometrisine Giriş
Zaman Serileri Ekonometrisine Giriş Box-Jenkins Yöntemi Ekonometri 2 Konu 26 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported
Eşanlı Denklem Modelleri
Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC
TEZSİZ YÜKSEK LİSANS PROJE ONAY FORMU
I TEZSİZ YÜKSEK LİSANS PROJE ONAY FORMU Eğitim Bilimleri Anabilim Dalı Eğitim Yönetimi, Denetimi, Planlaması ve Ekonomisi Bilim Dalı öğrencisi Adem AKYOL tarafından hazırlanan Denizli İli Honaz İlçesinde
2014 LYS MATEMATİK. P(x) x 2 x 3 polinomunda. 2b a ifade- x lü terimin. olduğuna göre, katsayısı kaçtır? değeri kaçtır? ifadesinin değeri kaçtır? 4.
04 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. P() polinomunda katsayısı kaçtır? 4 lü terimin. ifadesinin değeri kaçtır? 4. yy y 4y y olduğuna göre, + y toplamının değeri kaçtır?
KORELASYON VE REGRESYON ANALİZİ
KORELASON VE REGRESON ANALİZİ rd. Doç. Dr. S. Kenan KÖSE İki ya da daha çok değişken arasında ilişki olup olmadığını, ilişki varsa yönünü ve gücünü inceleyen korelasyon analizi ile değişkenlerden birisi
Altın sandığım bileziğim neden karardı?
Altın sandığım bileziğim neden karardı? Kimya konusu: Karışımlar Konu başlığı ile kimya konusu arasındaki ilişki: Soy metal olan altının gümüş ile karıştırıldığında gümüşün havadaki SO2 ile etkileşimiyle
FON DENETİM YMM. VE BAĞIMSIZ DENETİM A. Ş. nin müşterilerine özel bir hizmetidir. İzinsiz çoğaltılamaz. İktibas edilemez.
S İ R K Ü L E R R A P O R FON DENETİM YMM. VE BAĞIMSIZ DENETİM A. Ş. nin müşterilerine özel bir hizmetidir. İzinsiz çoğaltılamaz. İktibas edilemez. SİRKÜLER TARİHİ : 20 / 03 / 2016 SİRKÜLER SAYISI : 2016
İST60 TELESKOBU PERFORMANS DEĞERLENDİRMESİ ve İLK GÖZLEMLER
İST6 TELESKOBU PERFORMANS DEĞERLENDİRMESİ ve İLK GÖZLEMLER Mehmet TÜYSÜZ,2, Tunç ŞENYÜZ 2, Çağlar PÜSKÜLLÜ,2 Çanakkale Onsekiz Mart Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü 2 Çanakkale Onsekiz
İstatistiksel Kavramların Gözden Geçirilmesi
Bölüm 1 İstatistiksel Kavramların Gözden Geçirilmesi 1.1 Anlamlı Basamaklar ve Yuvarlama Kuralları Anlamlı Basamaklar Ondalık bir sayının anlamlı basamakları (significant digits), o sayının kesinlik ve
Doç. Dr. Selçuk BALI Giresun Üniversitesi, İİBF İşletme Bölümü, Muhasebe ve Finansman [email protected] İbrahim ATİKSOY
ISSN: 2149-9225 Yıl: 2, Sayı: 4, Haziran 2016, s. 44-54 Doç. Dr. Selçuk BALI Giresun Üniversitesi, İİBF İşletme Bölümü, Muhasebe ve Finansman [email protected] İbrahim ATİKSOY Giresun Üniversitesi
MALZEME BİLGİSİ. Atomlar Arası Bağlar
MALZEME BİLGİSİ Dr.- Ing. Rahmi ÜNAL Konu: Atomlar Arası Bağlar 1 Giriş Atomları bir arada tutarak iç yapıyı oluştururlar Malzemelerin mukavemeti, elektriksel ve ısıl özellikleri büyük ölçüde iç yapıya
İstatistiksel Kavramların Gözden Geçirilmesi
İstatistiksel Kavramların Gözden Geçirilmesi Yrd. Doç. Dr. A. Talha YALTA Ekonometri 1 Ders Notları Sürüm 2,0 (Ekim 2011) Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike
SANAYİNİN KÂRLILIK ORANLARI ÖNEMLİ ÖLÇÜDE AZALDI
SANAYİNİN KÂRLILIK ORANLARI ÖNEMLİ ÖLÇÜDE AZALDI 23 Kasım 2013 Türkiye İşveren Sendikaları Konfederasyonu (TİSK), hazırladığı araştırmaya dayalı olarak aşağıdaki görüşleri bildirdi: 2001 Krizi sonrasında
2013 YGS MATEMATİK Soruları
0 YGS MTEMTİK Soruları. 0 YGS + m = olduğuna göre, m kaçtır? ) ) ) D) 6 E) 7. 0 YGS a ve b birer gerçel sayı olmak üzere, a a = b b a.b = olduğuna göre, a + b toplamı kaçtır? ) 6 ) ) D) E). 0 YGS.(0,)
Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez. A kümesinin eleman sayısı s(a) ya da n(a) ile gösterilir.
KÜMELER Küme : Nesnelerin iyi tanımlanmış listesine küme denir ve genellikle A, B, C gibi büyük harflerle gösterilir. Kümeyi oluşturan öğelere, kümenin elemanı denir. a elemanı A kümesine ait ise,a A biçiminde
Çukurova Üniversitesi Biyomedikal Mühendisliği
Çukurova Üniversitesi Biyomedikal Mühendisliği BMM212 Elektronik-1 Laboratuvarı Deney Föyü Deney#9 Alan Etkili Transistörlü Kuvvetlendiriciler Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2016
İDARİ VE MALİ İŞLER DAİRE BAŞKANI 25 TEMMUZ 2015 KİK GENEL TEBLİĞİ VE HİZMET ALIMLARI UYGULAMA YÖNETMELİĞİNDE YAPILAN DEĞİŞİKLİKLER DURSUN AKTAĞ
İDARİ VE MALİ İŞLER DAİRE BAŞKANLIĞI 25 TEMMUZ 2015 KİK GENEL TEBLİĞİ VE HİZMET ALIMLARI UYGULAMA YÖNETMELİĞİNDE YAPILAN DEĞİŞİKLİKLER DURSUN AKTAĞ DAİRE BAŞKANI Kamu İhale Kurumu KİK Genel Tebliğinin
10. SINIF KONU ANLATIMLI. 1. ÜNİTE: MADDE ve ÖZELLİKLERİ 1. Konu BASINÇ ETKİNLİK ve TEST ÇÖZÜMLERİ
10. INI KONU ANLATIMLI 1. ÜNİTE: MADDE ve ÖZELLİKLERİ 1. Konu BAINÇ ETKİNLİK ve TET ÇÖZÜMLERİ Ünite 1 Madde ve Özellikleri 1. Ünite 1. Konu (Basınç) A nın Çözümleri b. 1. Basınç kuvveti, yüzeye dik uygulanan
FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI
FORMAL AFET EĞİTİMLERİNİN FARKINDALIK ve TUTUM ÜZERİNE ETKİLERİNİN KOCAELİ ÜNİVERSİTESİ ÖĞRENCİLERİ ÜZERİNDE ARAŞTIRILMASI Serpil GERDAN Oya YAZICI ÇAKIN Kocaeli Üniversitesi 2009 1/15 CEVAP ARANAN SORULAR
Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon
Olasılık ve İstatistik Dersinin Öğretiminde Deney ve Simülasyon Levent ÖZBEK Fikri ÖZTÜRK Ankara Üniversitesi Fen Fakültesi İstatistik Bölümü Sistem Modelleme ve Simülasyon Laboratuvarı 61 Tandoğan/Ankara
ÖDEMELER DENGESİ TABLOSUNDAKİ DİĞER MAL VE HİZMET GELİRLERİ KALEMİNİN İÇERİĞİ VE HESAPLAMA YÖNTEMİNE İLİŞKİN AÇIKLAMA
ÖDEMELER DENGESİ TABLOSUNDAKİ DİĞER MAL VE HİZMET GELİRLERİ KALEMİNİN İÇERİĞİ VE HESAPLAMA YÖNTEMİNE İLİŞKİN AÇIKLAMA İçindekiler I- Giriş... 2 II- Diğer Mal ve Hizmet Gelirlerinin Kapsamı... 2 III- Diğer
Test Geliştirme. Testin Amacı. Ölçülecek Özelliğin Belirlenmesi 08.04.2014. Yrd. Doç. Dr. Çetin ERDOĞAN 08.04.2014 3 08.04.
BÖLÜM 7 Test Geliştirme Yrd. Doç. Dr. Çetin ERDOĞAN [email protected] Test Geliştirme Testler gözlenemeyen özelliklerin gözlenebilir hale getirilmesi veya hedef kazanımların kazandırılıp kazandırılmadığını
KONYA TİCARET ODASI İSTİHDAM İZLEME BÜLTENİ
HABER BÜLTENİ 05.09.2012 Sayı 7 Konya Ticaret Odası (KTO) İstihdam İzleme Bülteni, Sosyal Güvenlik Kurumu (SGK), Türkiye İstatistik Kurumu (TÜİK) ve Türkiye İş Kurumu (İŞKUR) verilerinin bir araya getirilerek
Işık hızının ölçümü 2.1.01-01
Geometrik Optik Optik -01 Neler öğreneceksiniz? Kırınım indisi Dalga boyu Frekans Faz Modülasyon Elektrik alanı sabiti Manyetik alan sabiti Prensip: Işığın yoğunluğu bir yüksek frekans ile değiştirilir
TOPLAM TALEP TOPLAM ARZ SORULAR. Dr. Süleyman BOLAT 1
TOPLAM TALEP TOPLAM ARZ SORULAR Dr. Süleyman BOLAT 1 1- Aşağıdakilerden hangisi, mal ve para piyasasının eşanlı dengede olduğu fiyat düzeyihasıla bileşimlerini gösterir? A) Toplam arz eğrisi B) IS eğrisi
[ 1 i 6 2i. [ a b. Örnek...3 : Örnek...4 : 0 0 0. Örnek...5 : 1 3 2. Örnek...6 : i sanal sayı birimi olmak üzere, i. Örnek...1 : 3 4 2 8 =?
A=[a i j] r x r bir kare matris ise bu kare matrisi reel bir sayıya eşleyen fonksiyona determinant denir. Örnek...3 : i sanal sayı birimi olmak üzere, [ 1 i 6 2i 3+i 2+2i] matrisinin determinantı kaça
BİR SAYININ ÖZÜ VE DÖRT İŞLEM
ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.
Yrd. Doç. Dr. Hüseyin Odabaş
Yrd. Doç. Dr. Hüseyin Odabaş Araştırma tasarımı, araştırma konusunu belirleme sürecinden raporlama sürecine kadar araştırmayı tanımlayan bütün unsurları inceleme ve yürütülecek bütün adımları planlama
TÜRKİYE CUMHURİYETİ ORDU ÜNİVERSİTESİ 2012 YILI KURUMSAL MALİ DURUM VE BEKLENTİLER RAPORU
TÜRKİYE CUMHURİYETİ ORDU ÜNİVERSİTESİ 212 YILI KURUMSAL MALİ DURUM VE BEKLENTİLER RAPORU TEMMUZ 212 1 İÇİNDEKİLER SUNUŞ... 3 I. Ocak - Haziran 212 Dönemi Bütçe Uygulama Sonuçları... 4 A. Bütçe Giderleri...
T.C. ÇANAKKALE ONSEK Z MART ÜN VERS TES
T.C. ÇANAKKALE ONSEK Z MART ÜN VERS TES Çanakkale Onsekiz Mart Üniversitesi Strateji Geli tirme Daire Ba kanl Tel: (286) 218452 Faks: (286) 218451 E-posta: [email protected] http://strateji.comu.edu.tr/
GAZİ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİGİ BÖLÜMÜ KM 482 KİMYA MÜHENDİSLİĞİ LABORATUVARI III. DENEY 1b.
GAZİ ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ KİMYA MÜHENDİSLİGİ BÖLÜMÜ KM 482 KİMYA MÜHENDİSLİĞİ LABORATUVARI III DENEY 1b. SICAKLIK KONTROLÜ Denevin Amacı Kontrol teorisini sıcaklık kontrol sistemine
Bölüm 6 Tarımsal Finansman
Bölüm 6 Tarımsal Finansman 1. Tarımsal Finansman 2. Tarımsal Krediler İçerik 1 FİNANSMAN VE FONKSİYONLARI İşletmelerin öz varlıklarını güçlendirmek olan finansman önceleri sadece sermaye temini olarak
I. HSBS KURUM AYARLARI
HALK SAĞLIĞI BİLGİ SİSTEMİ(HSBS) I. HSBS KURUM AYARLARI HSBS sistemine giriş yapıldıktan sonra kurum ayarlarına tıklanarak kuruma ait gerekli bilgiler kurum sorumlusu tarafından bir defaya mahsus olarak
Rasyonel Beklentiler Teorisinin Politika Yansımaları ve Enflasyonla Mücadele
Bölüm 12 Rasyonel Beklentiler Teorisinin Politika Yansımaları ve Enflasyonla Mücadele Geçen haftaki derste rasyonel beklentiler kavramını açıklamış ve bu kavramla birlikte ortaya çıkan Yeni Klasik ve Yeni
Dizey Cebirinin Gözden Geçirilmesi
Bölüm 1 Dizey Cebirinin Gözden Geçirilmesi 1.1 Dizeylere İlişkin Temel Kavramlar 1.1.1 Tanımlar Dizey cebiri kullanmaksızın k değişkenli bir bağlanım modeliyle uğraşmak son derece karmaşık bir iştir. Burada,
Şirket olma zorunluluğu yoktur. Büyük defter tutma zorunluluğu yoktur. İster Ticaret odasına,
firmalar sıfatını nasıl kazanır? şirket mi olmak lazım? Büyük deftere mi tabi olması l azım? ikinci sınıf işletmeler firma olabilir mi? Basit usulde rgi mükllefi olan işletmelerde firma olabilir mi? İhracatçı
Örnek 2.1: Tablo 1.1 de verilen ham verilerin aritmetik ortalamasını hesaplayınız.
BÖLÜM 2. MERKEZİ EĞİLİM ve DAĞILIM ÖLÇÜLERİ Merkezi eğilim ölçüleri kitleye ilişkin bir değişkenin bütün farklı değerlerinin çevresinde toplandığı merkezi bir değeri gösterirler. Dağılım ölçüleri ise değişkenin
Kamu Gözetimi, Muhasebe ve Denetim Standartları Kurumundan:
RESMÎ GAZETE 29 Temmuz 2015 Sayı : 29429 Kamu Gözetimi, Muhasebe ve Denetim Standartları Kurumundan: DÜZENLEMEYE DAYALI ERTELEME HESAPLARINA İLİŞKİN TÜRKİYE FİNANSAL RAPORLAMA STANDARDI (TFRS 14) HAKKINDA
Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI
Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü
Üniversiteye Yeni Başlayan Öğrencilerin İnternete İlişkin Görüşleri (Akdeniz Üniversitesi Örneği)
528 Üniversiteye Yeni Başlayan Öğrencilerin İnternete İlişkin Görüşleri (Akdeniz Üniversitesi Örneği) Turgut Fatih KASALAK, Akdeniz Üniversitesi Enformatik Bölümü, [email protected] Evren SEZGİN, Akdeniz
Yarıiletkenler Diyotlar
Yarıiletkenler Diyotlar 1 Bohr Atom Modeli Bu modelde görüldüğü gibi, elektronlar çekirdek etrafında belirli bir yörüngede yer almaktadırlar. Bir malzemenin atomik yapısı, onun iletkenlik ya da yalıtkanlık
Şekil 6.24. İki girişli kod çözücünün blok şeması. Tablo 6.10. İki girişli kod çözücünün doğruluk tablosu. Şekil 6.25. İki girişli kod çözücü devre
6.C. KOD ÇÖZÜCÜLER (DECODER) İkilik sayı sisteminde kodlanmış bilgileri, anlaşılması ve değerlendirilmesi daha kolay bilgilere dönüştüren devrelere Kod Çözücü denir. Kod Çözücüler (Decoder), Kodlayıcıların
ALES / İLKBAHAR 2008 DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ "A" OLARAK CEVAP KÂĞIDINA İŞARETLEMEYİ UNUTMAYINIZ. SAYISAL BÖLÜM SAYISAL-2 TESTİ
LES / İLKHR 008 İKKT! SORU KİTPÇIĞINIZIN TÜRÜNÜ "" OLRK EVP KÂĞIIN İŞRETLEMEYİ UNUTMYINIZ. SYISL ÖLÜM SYISL- TESTİ Sınavın bu bölümünden alacağınız standart puan, Sayısal ğırlıklı LES Puanınızın (LES-SY)
BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1
1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı
CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS. Sampling from a Population
CHAPTER 7: DISTRIBUTION OF SAMPLE STATISTICS Sampling from a Population Örnek: 2, 4, 6, 6, 7, 8 say lar ndan oluşan bir populasyonumuz olsun Bu say lardan 3 elemanl bir örneklem (sample) seçebiliriz. Bu
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1. BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 BASINÇ, AKIŞ ve SEVİYE KONTROL DENEYLERİ DENEY SORUMLUSU Arş.Gör. Şaban ULUS Haziran 2012 KAYSERİ
