ELEKTRONĐK DEVRELER-II LABORATUVARI DENEY FÖYÜ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTRONĐK DEVRELER-II LABORATUVARI DENEY FÖYÜ"

Transkript

1 ĐSTANBUL ÜNĐVERSĐTESĐ ELEKTRĐK ELEKTRONĐK MÜHENDĐSLĐĞĐ ELEKTRONĐK DEVRELER-II LABORATUVARI DENEY FÖYÜ Dr. Sungur AYTAÇ Arş.Gör. Koray GÜRKAN OCAK, 2009

2 DENEYLER DENEY-1: BĐPOLAR TRANSĐSTÖR (BJT) DENEY-2: ĐŞLEMSEL KUVVETLENDĐRĐCĐLER DENEY-3: GERĐBESLEME DENEY-4: ĐŞARET ÜRETEÇLERĐ Deneyler ile ilgili soru, görüş ve önerilerileriniz için ya da adreslerine e-posta gönderebilirsiniz. Bu deney föyündeki bilgiler izinsiz kullanılamaz. 2

3 DENEY-1: BĐPOLAR TRANSĐSTÖR (BJT) ÖN HAZIRLIK 1) v(t) sin(200πt) = işareti veriliyor. a) Đşaretin periyodunu saniye, açısal frekansını radyan/saniye cinsinden hesaplayınız. b) Bu işaret laboratuvarda kullandığınız fonksiyon üretecinin çıkışı ise, üreteç ekranındaki frekans bölmesinde hangi değer okunurdu? c) Đşaretin ortalaması, DC değeri, efektif değeri (RMS) nedir? d) Sinüsoidal işaretin genliği, tepe değeri ve tepeden tepeye değeri nedir? e) Đşaretin DC ve AC kuplajlı osiloskop ekranında nasıl görüneceğini çiziniz. 2) B(t) işareti, ilk sorudaki V(t) ile aynı frekansta, genliği 1 V, DC değeri 2 V ve V(t) ile arasındaki zaman farkı 20 ms (geride) olduğuna göre B(t) nin matematiksel ifadesini yazınız. B(t) ile V(t) işaretini aynı grafik üzerinde gösteriniz. 3) BC548B transistörünün kataloğunu (datasheet) internette bularak inceleyiniz. a) Katalog hangi firmaya aittir? b) Transistörün tipi (PNP ya da NPN) nedir? c) Maksimum kollektör akımı ne kadardır, bu akım aşılırsa ne olur, neden? d) V CEO, V CBO değerleri ne kadardır, bu değerler neyi gösteriyordu? e) DC akım kazancı h FE ne kadardır? Bu değer hangi koşul(lar) için verilmiştir? f) Küçük akım kazancı (h fe ) değeri hangi aralıktadır. Neden sabit bir değer verilmemiştir? g) Transistör için h FE ile h fe aynı şeyleri mi ifade eder, farkları nedir? h) Transistörün bacak bağlantılarını gösteren şemayı çizerek deneye getiriniz. NOT : Deneye gelmeden önce yukaridaki soruları cevaplamış, transistörü, eşdeğer devresinin nasıl çizileceğini, frekans cevabı, Bode eğrisi, faz farkı kavramlarını ve deneyde ne yapacağınızı anlamış olmanız gerekmektedir. Bu konularda eksiğiniz varsa deneyin size bir faydası olmayacaktır. Bu nedenle deney başlangıcında yapılacak kısa sınavda başarılı olamayan öğrenciler deneye devam edemeyeceklerdir. 3

4 DENEY-1: BĐPOLAR TRANSĐSTÖR (BJT) Amaç: Transistör öz eğrisinin ölçülmesi, transistörlü bir kuvvetlendiricinin giriş empedansı, frekans karakteristiği (genlik, faz) ve kazancının incelenmesidir. Gerekli önbilgi: pn eklemi, eşdeğer devre kavramı, kullanımı, Bode diyagramları. Transistör: Transistör Şekil 1-a da gösterildiği gibi peş peşe gelen n, p ve n katmanlarından oluşmuştur ve bu yapıdaki transistör npn tipi transistör olarak isimlendirilir. Şekil 1 Şekil 1-a dan görüldüğü gibi npn transistörü, anotları birbirine bağlanmış iki diyot gibi düşünebilirsiniz. Fakat bu, iki diyodu sırt sırta bağlayarak bir transistör yapabileceğiniz anlamına gelmez. Yapının bir transistör olarak etkin olabilmesi için her iki eklemin aynı yarıiletken içinde, arada, bir süreksizlik olmaksızın yer alması gerekir. Soldaki n bölgesinin sağdakine göre çok daha fazla katkılanmış olduğunu vurgulamak için bu bölge n ile değil de n + ile gösterilmiştir ve emetör olarak isimlendirilir. Sağdaki n bölgesi ise kollektörü oluşturur ve aradaki µm kalınlığındaki p katmanı baz bölgesi olarak isimlendirilir. npn transistörün sembolü Şekil 1 c de verilmiştir. Benzer şekilde p, n ve p katmanlarının arka arkaya getirilmesiyle oluşturulan pnp tipi transistör, yapısı ve sembolü Şekil 1 d,e,f de verilmiştir. 4

5 Emetör (E), baz (B) ve kollektörün (C) elektrotlarından birinin ortak kullanılması ile, Şekil 2 de gösterildiği gibi transistör iki kapılı bir devre elemanı olarak yorumlanabilir. Şekil 2 Şekil 2-a,b,c de sırasıyla emetör, baz ve kollektör montajı olarak isimlendirilen iki kapılılar gösterilmiştir. Şekil 2-d,e,f de ise aynı devreler pnp tipi transistör için verilmiştir. Bu devrelerde elektrotlar arası gerilim ve akımlar ile bunlar için seçilen pozitif yönler gösterilmiştir. Yönlerin seçiminde aşağıdaki kurallar geçerlidir. 1) Transistör sembolünde emetör elektrodu üzerindeki ok emetör akımının pozitif yönünü tanımlar. 2) Transistörü bir düğüm noktası gibi düşünerek I = I + I E B C (1) düğüm denklemini yazabilirsiniz. Bu sayede bilinen emetör akımı yönünden kalkınarak diğer iki elektrodun pozitif akım yönlerini bulabilirsiniz. 3) Transistörün kuvvetlendirici olarak etkin olabilmesi için emetör baz eklemi (kısaca EB eklemi) iletim, baz kollektör eklemi (kısaca BC eklemi) tıkama yönünde kutuplanmalıdır. Bu koşulu sağlayacak şekilde kutuplanmış transistörün aktif kipte çalıştığını söyleriz. Elektrotlar arası gerilimlerin pozitif yönleri aktif kipte çalışan transistörde gerilimler pozitif sayılar olacak şekilde seçilir. Gerilim sembollerinde alt indisteki ilk harf, potansiyeli yüksek olan elektrodu gösterir. 5

6 Transistörün çalışmasını kavramak için aktif kipte kutuplanmış pnp transistörü göz önüne alınız.(şekil 3) Şekil 3 Şimdilik U g değişken gerilim kaynağını ve R C direncini yok sayınız. EB eklemi iletim yönünde kutuplanmış olduğundan emetörden baza delikler enjekte edilir. (Tabi ki bazdan emetöre de elektronlar.) Baza giren delikler kollektöre doğru yayılırlar. Yolculukları sırasında deliklerden bir kısmı bazda bol sayıda bulunan elektronlarla birleşerek yok olurlar. Bu birleşmede harcanan elektronların yerine baz elektrodu üzerinden yeni elektronlar gelir ki bunlar I B baz akımını oluştururlar. BC eklemi tıkama yönünde kutuplandığından BC ekleminin boşaltılmış bölgesinde şekilde gösterilen yönde bir E elektrik alanı vardır. Bazda CB eklemi kıyısına kadar gelebilen delikler bu alan nedeniyle kollektöre doğru sürüklenirler ve I C kollektör akımını yaratırlar. Burada anlatılan mekanizma neden (1) bağıntısının geçerli olduğunu açıklar. Bazda deliklerin birleşerek kaybolmalarının sayısının olabildiğince az olmasını istediğimizden, birleşme olasılığını azaltmak amacıyla baz bölgesini olabildiğince dar yaparız. Böylece I β = C = h FE (2) I B Oranı büyük yapılmaya çalışılır. β veya h FE transistörün kısa devre akım kazancı olarak isimlendirilir. h FE deki E alt indisi bunun emetör montajlı transistörün akım kazancı olduğunu vurgular. Benzer şekilde baz ve kollektör montajlı transistörler için h FB, h FC akım kazançları tanımlanır. Bir transistörün davranışını belirleyebilmek için elektrot akımları ile elektrotlar arası gerilimler arasındaki ilişkileri vermek yeterlidir. Bu ilişkiler derste görmüş olduğunuz gibi karmaşık ilişkilerse de, pek çok uygulama için; I E U EB ~ = I (e UT 1) (3) ES 6

7 yeterince iyi bir yaklaşıklıktır. Artan bir emetör akımı ile orantılı olarak baz akımının da artacağı gerçeğinden hareketle baz akımının da U EB gerilimi ile üstel olarak artacağı açıktır. Emetörden delikler enjekte edilmese de, tıkama yönünde kutuplanmış olan CB ekleminden I CO ile göstereceğimiz bir tıkama yönü akımı akar.(bakınız Şekil 3) Bu akımı da göz önüne alacak olursanız I α I + I C = (4) F E CO Olur ki burada α F, emetör akımının kollektöre ulaşabilen kısmını göstermektedir. Bu ifadede (1) eşitliğini kullanarak I C α 1 F = I B + I CO (5) 1 α F 1 α F Yazılabilir ki bunu (2) ile karşılaştırırsanız β F 1 1 α = (6) F Olması gerektiğini ve bunu kullanarak (5) ifadesinin I β I + (1+ β )I = β I + I C = (7) F B F CO F B Biçiminde yazılabileceğini görürsünüz. Çoğu kere I CBO ihmal edilebilecek kadar küçüktür. Elektrotlar arası gerilimler ve akımlar arasındaki ilişkiyi tanımlamanın kolay bir yolu Şekil 4 te verilen öz eğrilerdir. CBO Şekil 4-Transistör öz eğrileri (Eğriler emetör montajlı npn transistör için verilmiştir.) 7

8 Transistörün değişken işaretlere davranışını kavramak için Şekil 3 te verilmiş olan U g değişken gerilim kaynağını işe katalım. Bir an için U g nin artmakta olan pozitif bir gerilim olduğunu varsayınız. Bu gerilim U EB ye eklendiğinden EB eklemi daha büyük bir gerilimle iletim yönünde kutuplanacağından I E akımı büyür. I E -U EB ilişkisi üstel olduğundan, U g deki küçük bir değişme I E de büyük bir değişmeye neden olur. I E =I C olduğundan, bu değişim kollektör akımına da yansır. U g nedeniyle U EB deki değişmeyi U EB ve bunun neden olduğu emetör akımındaki değişmeyi I E ile gösterecek olursak I C = I E olacaktır. Bu ise I C akımının yolu üzerindeki R C direnci uçlarında R C. I C kadar bir değişimeye yol açar. R C kuramsal olarak istenildiği kadar büyük seçilebileceğinden R C I C > U EB olması kolaylıkla sağlanabilir. U EB yi girişe uygulanan gerilim, R C I C yi ise bunun çıkışta neden olduğu gerilim olarak yorumlarsanız R I U C C K = (8) EB Devrenin gerilim kazancıdır. Bu olgu transistörün gerilim kuvvetlendirici olarak kullanılabilmesini açıklar. I E = I C olduğundan K>1 ise devrenin sadece gerilim kazancı değil, güç kazancı da 1 den büyük olacaktır. Transistörlerin değişken işaretlere davranışını kolay anlaşılabilir ve hesaplanabilir bir şekle dönüştürmek için eşdeğer devreler kullanılır. Şekil 5 te çok kullanılan iki küçük işaret eşdeğer devresi verilmiştir. Bu isimdeki küçük işaret sıfatı, bunların sadece küçük U g genlikleri için geçerli olduğunu hatırlatmak için eklenmiştir. h parametreleri eşdeğer devresi olarak isimlendirilen sağdaki eşdeğer devre sadece emetör montajlı transistör için verilmişse de ( bu nedenledir ki alt indisin ikinci harfi e dir) soldaki eşdeğer devreyi herhangi bir montaj için kullanabilirsiniz. Eşdeğer devreler transistörün tipinden (npn ya da pnp olmasından) bağımsızdır. Eşdeğer devredeki parametreler için aşağıdaki bağıntılar geçerlidir. Şekil 5 r π = (1+β F )r e g = m 1 r e 8

9 r DENEY UT ~ 25mV = h I I (ma) ie =r π ; h fe =β F e = E E 1. Aşağıda verilen devreyi kurunuz. Şekil 6 2. U CC gerilimini 12 V a ayarlayınız. 3. V E gerilimi 200 mv oluncaya kadar U BB gerilimini yavaşça artırınız. 200 mv değerine ulaştığınız durum için U BB, V RB değerlerini ölçüp Tablo-1 in ilk satırına kaydediniz. 4. U BB gerilimini 10 eşit adımda sıfıra kadar azaltıp her adım için U BB, V RB, V E gerilimlerini ölçüp Tablo-1 in ilgili yerlerine kaydediniz. Tablo-1 U BB V RB V E (mv)

10 5. U CC gerilimini 15 V a getiriniz. V E =10 mv olacak şekilde U BB yi ayarlayınız. 6. U BB gerilimine dokunmadan Tablo-2 de verilen U CC gerilimleri için V E, V RB gerilimlerini ölçüp sonuçları Tablo-2 ye kaydediniz. 7. Ölçüm sonunda U CC yi tekrar 15 V a alınız. Bu kez V E =50 mv olacak şekilde U BB yi ayarlayınız. 6.adımı tekrarlayınız. Yine aynı yolla V E =100 mv ve V E =200 mv değerleri için Tablo-2 yi doldurunuz. Tablo-2 U E =10mV U E =50mV U E =100mV U E =200mV U RB U E U CC U RB U E U CC U RB U E U CC U RB U E U CC Aşağıda verilen devreyi elektrolitik kondansatörlerin yönlerine dikkat ederek kurunuz. Şekil 7 10

11 9. Fonksiyon üretecini bağlamadan önce R B direncini kısa devre yaparak transistörün DC elektrot gerilimlerini ölçünüz. Transistör iletimde midir, ölçüm sonuçlarına bakarak yorumlayınız. Gerilimler beklediğiniz gibi değilse devreyi kontrol ediniz. V B =... V V E =... V V C =... V 10. R B direncindeki kısa devreyi kaldırmadan, girişe U g =1 V (tepe), 1 khz frekanslı sinusoidal işaret uygulayarak U o geriliminin tepe değerini osiloskop yardımıyla ölçünüz. (Çıkış işareti bozuksa, giriş işaretinin genliğini düşürebilirsiniz.) U o =... V (tepe) 11. Kısa devreyi kaldırırak R B değerini, çıkış gerilimi bir önceki adımda ölçtüğünüz değerin yarısına ininceye kadar artırınız. Daha sonra R B nin bir ucunu devreden ayırarak, değerini ohmmetre ile ölçünüz. R B =... Ω 12. R B direncini kısa devre yaparak U g =10 V(tepe) için U o gerilimini osiloskopta inceleyip dalga şeklini uygun yere çiziniz. (Osiloskop DC kuplajda) 13. U g =1 V (tepe) yaptıktan sonra osilatörün frekansını değiştirerek Tablo-3 te istenilen Ui değerini hesaplayarak, Uo gerilimini osiloskop yardımıyla ölçünüz. Tablo-3 f (Hz) Ui(p) Uo(p) Κ f (Hz) Ui(p) Uo(p) Κ k 30 5 k k k k k k 11

12 SORULAR 1. Tablo-1 den faydalanarak transistörün β akım kazancının I C akımı üzerinden değişimini çiziniz. 2. Tablo-1 deki değerleri kullanarak I C -I B diyagramını çiziniz. 3. Tablo-2 deki değerleri kullanarak I B parametre olmak üzere I C -V CE çıkış özeğrilerini çiziniz. 4. Deneyin 9. adımdaki sonuçlara göre transistörün kollektör, emetör ve baz akımlarını hesaplayınız. DC akım kazancı ve r e ne kadardır? 5. V ce(sat) = 0.6 V ise transistörün doymadan çalışacağı kollektör akımı en çok kaç ma olabilir? 6. Deneyin 11. adımında yapılan ölçüm sonuçlarından kuvvetlendiricinin giriş direncini bulunuz ve bunu, eşdeğer devreden hesaplayacağınız değerle karşılaştırınız. 7. Tablo-3 ten faydalanarak kuvvetlendiricinin genlik Bode diyagramını çiziniz. Alt ve üst kesim frekansını çizdiğiniz eğri üzerinde bulunuz. Alt kesim frekansının altında ve üst kesim frekansının üzerinde genlik diyagramının eğimini bulunuz. Bu değerleri teorik olarak hesaplayıp, Bode diyagramını çiziniz, ölçüm sonucuyla karşılaştırınız. 8. Orta frekans bölgesindeki kazancı eşdeğer devreden hesaplayıp ölçü sonuçlarıyla karşılaştırınız. 12

13 DENEY-2: ĐŞLEMSEL KUVVETLENDĐRĐCĐ ÖN HAZIRLIK 1. TL081 ve OP07C işlemsel kuvvetlendiricilerin kataloğunu inceleyerek aşağıdaki parametrelerini kıyaslayınız, bacak bağlantılarını gösteren şemayı çizerek deneye getiriniz. (Maksimum besleme gerilimi, giriş kutuplama akımı, kayıklık (offset) gerilimi, sukunet (quiscent) akımı, kazanç bant genişliği, giriş empedansı, değişim hızı vs.) 2. Bir ĐK devresinde kazanç bant genişliği çarpımının (GBWP) sabit olması olgusunu açıklayınız. 3. Ortak kip zayıflatma oranı (CMRR) nedir? Deneye gelmeden önce, verilen katalog bilgilerinden bu büyüklüğün değerini bulunuz. 4. Her iki girişine aynı işaretin uygulandığı fark kuvvetlendiricisinin çıkış işaretinin ne olacağını, CMRR i göz önüne alarak tartışınız. 5. Değişim hızı (Slew Rate) nedir? Deneye gelmeden önce kullanacağınız ĐK nin değişim hızını bulunuz. 6. Bir kuvvetlendiricinin üst kesim frekansı ile girişine uygulanan ideal darbeye cevabının yükselme zamanı arasındaki ilişki nedir? 7. Bir toplama ve eviren kuvvetlendirici kullanarak iki işaretin farkını alacak bir fark kuvvetlendiricisi tasarlayınız. 8. (15) ifadesini çıkarınız. 9. Girişine aşağıdaki verilen işaret uygulanan entegratörün çıkışındaki işaretin zaman üzerinden değişimini çiziniz. Bu işaret sabit bir A değeri olsaydı çıkış ne olurdu? 10. Kutuplama akımları ve kayıklık (offset) gerilimini bir entegratör devresinde etkisinin ne olacağını tartışınız. 11. Tüm büyüklüklerin tanımın öğrendiğinizden emin olunuz. 12. A(t)=3.sin(200t) işaretinden B(t)=10 5.cos(200t) işaretini elde edilmesini sağlayan devreyi işlemsel kuvvetlendiricilerle tasarlayınız. 13

14 DENEY-2: ĐŞLEMSEL KUVVETLENDĐRĐCĐ Đşlemsel kuvvetlendirici (ĐK olarak kısaltılacaktır) alışılagelmiş kuvvetlendiricilerden farklı olarak, iki girişi ve bir çıkışı olan elemanlardır. ĐK sembolü ve ilgili büyüklükler Şekil-1 de verilmişse de burada, ileride de pek çok kere yapılacağı gibi, besleme gerilimleri gösterilmemiştir. + ile işaretlenmiş olan ve U p giriş geriliminin uygulandığı girişi evirmeyen (faz döndürmeyen) ve U n geriliminin uygulandığı ile işaretlenmiş girişi ise eviren (faz döndüren) giriş olarak isimlendirilir. U o, ĐK nın çıkışıdır. Bir ĐK nın içyapısı Şekil-2 de gösterildiği gibidir. R n, R p girişlerle toprak arasındaki dirençleri; C n, C p ise kapasiteleri göstermektedir. R d ve C d ise girişler arasındaki direnç ve kapasitedir. R o, kuvvetlendiricinin çıkış direnci, K OL ise frekansa da bağlı olan açık çevrim kazancıdır. (OL: Open Loop) Aşağıdaki özelliklere sahip ĐK, ideal ĐK olarak tanımlanır. 1. R n, R p, R d C n, C p, Cd R o 2. K ol >>1 Bu varsayımlarla;...(1) eşitliği geçerlidir. Pek çok tümleşik ĐK, birçok uygulamada ideal varsayımlara yaklaşırlar. Aşağıda ĐK ları tanımlayan temel parametreler verilmiştir. Açık Çevrim Kazancı (Open Loop Gain) Daha önce tanımlanmış olan K OL, Şekil-3 te gösterildiği gibi frekansa bağlıdır. ĐK nın alt kesim frekansı 0 Hz dir, dolayısıyla DC işaretleri de kuvvetlendirir. K OL0 ile gösterilen alçak frekans kazancı 10 6 mertebesindedir. f 2 üst kesim frekansı ise, sıradan ĐK larda sadece birkaç Hz dir. Bode diyagramının f 2 nin üzerinde eğimi 20 db/dek tir ve genellikle f 3 gibi ikinci bir kutbu 14

15 daha vardır. Bu kutbu göz önüne almadan, ĐK nin kazancı; (2) Küçük Đşaret Birim Kazanç Bant Genişliği (Small Signal Unit Gain Bandwidth) Kazancın 0 db e düştüğü frekanstır ve Şekil-3 te f c ile gösterilmiştir. Bode diyagramından görüldüğü gibi f c = K OL0.f 2 (3) Bağıntısı geçerlidir. (Dikkat: K OL0 db cinsinden değil, oran olarak alınmalıdır). Bu büyüklük, kazanç bant genişliği olarak da isimlendirilir. Giriş Dengesizlik (Kayıklık) Gerilimi (Input Offset Voltage) ĐK nın her iki girişi toprak potansiyeline bağlandığında U id =0 olmasına rağmen çıkış gerilimi 0 olmayabilir. ĐK nın giriş katında kullanılan transistör veya FET lerin eş olmamasından kaynaklanan bu hata, giriş dengesizlik gerilimi yardımıyla ĐK nın analizine katılabilir. Şekil-4 te gösterildiği gibi U 0I giriş dengesizlik gerilimini gösteren bir DC gerilim kaynağı ĐK nın girişlerinden birine bağlanır. U oi nin yönü ve değeri, aynı tipten ĐK larda bile elemandan elemana farklılık gösterir. Giriş Kutuplama Akımı (Input Bias Current): Maksimum Çıkış Gerilimi (U Omax, U Omin ) Gerçek bir ĐK da R n, R p ve R d giriş dirençleri sonsuz büyük olmadığından, çok küçük de olsa girişlerinden giriş kutuplama akımı denilen bir akım akar. Şekil-5 te gösterilen bu akımların değeri elemandan elemana ve ayrıca sıcaklıkla değişir. FET girişli ĐK larda bu akım, transistör girişlilere göre daha azdır. Birçok uygulamada giriş kutuplama akımlarından çok bunların farkı önemlidir ki bu fark giriş dengesizlik akımı (Input Offset Current) olarak da bilinir. Hem pozitif hem negatif gerilim kaynağından beslenen (ki buna simetrik besleme de denir) ĐK larda çıkış gerilimi hem pozitif hem de negatif değerler alabilir. Çıkış gerilimi her iki yönde de sınırlıdır ve belli değerlerde doymaya girer. Klasik ĐK larda besleme gerilimi ±15 V olup, çıkış geriliminin en büyük değeri besleme geriliminin bir volt kadar altındadır. 15

16 Maksimum Güç Gerilimi Girişlerden biri ile toprak arasına, ĐK tahrip olmaksızın uygulanabilecek en büyük gerilimi tanımlar. Bu nedenle deneyde girişlere izin verilenden daha büyük bir gerilim uygulanmamasına özen göstermelisiniz. Maksimum Fark Giriş Gerilimi ĐK nın girişleri arasına ĐK tahrip olmaksızın uygulanmasına izin verilen en büyük gerilimdir. Ortak Kip Giriş Gerilimi (Common Mode Input Voltage) Her iki girişe uygulanan gerilimlerin ortalama değeridir. Bu gerilimi U cm ile gösterirsek; Genel olarak U n ve U p zıt fazda olduklarından U cm =0 dır. Đdeal bir ĐK sadece (U p -U n ) farkını kuvvetlendirirse de gerçek ĐK larda ortak kip giriş gerilimi de istenmeyen bir U ocm çıkış gerilimine neden olur. ĐK ların ortak kip giriş gerilimi ne derece bastırıldıkları (zayıflatıldıkları) kalitesinin bir ölçütüdür. Bu ölçütü niceliksel olarak ifade edebilmek amacıyla ortak kip zayıflatma (bastırma) oranı (CMRR: Common Mode Rejection Ratio) diye adlandırılan (4) Parametreleri tanımlanmıştır ki, burada U cm ortak kip giriş gerilimi, ise çıkışta aynı U ocm gerilimini üretecek olan ve girişlerden birine uygulanan fark gerilimidir.(bakınız şekil-6) (5) CMRR çok büyük bir sayı olduğundan, hemen hemen her zaman bunun yerine Uyarınca tanımlanmış olan db cinsinden ortak kip zayıflatması kullanılır. (6) 16

17 Değişim Hızı (Slew Rate, S) Bir ĐK nın girişine uygulanan işaret ne kadar hızlı değişirse değişsin, çıkış işaretinin değişim hızı sınırlıdır. Bu olguyu, yüksek frekanslarda kazancın azalmasına bağlamak yanlış yorumdur. Zira kazancın üst kesim frekansı, t r yükselme zamanı olmak üzere; eşitliği uyarınca yükselme zamanını belirlerse de bu sadece küçük genlikli işaretler için geçerlidir. Kuvvetlendiricinin içindeki kapasiteleri dolduran veya boşaltan akımların sınırlı olması, çıkış geriliminin değişim hızını sınırlar. Bu büyüklük Şekil-7 de gösterildiği gibi tanımlanır. (7) Durulma Süresi (Settling Time, t s ) Girişine basamak fonksiyonu uygulanan ĐK nın çıkış geriliminin son değerinin belli bir yüzdesine eş genlikteki bir aralıkta kalıncaya kadar geçen süre olarak tanımlanır. (Bkz. Şekil-8). Dolayısıyla t s, girişine bir basamak fonksiyonu uygulanan ĐK da çıkışın son değerine, belirlenen hata sınırları içinde, erişinceye kadar beklenilmesi gereken süredir. 17

18 ĐŞLEMSEL KUVVETLENDĐRĐCĐLĐ TEMEL DEVRELER Eviren (Faz Döndüren) Kuvvetlendirici Devre yanda verilmiştir. Đ.K. nın ideal olduğu varsayılırsa, giriş direnci sonsuz olduğundan i d =0 (Đ.K giriş akımı=0) ve dolayısıyla i i =i F olacaktır. Diğer taraftan U g = R i.i i U id (8) U id + R F.i F + U o = 0 (9) sıfıra gideceğinden Çevre denklemleri, K OL (Açık çevrim kazancı sonsuz) varsayımı ile U o =K OL.U id ve U id =U o /K OL gerilimi (10) (11) Şekline dönüşür ki buradan kazanç (12) olarak bulunur. Eviren giriş ile toprak arasında çok büyük bir direnç olmasına rağmen, U id olması nedeniyle, eviren giriş hemen hemen toprak (sıfır) potansiyelindedir. Bu olgu, eviren girişin görünürde toprak potansiyelinde olduğu şeklinde ifade edilir. Kuvvetlendiricinin giriş direncinin R i olduğunu da siz gösteriniz. (12) ifadesinden hareketle kazancı istediğimiz kadar büyük yapabileceğimizi düşünüyorsanız yanılıyorsunuz. Bu ifade çıkarılırken K OL alınmış olduğunu hatırlayınız. Bu varsayımdan vazgeçip (2) ifadesi ile verilen kazancı kullanarak devrenin kazancını hesaplarsanız, R F /R i >>1 koşulu altında (13) Olduğunu görürsünüz. Bunu (2) ifadesi ile karşılaştıracak olursanız K v kazançlı eviren kuvvetlendiricinin üst kesim frekansının, ĐK nın üst kesim frekansı olan f 2 nin K olo /K v katı olduğunu bulursunuz. Eviren kuvvetlendiricinin K v kazancı azaldığı oranda üst kesim frekansı büyür. f 2 ile göstereceğimiz eviren kuvvetlendiricinin üst kesim frekansı ile kazancın çarpımı 18

19 (14) olup bir sabittir. f 2 devrenin, f 2 ise ĐK nın üst kesim frekansıdır. (Ya da bant genişliğidir.). Kazanç bant genişliğinin sabit olgusu tüm ĐK devreleri için geçerlidir. Büyük gerilim kazançları istendiğinde eviren kuvvetlendiricinin giriş direnci büyük yapılmaz, zira R F i 10 MΩ dan büyük yapmak pratik değildir ve kazanç arttıkça R i küçülür ki bu da devrenin giriş direncidir. Hem büyük kazançlara hem de büyük giriş dirençlerine olanak tanıyan bir eviren kuvvetlendirici devresi Şekil-10 da verilmiştir. Bu devrenin kazancı U o R2 R3 R3 K = = 1+ + U g R1 R1 R4 olup, R 1 değerinden bağımsız olarak R 3 /R 4 oranı ile ayarlanabilirken devrenin giriş direnci R 1 olmaya devam eder. R 3, R 2, R 4 uygun seçilerek kazanç, R 1 i küçük seçmeye gerek kalmamaksızın büyük yapılabilir. Toplama Devresi Şekil-11 de verilen bu devrede U o (16) veya R 1 =R 2 =R 3 =R için U R R ( U + U ) F o = U 3 (17) girişlerine uygulanan gerilimlerin toplamının negatif işaretlisidir. Evirmeyen Kuvvetlendirici Yanda verilen devrenin kazancı (18) olup, görüldüğü gibi fazı çevirmez. R F =0 olmadığı sürece kazanç her zaman 1 den büyüktür. Devrenin üstünlüğü giriş 19

20 direncinin çok büyük olmasıdır. DĐKKAT!! Eviren ve evirmeyen kuvvetlendirici yapısı için ve diğer ĐK lı doğrusal kuvvetlendirici yapıları için geribesleme direnci R F her zaman ĐK nın - ucuna bağlanmaktadır. Bu şekilde negatif geribesleme sağlanarak kazanç belirli bir değere getirilmektedir. R F direnci + uca bağlandığında pozitif geribesleme olacağından ĐK doğrusal bir kuvvetlendirici olarak çalışmayacaktır. Eviren kuvvetlendiricinin uçlarının yer değiştirilmesi onu evirmeyen hale getirmez. Dikkat edilirse iki devre için de yapı aynı olup; birinde toprak bağlanan uca işaret uygulanmakta, diğerinde işaret uygulanan uç toprağa bağlanmaktadır. Fark Kuvvetlendiricisi Bu kuvvetlendiricinin çıkış gerilimi Olup R 2 =R 4, R 1 =R 3 koşulu sağlandığında; (19) U o R = R 2 1 ( U U ) 2 1 (20) Olur ki, görüldüğü gibi girişlere uygulanan işaretin farklarını kuvvetlendirmektedir. Entegratör Bu devrenin çıkış gerilimi; uyarınca giriş geriliminin zaman üzerinden alınmış integralidir ve 1/RC birden büyük olabilen bir katsayıdır. Giriş kutuplama akımları entegratörde bir hata geriliminin doğmasına neden olur. Bunu azaltmak için evirmeyen giriş ile toprak arasına R ye eş bir direnç bağlanabilir. Kutuplama akımlarının dolayısıyla neden oldukları hatanın küçültülmesi amacıyla giriş katlarında FET kullanılmış ĐK ların seçimi akıllıca olur. Benzer şekilde giriş dengesizlik gerilimi de bir hata kaynağıdır, zira bu gerilim de entegre edilmektedir ya da toplanmaktadır. s domeninde entegratörün kazancı (21) (22) 20

21 olduğundan s=0 da bir kutbu vardır. ĐK nın ve entegratörün Bode diyagramı Şekil-15 te gösterilmiştir. Görüldüğü gibi ĐK nın üst kesim frekansı f 2 dir. (23) Frekansında (22) ifadesinden görüleceği gibi entegratörün kazancı 1 (dolayısıyla 0 db)dir. Alçak frekanslara gidildikçe kazanç artarsa da K OL0 a ulaşıldığı frekansın altına inildiğinde kazanç sabit kalır, zira ĐK nın kazancı bunun üzerine çıkmaya izin vermez. f e nin üzerindeki frekanslarda ise entegratörün kazancı 1 in altına düşer ve f c üzerinde birden küçük bir değerde doymaya girer. Bunun nedeni f c frekansında ĐK nın kazancı 1 olduğundan entegratör için çıkarılmış olan (22) ifadesinin geçerliliğini yitirmesidir. Aynı şekilde entegratörün faz diyagramı da verilmiştir. Entegratör fazın 90 o olduğu aralıkta doğrulukla çalışmaktaysa da bunun dışında hata büyür. RC zaman sabitini büyütmenin Bode diyagramlarını sola doğru kaydırmak demek olduğuna dikkat ediniz. Şekil 75 Türev Alıcı Şekil-11 de verilen devreden kolayca Olduğu gösterilebilir ki çıkış gerilimi giriş geriliminin türevi ile orantılıdır. Burada detaylarına girmeden bu devrenin osilasyon yapmaya eğilimli olduğunu ve bu devreyi kullanmanın iyi bir çözüm olmadığını belirtelim. Fazladan iki eleman gerektiren ve bu sayede kararlı olması garanti edilebilen bir türev alıcı Şekil-17 de verilmiştir. Devrenin kazancı; (24) 21

22 (25) olup genlik Bode diyagramı Şekil-18 de verilmiştir. ve frekansları arasında devre iyi bir türev alıcı olarak kullanılabilir. Karşılaştırıcı ĐK nın şu ana kadar kapalı çevrimde çalıştırdık. Mantık devrelerinde karşılaştırıcı olarak kullanılan ĐK lar doğrusal kuvvetlendirme şart olmadığından açık çevrimde çalıştırılabilir. Yandaki devre için ; V o = K OL.(V i -V REF ) eşitliği geçerlidir. V CC pozitif besleme, V EE negatif besleme kaynağıdır. (V CC =+15V, V EE = -15V gibi.) Çıkıştan girişe herhangi bir geribesleme olmadığından ve K OL açık çevrim kazancı çok yüksek olduğundan ( gibi) V i -V REF değeri +10 µv olduğunda bile çıkış gerilimi ( ).( ) = +2 V olacaktır ki bu durum açık çevrimde çalışan ĐK ların gürültüye olan duyarlılığını açıklar. Bu farkın +10 mv olduğunu düşünürsek çıkış gerilimi idealde V a çıkmalıdır. Tabi bu pratikte mümkün değildir; zira ĐK, kendisini besleyen DC kaynak gerilimlerinin üzerinde bir değer veremez, hatta daha önce söylediğimiz gibi çıkış değeri besleme gerilimlerinin bir-iki volt aşağısındadır.devrenin çalışmasına özetlersek; V i > V REF ise; V o = V CC ve V i < V REF ise; V o = V EE olur. Dolayısıyla açık çevrimde çalışan ĐK nın çıkışı ya pozitif ya da negatif besleme kaynağının değerini alır. Giriş uçlarının yerleri değiştirilirse ( + uç V REF, - giriş V i olursa) V i > V REF ise; V o = V EE ve V i < V REF ise; V o = V CC olacaktır. 22

23 DENEY Deney-1: Yanda verilen devreyi R F =10k R i =1k ile kurunuz. Girişe U g 100 mv (tepe), f = 1kHz frekanslı sinusoidal bir gerilim uygulayarak giriş ve çıkış gerilimlerini aynı anda görüntüleyerek çiziniz. KANAL-1 VoltDiv... KANAL-2 VoltDiv:... TimeDiv:... Deney-2 Kaynağın frekansını Tablo 1 de verilen değerlere ayarlayarak her adım için U g ve U o gerilimlerinin tepe değerini ölçüp tabloya aktarınız. -3 db noktası hangi frekanstır? Tablo 1 Frekan Ug (V) Uo K Frekans Ug (V) Uo (V) K

24 Deney-3 R F =100kΩ yaparak frekansı Tablo-2 de verilen değerlere ayarlayarak giriş ve çıkış gerilimlerinin tepe değerini ölçünüz. -3 db noktası hangi frekanstır? Tablo 2 Frekan Uo Frekans Ug (V) K s (khz) (V) (khz) Ug (V) Uo (V) K Deney-4 R F =100kΩ, R i =1kΩ dirençleri için girişe tepe değeri 100mV olan 1 khz frekanslı kare dalga uygulayarak değişim hızını (Slew Rate) ölçünüz. S =... V / µs Deney-5 U g = 2 V (tepe), f 2 =1 khz ayarlayarak U o, U 1, U 2 gerilimlerinin tepe değeri ölçünüz. U 1 =... V U 2 =... V U O =... V Şekil-20 Deney-6 R direncini kısa devre ve U g =10V (tepe) yaptıktan sonra U o geriliminin tepe değerini ölçünüz. U o =... V Deney-7 a) Aşağıdaki entegratör devresini kurduktan sonra girişe tepe değeri 1 V olan 1.6 khz frekanslı sinusoidal bir gerilim uygulayarak osiloskopta U g ve U o gerilimlerinin dalga şekillerini aynı anda görüntüleyerek alt alta çiziniz. Osiloskobu DC kipe alınız. b) Daha sonra 100 nf lık kondansatör uçlarına 100 kω lık bir direnci paralel bağlayarak deneyi tekrarlayınız. 24

25 Deney-7 (a) Deney-7 (b) Deney-8 Girişe sinüs yerine kare ve üçgen dalga uygulayarak deneyi tekrarlayınız. 25

26 Deney-9 a) Yandaki türev alıcı devreyi kurunuz. Devrenin girişine 1 khz frekanslı 1V genlikli kare dalga uygulayıp U o çıkış işaretinin ve giriş işaretini alt alta çiziniz. Çıkıştaki darbelerin genişliğini ölçünüz. b) R 2 =100 Ω yaparak deneyi tekrarlayınız. Deney-9 (a) Deney-9 (b) Deney-10 R 2 =1kΩ yaparak girişe tepe değeri 1 V olan üçgen dalga gerilim uygulayarak giriş ve çıkış gerilimlerini alt alta çiziniz. 26

27 SORULAR DENEY-1: Ölçüm sonuçlarınızı hesaplayarak bulduğunuz sonuçlarla karşılaştırınız. DENEY-2 ve DENEY-3: Her iki R F değeri için aynı kâğıda genlik ve Bode diyagramını çiziniz. Kazanç bant genişliği çarpımının sabit kaldığını gösteriniz. Bulduğunuz kazanç bant genişliğini kullandığınız ĐK nin katalogunda verilmiş olan birim kazanç bant genişliği ile karşılaştırınız. DENEY-4: R F =10 kω değişim hızını ölçülerinizden yararlanarak bulunuz. Değişim hızı kazanca bağlı mı? Sonuçlarınızı katalogda verilen değerlerle karşılaştırınız. DENEY-5: Deney sonuçlarınızı hesap sonuçları ile karşılaştırınız. DENEY-6: Deney sonuçlarınızı katalog bilgilerinden yararlanarak beklenen sonuçlarla karşılaştırınız. DENEY-7: C2 ye paralel bağlanmış olan direncin etkisini tartışınız. Çıkış işaretinin genliğini hesapladığınız değerle karşılaştırınız. DENEY-8: Deney sonuçlarını veriniz ve yorumlayınız. DENEY-9: Devrenin genlik ve faz Bode diyagramlarını çiziniz. Devre entegratör olarak hangi frekansa kadar çalışabilir. Deneyde ölçtüğünüz darbe genişliği ile köşe frekansı arasında bir ilişki var mı? DENEY-10: Deney sonuçlarını veriniz ve yorumlayınız. 27

28 DENEY-3: GERĐBESLEME ÖN HAZIRLIK 1) Verilen bir devrenin alt ve üst kesim frekansının nasıl belirleneceğini açıklayınız. 2) Devrelerin kazançlarının nasıl ölçüleceğini açıklayınız. 3) Deney-5 te istenen giriş işaretinin nasıl ölçüleceğini açıklayınız. 4) Deneydeki devrelerde niçin R 2, R 3 dirençlerine gerek duyulmuştur? 5) Şekil-19 da verilen devre için transistörün çalışma noktasını hesaplayınız. 6) Orta frekans bölgesi ne demektir? 7) Şekil-20 deki C F niçin kullanılmıştır? 8) Deneydeki devrenin geribeslemesinin tipi (akım-gerilim, gerilim-akım... gibi) nedir? 9) Deneydeki devrenin geribeslemesinin negatif geribesleme olduğunu gösteriniz. 10) Deneydeki C C niçin kullanılmıştır? 11) Deney-4 teki devrenin eşdeğer devresini çizip deneye getiriniz. 28

29 GERĐBESLEME KURAMI Geribeslemeli sistem, sistemin herhangi bir büyüklüğünün (örneğin çıkış geriliminin) olması istenen değeri ile var olan değeri arasındaki farkı ortadan kaldıracak şekilde davranan sistem olarak tanımlanabilir. Geribesleme sadece teknik sistemlerin değil, organizmaların da olmazsa olmazıdır. Hangi tipten olursa olsun (mekanik, biyolojik, elektronik vb.) tüm geribeslemeli sistemler aynı kuram yardımıyla irdelenebilirler. Aşağıda geribesleme kuramının elektronik sistemler için uygulaması gösterilmiştir. 1) Kuvvetlendiricinin Sınıflandırılması Bir zorunluluk olmamakla birlikte kuvvetlendiricilerin aşağıda verildiği gibi sınıflandırılması geribeslemeli elektronik sistemlerin kavranılmasını kolaylaştırır. Gerilim Kuvvetlendiricisi Şekil-1 de bir gerilim kuvvetlendiricisinin eşdeğer devresi verilmiştir. Aşağıda ele alınan tüm diğer kuvvetlendirici tiplerinde olduğu gibi R i, kuvvetlendiricinin giriş, R 0 ise çıkış direncidir. R g kuvvetlendiricisinin girişine bağlanmış olan işaret kaynağının iç direnci ve R L kuvvetlendiricisinin çıkışına bağlanmış olan yük direncidir. Analizi daha genelleştirmek isterseniz, dirençleri empedanslarla değiştirmelisiniz. R i >>R g, R L >>R o koşullar sağlandığında U o K v.u i K v.u g (1) olacaktır ve neden K v nin gerilim kazancı olarak isimlendirildiğini açıklar. Kazanç birimsizdir. (V/V) Yukarıdaki koşulların sağlandığı bir kuvvetlendiricide kaynak ve yük direncinden bağımsız olarak çıkış gerilimi giriş geriliminin K v katıdır. Đdeal bir gerilim kuvvetlendiricisinin giriş direnci sonsuz, çıkış direnci sıfırdır. Đşlemsel kuvvetlendiriciler ideal gerilim kuvvetlendiricisine çok yaklaşırlar. Akım Kuvvetlendiricisi Şekil 1 - Gerilim Kuvvetlendiricisi Şekil-2 de bir akım kuvvetlendiricisi gösterilmiştir. R i <<R g, R o >>R L 29

30 Şekil-2: Akım Kuvvetlendiricisi Koşulları sağlandığında i o K i.i g (2) olup K i bu kuvvetlendiricinin akım kazancıdır ve kazanç birimsizdir (A/A). Ortak emetörlü kuvvetlendirici, kaynak ve yük direncinin istenen koşulları sağladığı bir aralıkta ideal bir akım kuvvetlendiricisine yaklaşır ve K i β olur. Transkondüktans (Geçiş Đletkenliği) Kuvvetlendiricisi Girişine uygulanan gerilimle orantılı bir çıkış akımı yaratan bu kuvvetlendirici Şekil-3 te verilmiştir. R i >>R g, R o >>R L koşulları sağlandığında i o g m.u g (3) geçerli olur. g m nin birimi i o /U g = A/V = mho dur. Şekil-3 Transresistans (Geçiş Direnci) Kuvvetlendiricisi: Şekil-4: Transrezistans Kuvvetlendiricisi Rg>>Ri, Ro<<R L koşulları sağlandığında, bu devrenin çıkış gerilimi; 30

31 U o R m.i i R m.i g (4) Uyarınca giriş akımı kontrol edilir. R m nin birimi U o /i i = V/A = Ω dur. Aşağıdaki tabloda bu kuvvetlendiricilerin özellikleri topluca verilmiştir. Kuvvetlendirici Tipi Transfer Fonksiyo nu Sağlaması Gereken Koşullar Đdeal Kuvvetlendirici Đçin Ri Ro Gerilim Kuvvetlendiricisi U o =K v.u g R i >>R g R o <<R L 0 Akım Kuvvetlendiricisi Đ o =K i.đ g R i <<R g R o >>R L 0 Transresistans U o =R m.đ g R i <<R g R o <<R L 0 0 Transkondüktans Đ o =g m.u g R i >>R g R o >>R L 0 Tablo-1: Kuvvetlendirici Tiplerinin özellikleri 2) Geribesleme Đle Đlgili Kavramlar: Şekil-5 Yukarıdaki şekilde herhangi bir geribeslemeli sistemi oluşturan öğeler gösterilmiştir. Örnekleme devresi çıkış işaretini algılamamızı sağlayan devre, geribesleme yolu alınan bu örneği kendi transfer fonksiyonu olan β ile çarparak karşılaştırıcıya ileten devredir. Kuvvetlendirici ve geribesleme yolunda işaret çıkış yönlerinin zıt olduğuna dikkat ediniz. Karşılaştırma devresi ise girişe uygulanan işaretin toplamı veya farkını alıp, bunu kuvvetlendiriciye uygular. Đdeal bir örnekleme devresinin herhangi bir değişikliğe yol açmadan çıkış işaretini algılaması ve varlığı nedeniyle kuvvetlendiricide bir değişikliğe yol açmaması gerekir. Dolayısıyla gerilim algılayan bir devrenin giriş direnci sonsuz, akım algılayan bir devrenin de giriş direnci sıfır olmalıdır. Şekil-6 da çok basit iki algılama devresi verilmiştir. 31

32 Şekil-6 Geribesleme devresinin nasıl tasarlanacağı uygulamaya bağlıysa da çoğu kere, Şekil-7 de verilen örneklerde olduğu gibi pasif elemanlardan oluşurlar. Şekil-5 teki devrede görüldüğü gibi; U 0 K.U i (5) Şekil-7 Geribesleme yolu örnekleri olup, K geribeslemeli devrenin açık çevrim kazancı (Open Loop Gain) olarak isimlendirilir. Örnekleme devresinin geribesleme yoluna doğrudan doğruya U o gerilimi uygulanacak şekilde tasarlandığını varsayarak girişinde U o gerilimi olan bu devrenin çıkışında; U f = β.u o (6) gerilimi olacaktır. β geribesleme faktörü (feedback factor) olarak adlandırılır. Burada K ve β genelde frekansa bağlı büyüklüklerdir ve bu bağımlılık geribeslemeli devrelerin analizini önemli ölçüde zorlaştırır. Karşılaştırıcının çıkışında U i = U s ±U f (7) olacaktır. U f in ön işareti negatif ise devre bir fark alıcı, pozitif ise toplayıcıdır. Çoğu kaynakta ön işaret olduğundan geribeslemenin negatif ve pozitif olduğunda pozitif geribesleme olduğu söylenirse de bu kavramların daha genel bir tanımını daha ileride vereceğiz. Son üç eşitlikten geribeslemeli sistemin K f kazancı 32

33 K f U o K = = (8) U 1± βk s olarak bulunur. Bu ifadedeki βk terimi (K i U f /U i ye özdeştir) çevrim kazancı (Loop Gain) olarak bilinir. 1±βK >1 ise sistemin negatif, 1±βK <1 ise pozitif geribeslemeli olduğunu söyleyeceğiz. Pozitif geribeslemeli sistemlerde K f >K, negatif geribeslemeli sistemlerde K f <K olur. Şayet β ve K pozitif büyüklüklerse (bunların her ikisi de faz döndürmüyorsa) geribeslemenin negatif olması paydanın 1-βK olmasını gerektirir. Bu ise karşılaştırıcı devresinin bir fark alıcı olması ile sağlanır. Fakat kuvvetlendirici faz döndürücü bir kuvvetlendirici ise β pozitif olmak koşuluyla geribeslemenin negatif olması için karşılaştırıcı toplama devresi olmalıdır. Geribeslemenin tipini belirlemenin kolay bir yolu U i ve U s işaretlerini karşılaştırmaktır. Geribesleme nedeniyle U i >U s oluyorsa sistem pozitif, aksi halde negatif geribeslemeli tiptendir. Buradaki analizde her zaman β <1 olduğu kabul edilecektir. 3) Geribeslemenin Özellikleri Osilatör tasarımı ve çok sınırlı birkaç uygulama dışında geribesleme söz konusu olduğunda negatif geribesleme akla gelir, zira negatif geribesleme aşağıda ele alacağımız vazgeçilmez bir dizi faydayı birlikte getirir. a) Negatif geribesleme sistemin kazancının aktif elemanların parametrelerine olan duyarlılığını azaltır. Geribesleme uygulanmamış transistörlü kuvvetlendirici devrelerinde kazancının h fe ye bağlı olduğuna (β geribesleme faktörü ile tranzistörün kısa devre akım kazancıyla karıştırmamak için akım kazancı yerine h fe kullanacağız), bunun ise elemandan elemana çok geniş bir aralıkta değiştiğini biliyorsunuz. Negatif geribesleme kazanç veya devrenin diğer büyüklüklerinin (giriş direnci, çıkış direnci vb.) aktif eleman parametrelerine olan bağımlılığını önemli ölçüde azaltır. Negatif geribeslemeli bir sistemde βk>>1 koşulu sağlandığında devrenin kapalı çevrim kazancı; olur ki aktif eleman parametreleri ile belirtilen K kazancından bağımsız olur, β, genellikle yapıldığı gibi sadece pasif elemanlarla kurulmuş ise kapalı çevrim kazancının toleransı, sadece pasif elemanların toleransı ile belirlenir. Pasif elemanların toleransı da bu mertebeden olacaktır. Kolayca gösterilebilir ki aktif eleman parametrelerinin toleransı nedeniyle açık çevrim kazancı K olan geribeslemeli sistemin kapalı çevrim toleransı K f arasında (9) ilişkisi vardır. (10) 33

34 b) Negatif geribesleme devrenin bantgenişliğini artırır. Kuvvetlendiricinin kazancının (11) olduğu negatif geribeslemeli bir sistemin kapalı çevrim kazancı; (12) olur ki, açık çevrim kazancının üst kesim frekansı s 2 =jw 2 iken, geribeslemeli devrenin ki; w 2 f = (1+βK o )w 2 (13) olur. Görüldüğü gibi üst kesim frekansı (1+βK o ) kere büyümüştür. Bunun bedelinin ise kazancının (1+βK o ) kere azalması olduğuna özellikle dikkat ediniz. Benzer şekilde negatif geribesleme sayesinde alt kesim frekansının (1+βK o ) kere küçüleceği kolayca gösterilebilir. Bunu da siz yapınız. Negatif geribesleme sayesinde üst kesim frekansı büyür, alt kesim frekansı küçülürse, bu devrenin bant genişliğinin artması anlamına gelir. Dolayısıyla, negatif geribesleme, geribesleme faktörünü uygun seçerek, size kazanç ile bantgenişliği arasında bir seçim yapma olanağı verir. c) Negatif geribesleme, devrenin doğrusal olmamasından kaynaklanan işaretin şekil bozulmalarını (distorsiyon) azaltır. Şekil-8 Geribeslemesiz devrenin Uo-Ui transfer özeğrisinin Şekil-8 de a ile gösterildiği gibi olduğunu varsayalım. Eğrinin eğimi kuvvetlendiricinin kazancıdır. Genliği V den daha küçük işaretler için kuvvetlendiricinin kazancı 1000 dir V den daha büyük 34

35 işaretler için kazanç 100 e düşerken 0.02 V den büyük giriş işaretleri için de kuvvetlendiricinin doymaya girip çıkış geriliminin 3 V a sabit kaldığını varsayalım. Bu kuvvetlendiriciyi β=0.001 olan bir geribeslemeli devreye yerleştirecek olursak geribeslemeli devrenin kazancı, çıkış gerilimi 1 V oluncaya kadar; Çıkış 1 V ile 3 V arasında iken kazanç; Bu değerlerden kalkınarak geribeslemeli devrenin transfer özeğrisi şekil-8 deki b eğrisi ile gösterildiği gibi çizilebilir. b eğrisinin a eğrisinden daha doğrusal olduğuna dikkat ediniz. Bu, geribeslemeli devrenin çıkışında şekil bozulmasının daha az olacağı anlamına gelir. Bu grafiksel açıklamanın, anlaşılması kolay olmakla birlikte, kantitatif bir sonuca götürmeyeceği açıktır. Bu nedenle aşağıdaki matematiksel modeli kuralım. Geribesleme uygulanmadan önce kuvvetlendirici çıkışında şekil bozulması olacak kadar büyük bir giriş gerilimi olduğunu düşünelim. Şekil bozulması nedeniyle doğan ikinci harmoniklerin genliği U o2 olsun. Kuvvetlendiriciye bir geribesleme uygulayarak kazancını (1+βK) kadar azaltalım. Geribeslemenin şekil bozulmasını azaltıp azaltmadığını anlamak için, çıkış seviyesini, geribesleme yokken ki seviyeye getirip ikinci harmonik genliğinin ne olduğuna bakmamız gerekir. Bunu sağlamak için, Şekil-9 da gösterildiği gibi kazancı (1+βK) olan bir ön kuvvetlendiriciyi geribeslemenin önüne ekleyelim. Bu sistemin çıkışındaki 2. harmoniğin genliği U o2f ile gösterelim. Kuvvetlendiricinin kendisinin yarattığı şekil bozulmasını hesaba katmak için karşılaştırma noktasına genlikli ikinci harmoniği ekleyelim. Geribesleme yolunu açacak olursanız çıkışta ikinci harmonik genliği daha önce olduğu gibi U o2 olacaktır. Böylece K kuvvetlendiricisinin şekil bozulması göz önüne alınmıştır. Şekil-9 Şayet (1+βK) kazançlı ön kuvvetlendirici şekil bozulmasına neden olmuyorsa Şekil-9 da verilen devreden (14) 35

36 olduğu kolaylıkla gösterilebilir. Görüldüğü gibi şekil bozulması (1+βK) oranında bastırılmıştır. Bunun doğru olması için (1+βK) kazançlı ön kuvvetlendiricinin şekil bozulmasına yol açmaması gerekir. Ön kuvvetlendirici çıkışında işaret genliği küçük olduğundan bu oldukça kolay sağlanabilir. d) Geribesleme gürültüyü azaltabilir. Şekil-10 da K 2 çıkışındaki gürültünün efektif değeri K 2 U n olan, K 2 kazançlı bir kuvvetlendiricidir. Gürültüyü kuvvetlendiricinin çıkışında ifade etmek yerine, girişine değeri çıkışındaki gürültünün K 2 kazancı ile bölünmüşüne eş bir gürültü gerilimi ekleyerek de göz önüne alabiliriz. Şekil-10 Bu işleme, gürültüyü girişe indirgemek denir. U n, K 2 kuvvetlendiricisine dışarıdan gelen bir gürültü olabileceği gibi kendi ürettiği bir gürültüde olabilir. Şekil-10-a daki gürültücünün kendisinin artık gürültüsüz olduğundan hareket edebiliriz, zira bunun gürültüsü U n nin eklenmesiyle zaten hesaba dahil edilmiştir. Devrenin girişinde veya çıkışında işaret gürültü oranı U i /U n dir. Daha sonra gürültüsüz bir K 1 kuvvetlendiricisini de kullanarak Şekil-10-b deki geribeslemeli devreyi kuralım. Bu devrenin kazancı; (14a) olup, K 1 ve β öyle seçilmişlerdir ki; (14b) Koşulu sağlanır. Dolayısıyla Şekil-8-a ve b deki devrelerin kazancı eşittir. Geribeslemeli devrede gerekli ara işlemleri yapacak olursanız, çıkışındaki işaret gürültü oranının K 1 36

37 kere iyileşerek olduğunu göreceksiniz. Gürültü aynı seviyede kalmış fakat işaretin genliği K 1 kere büyümüştür. Bu yöntem U n gürültüsünün K 2 nin besleme devresinden kaynaklandığı uygulamalarda özellikle etkindir. K 1, çıkış gücü düşük olduğundan gürültüsü az olan ayrı bir kaynaktan beslenebilir. Yöntem genellikle büyük çıkış güçlerinde çalışan ses kuvvetlendiricilerinde kullanılır. Bu analizde K 2 nin değiştirilemez olduğundan kalkınılmıştır. Dolayısıyla K 2 yi K 2 /K 1 oranında azaltıp bunun önüne K 1 kazançlı gürültüsüz fakat geri beslemesiz bir kuvvetlendirici koyarak da aynı sonucu elde edebiliriz diye düşünmeyiniz. e) Geribesleme sayesinde devrenin giriş ve çıkış direnci değiştirilebilir. Daha sonra göstereceğimiz gibi geribesleme uygun seçilerek, devrenin giriş ve çıkış dirençleri artırılıp, azaltılabilir. Bu sayede, örneğin giriş direncinin çok büyük olduğu bir gerilimi kuvvetlendirici yapmak istiyorsanız, negatif geribesleme uygulayarak giriş direncini artırabilirsiniz. 4) Geribeslemeli Devrelerin Sınıflandırılması Aşağıda verilen sınıflandırma geribeslemeli devrelerin analizi için bir zorunluluk değilse de analizi kolaylaştırır. Daha önce tanımları verilmiş olan dört temel kuvvetlendiriciye dayanan dört temel geribesleme (negatif) tipi vardır ve bunlar Şekil-11 de verilmişlerdir. Şekil-11 Şekil-11 deki devrede kuvvetlendirici bir gerilim kuvvetlendiricisidir. Gerilim kuvvetlendiricisinde bizi ilgilendiren giriş ve çıkış büyüklüğü gerilim olduğundan, geri besleme devresi β nın da giriş ve çıkış büyüklüklerini gerilim olarak seçmek akıllıca olur. 37

38 Bu devrede geribesleme işareti olarak akım getirmenin anlamsız olacağı da açıktır, zira bu durumda karşılaştırma devresinin akım ve gerilimleri karşılaştırması gerekirdi ki bu elmalarla armutları karşılaştırmak olurdu. Çıkış gerilimini algılamak için geri besleme devresinin çıkışına paralel bağlanacağı açıktır. Girişte ise farkın oluşturulabilmesi için seri olarak bağlanmalıdır. Be nedenle bu tipten geri beslemeye seri-paralel veya gerilimden gerilime geribesleme denir. Geribesleme (bundan sonra GB olarak kısaltılacaktır) devresi kuvvetlendirici çıkışına paralel bağlandığından GB li sistemin çıkış direnci azalır. GB nedeniyle girişte fark işaret oluşturulduğundan kuvvetlendiricinin girişindeki gerilim, dolayısıyla kuvvetlendirici girişinden akan akım azalacaktır. Bu ise işaret kaynağından bakıldığında görülen giriş direncinin büyümesi demektir. Đdeal bir gerilim kuvvetlendiricisinden giriş direncinin büyük, çıkış direncinin küçük olmasını beklediğimizden, GB kuvvetlendiriciyi ideal gerilim kuvvetlendiricisine yaklaştırır. Şekil-11 de diğer GB tipleri de benzer şekilde yorumlanmalıdır ve bunu da siz yapınız. 5) Geribeslemeli Devrelerin Analizi GB giriş ile çıkış arasında bir bağlantı demektir. Miller teoreminden hatırlayacağınız gibi, çıkışın bir veya birkaç devre elemanı ile girişe bağlanması devrenin çözümünü hatırı sayılır derecede zorlaştırır, zira yazılabilecek bağımsız çevrelerin sayısı önemli şekilde artar. Ayrıca bulunan kazanç, giriş direnci ve benzeri ifadeler öylesine karmaşıklaşabilir ki bunları yorumlamak çok zorlaştığından, devre tasarımında kullanabileceğimiz çok az ipucu verirler. Bu özellikle GB li sistemlerin kararlılık analizinde geçerlidir. Bu nedenledir ki GB li sistemlerinin analizini basitleştirmeyi sağlayan yöntemler geliştirilmiştir. Aşağıda bunlar ele alınacaktır. 5.1 Örnek: Seri-Paralel Geribeslemeli Devre Yöntemi ele almadan önce GB devresinin ideal olduğunun varsayıldığı Şekil-11 de verilmiş olan seri-paralel GB li devreyi ele alalım. Geribesleme devresi β, kuvvetlendiricinin çıkış gerilimi değiştirmediği gibi, sadece sağdan sola doğru işaret geçirmektedir. Şekil-12 38

39 Dolayısıyla β devresi üzerinden giriş işareti çıkışa kaçmaz. Ayrıca basitleştirme amacıyla kaynağın iç direnci ve yük direnci de göz ardı edilmiştir. GB devresi ideal olduğundan, bir başka deyişle GB devresinin bağlanması kuvvetlendiricinin kazancını değiştirmediğinden formülü doğrudan doğruya kullanılabilir. Devreden (15) U g =U i +U f =U i +βu o =U i +βku i =(1+βK) U i =(1+βK)R i Đ i Yazılarak Đ g =Đ i Olduğu göz önüne alınırsa U g =(1+βK)R i Đ g ve GB li devrenin giriş direnci R if =U g /Đ g =(1+βK) R i (16) olarak bulunur. Görüldüğü gibi seri-paralel GB li devrede giriş direnci (1+βK) kere büyür. Benzer şekilde devreden yazılabilir. Devrenin çıkış direnci hesaplanırken girişteki gerilim kaynağı kısa devre yapılacağından U i =-U f =-βu o Olur ki, bu ifadeden çıkış direnci (17) olarak bulunur. Pratikte geribesleme devresi ideal olacağından GB devresinin bağlanmasıyla kuvvetlendiricinin kazancı değişir, dolayısıyla 15 formülündeki K nın yeniden hesaplanması gerekir. Aşağıda GB devresinin kuvvetlendirici üzerindeki etkisini hesaplamaya yarayan sistematik bir yöntem tartışılmıştır. Gerçek bir GB devresi ile sistemin eşdeğeri Şekil-13 te yeniden çizilmiştir. 39

40 Şekil-13 Giriş tarafından kuvvetlendirici ve GB yolu için ortak olan büyüklük akım, çıkışta ise her ikisi için ortak olan büyüklük gerilimdir. Giriş akımı ve çıkış geriliminin bağımsız değişken seçildiği bir iki kapılı h parametreleri ile tanımlanır. Bu nedenledir ki β devresi h parametreleri ile tanımlanmıştır. 40

41 Bu devrelerde h 21β i 1 akım kaynağının GB değil de ileri besleme olduğuna dikkat ediniz. Bu istemediğimiz bir terimdir. Genellikle GB yolu öyle tasarlanmalıdır ki h 21β i 1 kaynağı sorunsuzca ihmal edilebilir. Şekil-13-b de gösterilen h 11β ve h 22β kuvvetlendiricinin eşdeğer devresine kaydırılacak olursa, sistemin eşdeğer devresi Şekil-13-c de gösterildiği gibi olacaktır ve geribesleme yolu ideal bir GB yoluna dönüşmüştür. Bu analizde kaynak içdirenci ve yükünde ihmal edilmemiş olduğuna dikkat ediniz. R ifi kaynak iç direnci göz önüne alınmaksızın GB devrenin giriş direnci iken, R ofi ise yük direncini hesaba katmayan çıkış direncidir. R if ve R of ise kaynak iç direnci ve yük direncinin göz önüne alındığı giriş ve çıkış direncidir. Şekil-13-c deki eşdeğer devrede GB yolunun kuvvetlendirici üzerine getirdiği yükleme h 11β ve h 22β ile hesaba katılmıştır. Şimdi sorun h 11β, h 22β ve h 12β parametrelerinin bulunmasına indirgenmiştir. Bu parametrelerin tanımları; (18a) (18b) (18c) nın GB yolunun β faktörü olduğuna dikkat ediniz. GB devresinin kuvvetlendirici üzerindeki etkisini göz önüne alarak geribeslemeli devreyi hesaplayabilmek için aşağıdaki işlemleri sırasıyla yapmalısınız: 1. GB yolunun 2 numaralı kapısını kısa devre yaparak 18a formülüyle h 11β yi bulun ve bunu kuvvetlendiriciye seri bağlayınız. 2. (18b) tanımıyla h 22β yı hesaplayıp bunu kuvvetlendirici çıkışına paralel bağlayınız. 3. (18c) uyarınca sistemin β geribesleme faktörünü hesaplayınız. 4. h 11β ve h 22β nında katılmış olduğu eşdeğer devresini kullanarak kuvvetlendiricinin K kazancını hesaplayınız. 5. GB yolunun ideal olduğu varsayımına dayanarak (8) formülünü kullanarak GB li sistemin istenilen büyüklüklerini (K,R if,r of bant genişliği vb.) hesaplayınız. Aşağıdakilere dikkat ederseniz GB devrelerin analizi kolaylaşır ve hata yapma olasılığı azalır. a) Önce GB yolunu belirleyiniz. b) GB yolunun parametrelerini bulunuz. c) (8) formülündeki K nın ne olduğunu belirlemeniz gerekir. Bunun her zaman gerilim kazancı olmadığı açıktır. (8) formülünden görüldüğü gibi βk boyutsuz bir büyüklük olmak zorundadır. Dolayısıyla β, 1/ohm boyutunda ise K, ohm boyutunda olmalıdır. Bu ise K=K vi =U o /Đ g olması anlamına gelir. β, ohm boyutunda ise K=K vi =Đ o /U g olacaktır. Β boyutsuz ise GB ya gerilimden gerilime yada akımdan akıma akmaktadır. Gerilimden gerilime geribeslemede ise K=K v =U o /U g, akımdan akıma ise K=K i =Đ o /Đ g alınmalıdır. 41

ELEKTRONİK DEVRELER-II LABORATUVARI

ELEKTRONİK DEVRELER-II LABORATUVARI İSTANBUL ÜNİVESİTESİ ELEKTİK ELEKTONİK MÜHENDİSLİĞİ ELEKTONİK DEVELE-II LABOATUVAI DENEY-1 İşlemsel Kuvvetlendirici 1 DENEY-1 İŞLEMSEL KUVVETLENDİİCİ ÖN HAZILIK 1. TL081 ve OP07C işlemsel kuvvetlendiricilerin

Detaylı

ELEKTRONİK DEVRELER-II LABORATUVARI

ELEKTRONİK DEVRELER-II LABORATUVARI İSTANBUL ÜNİVERSİTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER-II LABORATUVARI DENEY-3 Geribesleme DENEY-3 GERİBESLEME ÖN HAZIRLIK 1) Verilen bir devrenin alt ve üst kesim frekansının nasıl

Detaylı

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ ELM 33 ELEKTRONİK II LABORATUAR DENEY ÖYÜ DENEY 2 Ortak Emitörlü Transistörlü Kuvvetlendiricinin rekans Cevabı. AMAÇ Bu deneyin amacı, ortak emitörlü (Common Emitter: CE) kuvvetlendiricinin tasarımını,

Detaylı

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi

Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi DENEY NO :5 DENEYİN ADI :İşlemsel Kuvvetlendirici - OPAMP Karakteristikleri DENEYİN AMACI :İşlemsel kuvvetlendiricilerin performansını etkileyen belli başlı karakteristik özelliklerin ölçümlerini yapmak.

Detaylı

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU

T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU İŞLEMSEL KUVVETLENDİRİCİLER ADI SOYADI: ÖĞRENCİ NO: GRUBU: Deneyin

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

SCHMITT TETİKLEME DEVRESİ

SCHMITT TETİKLEME DEVRESİ Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. SCHMITT TETİKLEME DEVRESİ.Ön Bilgiler. Schmitt Tetikleme Devreleri Schmitt tetikleme devresi iki konumlu bir devredir.

Detaylı

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI

ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Giriş Temel güç kuvvetlendiricisi yapılarından olan B sınıfı ve AB sınıfı kuvvetlendiricilerin çalışma mantığını kavrayarak, bu kuvvetlendiricileri verim

Detaylı

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz.

ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI. NOT: Devre elemanlarınızın yanma ihtimallerine karşın yedeklerini de temin ediniz. Deneyin Amacı: Kullanılacak Materyaller: ĠġLEMSEL KUVVETLENDĠRĠCĠLERĠN DOĞRUSAL UYGULAMALARI LM 741 entegresi x 1 adet 22kΩ x 1 adet 10nF x 1 adet 5.1 V Zener Diyot(1N4655) x 1 adet 100kΩ potansiyometre

Detaylı

ĐŞLEMSEL YÜKSELTEÇLER

ĐŞLEMSEL YÜKSELTEÇLER K TÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı ĐŞLEMSEL YÜKSELTEÇLER Đşlemsel yükselteçler ilk olarak analog hesap makinelerinde toplama, çıkarma, türev ve integral

Detaylı

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. Ön Hazırlık: Deneyde yapılacaklar kısmının giriş aşamasındaki 1. adımda yapılacakları; multisim, proteus gibi simülasyon programı ile uygulayınız. Simülasyonun ekran çıktısı ile birlikte yapılması gerekenleri

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ

DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ Amaç: İşlemsel yükselteç uygulamaları Kullanılan Cihazlar ve Devre Elemanları: 1. Dirençler: 1k, 10k, 100k 2. 1 adet osiloskop 3. 1 adet 15V luk simetrik

Detaylı

ELEKTRONİK DEVRELER LABORATUVARI I DENEY 2

ELEKTRONİK DEVRELER LABORATUVARI I DENEY 2 T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I DENEY 2 BJT TRANSİSTÖRÜN DC KARAKTERİSTİĞİNİN ELDE EDİLMESİ AÇIKLAMALAR Deneylere

Detaylı

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü

Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev

Detaylı

DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi:

DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi: 1 DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI Malzeme ve Cihaz Listesi: 1. 70 direnç 1 adet. 1 k direnç adet. 10 k direnç adet 4. 15 k direnç 1 adet 5. k direnç 1 adet. 47 k direnç adet 7. 8 k

Detaylı

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI

Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI Öğr. Gör. Oğuzhan ÇAKIR 377 42 03, KTÜ, 2010 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI 1. Deneyin

Detaylı

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi.

Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. Deneyin Amacı: Deney 3: Opamp Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. A.ÖNBİLGİ İdeal bir opamp (operational-amplifier)

Detaylı

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi

DENEY NO:2 BJT Yükselticinin Darbe Cevabı lineer kuvvetlendirme Yükselme Süresi Gecikme Çınlama Darbe üst eğilmesi DENEY NO:2 BJT Yükselticinin Darbe Cevabı Yükselticini girişine uygulanan işaretin şeklini bozmadan yapılan kuvvetlendirmeye lineer kuvvetlendirme denir. Başka bir deyişle lineer darbe kuvvetlendirmesi,

Detaylı

ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi

ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi ELM 232 Elektronik I Deney 3 BJT Kutuplanması ve Küçük İşaret Analizi I. Amaç Bu deneyin amacı; BJT giriş çıkış karakteristikleri öğrenerek, doğrusal (lineer) transistör modellerinde kullanılan parametreler

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM333 Elektronik-2 Laboratuarı Deney Föyü Deney#1 BJT'li Fark Kuvvetlendiricisi Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2017 DENEY 1 BJT'li

Detaylı

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri Bölüm 14 Temel Opamp Karakteristikleri Deneyleri 14.1 DENEYİN AMACI (1) Temel OPAMP karakteristiklerini anlamak. (2) OPAMP ın ofset gerilimini ayarlama yöntemini anlamak. 14.2 GENEL BİLGİLER 14.2.1 Yeni

Detaylı

AREL ÜNİVERSİTESİ DEVRE ANALİZİ

AREL ÜNİVERSİTESİ DEVRE ANALİZİ AREL ÜNİVERSİTESİ DEVRE ANALİZİ İŞLEMSEL KUVVETLENDİRİCİLER DR. GÖRKEM SERBES İŞLEMSEL KUVVETLENDİRİCİ İşlemsel kuvvetlendirici (Op-Amp); farksal girişi ve tek uçlu çıkışı olan DC kuplajlı, yüksek kazançlı

Detaylı

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI

DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEYİN AMACI: Bu deneyde işlemsel kuvvetlendiricinin doğrusal uygulamaları incelenecek ve işlemsel kuvvetlendirici kullanılarak çeşitli matematiksel

Detaylı

Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. DENEY 6 TRANSİSTOR KARAKTERİSTİKLERİ Deneyin Amacı Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek. Malzemeler ve Kullanılacak Cihazlar 1 adet BC547 transistör, 1 er adet 10 kω ve

Detaylı

6 İşlemsel Kuvvetlendiricilerin Lineer Olmayan Uygulamaları deneyi

6 İşlemsel Kuvvetlendiricilerin Lineer Olmayan Uygulamaları deneyi 86 Elektronik Devre Tasarım 6 İşlemsel Kuvvetlendiricilerin Lineer Olmayan Uygulamaları deneyi 6. Önbilgi Günümüzde elektroniğin temel yapı taşlarından biri olan işlemsel kuvvetlendiricinin lineer.olmayan

Detaylı

ELEKTRONİK DEVRELER LABORATUARI I DENEY 3

ELEKTRONİK DEVRELER LABORATUARI I DENEY 3 T.C. İSTANBUL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI I DENEY 3 TRANSİSTÖRLÜ KUVVETLENDİRİCİLERİN TASARIMI VE TEST EDİLMESİ 2: AÇIKLAMALAR

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı

Detaylı

Deney 1: Transistörlü Yükselteç

Deney 1: Transistörlü Yükselteç Deneyin Amacı: Deney 1: Transistörlü Yükselteç Transistör eşdeğer modelleri ve bağlantı şekillerinin öğrenilmesi. Transistörün AC analizi yapılarak yükselteç olarak kullanılması. A.ÖNBİLGİ Transistörün

Detaylı

BJT KARAKTERİSTİKLERİ VE DC ANALİZİ

BJT KARAKTERİSTİKLERİ VE DC ANALİZİ Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği ölümü Elektronik Anabilim Dalı Elektronik Dersi Laboratuvarı JT KARAKTERİSTİKLERİ VE DC ANALİZİ 1. Deneyin Amacı Transistörlerin

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

ÖLÇME VE DEVRE LABORATUVARI DENEY: 9. --İşlemsel Yükselteçler

ÖLÇME VE DEVRE LABORATUVARI DENEY: 9. --İşlemsel Yükselteçler Masa No: No. Ad Soyad: No. Ad Soyad: ÖLÇME VE DEVRE LABORATUVARI DENEY: 9 --İşlemsel Yükselteçler 2013, Mayıs 15 İşlemsel Yükselteçler (OPerantional AMPlifiers : OP-AMPs) 1. Deneyin Amacı: Bu deneyin amacı,

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı

Detaylı

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi DENEY 5: BJT NİN KARAKTERİSTİK EĞRİLERİ 5.1. Deneyin Amacı BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi 5.2. Kullanılacak Aletler ve Malzemeler 1) BC237C BJT transistör 2)

Detaylı

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI

DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI DENEY 7 BJT KUVVETLENDİRİCİLERİN FREKANS CEVABI A. Amaç Bu deneyin amacı; BJT kuvvetlendirici devrelerinin girişine uygulanan AC işaretin frekansının büyüklüğüne göre kazancının nasıl etkilendiğinin belirlenmesi,

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı

BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı DENEY 7: BJT ÖNGERİLİMLENDİRME ÇEŞİTLERİ 7.1. Deneyin Amacı BJT ön gerilimlendirme devrelerine örnek olarak verilen üç değişik bağlantının, değişen β değerlerine karşı gösterdiği çalışma noktalarındaki

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri

Şekil 1. n kanallı bir FET in Geçiş ve Çıkış Özeğrileri DENEY NO : 3 DENEYİN ADI : FET - Elektriksel Alan Etkili Transistör lerin Karakteristikleri DENEYİN AMACI : FET - Elektriksel Alan Etkili Transistör lerin karakteristiklerini çıkarmak, ilgili parametrelerini

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ ORTAK EMETÖRLÜ YÜKSELTEÇ DENEYİ Amaç: Bu deneyde, uygulamada kullanılan yükselteçlerin %90 ı olan ortak emetörlü yükselteç

Detaylı

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:

KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç: KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ Amaç: Bu laboratuvarda, yüksek giriş direnci, düşük çıkış direnci ve yüksek kazanç özellikleriyle

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY

Detaylı

DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ Deneyin Amacı

DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ Deneyin Amacı DENEY 8: ORTAK EMİTERLİ YÜKSELTEÇ 8.1. Deneyin Amacı Ortak emiter bağlı yükseltecin yüklü, yüksüz kazancını tespit etmek ve ortak emiter yükseltecin küçük sinyal modelini çıkartmak. 8.2. Kullanılacak Malzemeler

Detaylı

Deney 2: FARK YÜKSELTEÇ

Deney 2: FARK YÜKSELTEÇ Deney : FARK YÜKSELTEÇ Fark Yükselteç (Differential Amplifier: Dif-Amp) Fark Yükselteçler, çıkışı iki giriş işaretinin cebirsel farkıyla orantılı olan amplifikatörlerdir. O halde bu tip bir amplifikatörün

Detaylı

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI

ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALAR HAKAN KUNTMAN 03-04 EĞİTİM-ÖĞRETİM YL İşlemsel kuvvetlendiriciler, endüstriyel elektronik alanında çeşitli ölçü ve kontrol düzenlerinin

Detaylı

TRANSİSTÖRLERİN KUTUPLANMASI

TRANSİSTÖRLERİN KUTUPLANMASI DNY NO: 7 TANSİSTÖLİN KUTUPLANMAS ipolar transistörlerin dc eşdeğer modellerini incelemek, transistörlerin kutuplama şekillerini göstermek ve pratik olarak transistörlü devrelerde ölçüm yapmak. - KUAMSAL

Detaylı

DENEY 5 TRANSİSTOR KUTUPLAMA KARARLILIK ve DC DUYARLILIk

DENEY 5 TRANSİSTOR KUTUPLAMA KARARLILIK ve DC DUYARLILIk DENEY 5 TRANSİSTOR KUTUPLAMA KARARLILIK ve DC DUYARLILIk AMAÇLAR Bipolar transistorleri kullanarak güncel bazı kutuplama devreleri tasarımı ve analizi. Kutuplama devrelerinin sıcaklığa karşı kararlılık

Detaylı

BÖLÜM 1 RF OSİLATÖRLER

BÖLÜM 1 RF OSİLATÖRLER BÖÜM RF OSİATÖRER. AMAÇ. Radyo Frekansı(RF) Osilatörlerinin çalışma prensibi ve karakteristiklerinin anlaşılması.. Osilatörlerin tasarlanması ve gerçeklenmesi.. TEME KAVRAMARIN İNEENMESİ Osilatör, basit

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ

Detaylı

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET) 2.1. eneyin amacı: Temel yarıiletken elemanlardan BJT ve FET in tanımlanması, test edilmesi ve temel karakteristiklerinin incelenmesi. 2.2. Teorik bilgiler: 2.2.1. BJT nin özelliklerinin tanımlanması:

Detaylı

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler

DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler DENEY 8 OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler 1. Amaç Bu deneyin amacı; Op-Amp kullanarak toplayıcı, fark alıcı, türev alıcı ve integral alıcı devrelerin incelenmesidir.

Detaylı

Bölüm 10 İşlemsel Yükselteç Karakteristikleri

Bölüm 10 İşlemsel Yükselteç Karakteristikleri Bölüm 10 İşlemsel Yükselteç Karakteristikleri DENEY 10-1 Fark Yükselteci DENEYİN AMACI 1. Transistörlü fark yükseltecinin çalışma prensibini anlamak. 2. Fark yükseltecinin giriş ve çıkış dalga şekillerini

Detaylı

Avf = 1 / 1 + βa. Yeterli kazanca sahip amplifikatör βa 1 şartını sağlamalıdır.

Avf = 1 / 1 + βa. Yeterli kazanca sahip amplifikatör βa 1 şartını sağlamalıdır. Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. 2 OSİLATÖRLER 1. Ön Bilgiler 1.1 Osilatör Osilatörler DC güç kaynağındaki elektrik enerjisini AC elektrik enerjisine

Detaylı

DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları

DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları Deneyin Amacı: Bu deneyin amacı; İşlemsel yükselteçlerle (OP-AMP) yapılabilecek doğrusal uygulamaları laboratuvar ortamında gerçekleştirmek ve

Detaylı

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER

BÖLÜM 2 İKİNCİ DERECEDEN FİLTRELER BÖLÜM İKİNİ DEEEDEN FİLTELE. AMAÇ. Filtrelerin karakteristiklerinin anlaşılması.. Aktif filtrelerin avantajlarının anlaşılması.. İntegratör devresi ile ikinci dereceden filtrelerin gerçeklenmesi. TEMEL

Detaylı

DENEY 3. Maksimum Güç Transferi

DENEY 3. Maksimum Güç Transferi ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN2024 Elektrik Devreleri Laboratuarı II 2013-2014 Bahar DENEY 3 Maksimum Güç Transferi Deneyi Yapanın Değerlendirme Adı

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#3 Güç Kuvvetlendiricileri Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 3 Güç Kuvvetlendiricileri

Detaylı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı

6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı 6. DENEY Alternatif Akım Kaynağı ve Osiloskop Cihazlarının Kullanımı Deneyin Amacı: Osiloskop kullanarak alternatif gerilimlerin incelenmesi Deney Malzemeleri: Osiloskop Alternatif Akım Kaynağı Uyarı:

Detaylı

DENEY NO 3. Alçak Frekans Osilatörleri

DENEY NO 3. Alçak Frekans Osilatörleri DENEY NO 3 Alçak Frekans Osilatörleri Osilatörler ürettikleri dalga şekillerine göre sınıflandırılırlar. Bunlardan sinüs biçiminde işaret üretenlerine Sinüs Osilatörleri adı verilir. Pek çok yapıda ve

Detaylı

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ 9.1. Deneyin Amacı Bir JFET transistörün karakteristik eğrilerinin çıkarılıp, çalışmasının pratik ve teorik olarak öğrenilmesi 9.2. Kullanılacak Malzemeler ve Aletler

Detaylı

6. TRANSİSTÖRÜN İNCELENMESİ

6. TRANSİSTÖRÜN İNCELENMESİ 6. TRANSİSTÖRÜN İNCELENMESİ 6.1. TEORİK BİLGİ 6.1.1. JONKSİYON TRANSİSTÖRÜN POLARMALANDIRILMASI Şekil 1. Jonksiyon Transistörün Polarmalandırılması Şekil 1 de Emiter-Beyz jonksiyonu doğru yönde polarmalandırılır.

Detaylı

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular

EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular EEM220 Temel Yarıiletken Elemanlar Çözümlü Örnek Sorular Kaynak: Fundamentals of Microelectronics, Behzad Razavi, Wiley; 2nd edition (April 8, 2013), Manuel Solutions. Bölüm 5 Seçme Sorular ve Çözümleri

Detaylı

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER)

EEM 202 DENEY 9 Ad&Soyad: No: RC DEVRELERİ-II DEĞİŞKEN BİR FREKANSTA RC DEVRELERİ (FİLTRELER) EEM 0 DENEY 9 Ad&oyad: R DEVRELERİ-II DEĞİŞKEN BİR FREKANTA R DEVRELERİ (FİLTRELER) 9. Amaçlar Değişken frekansta R devreleri: Kazanç ve faz karakteristikleri Alçak-Geçiren filtre Yüksek-Geçiren filtre

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM)

KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) İÇİNDEKİLER KISIM 1 ELEKTRONİK DEVRELER (ANALİZ TASARIM - PROBLEM) 1. BÖLÜM GERİBESLEMELİ AMPLİFİKATÖRLER... 3 1.1. Giriş...3 1.2. Geribeselemeli Devrenin Transfer Fonksiyonu...4 1.3. Gerilim - Seri Geribeslemesi...5

Detaylı

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME Deney No:1 Amaç: Osiloskop kullanarak AC gerilimin genlik periyot ve frekans değerlerinin ölçmesi Gerekli Ekipmanlar: AC Güç Kaynağı, Osiloskop, 2 tane 1k

Detaylı

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır.

* DC polarma, transistörün uçları arasında uygun DC çalışma gerilimlerinin veya öngerilimlerin sağlanmasıdır. Elektronik Devreler 1. Transistörlü Devreler 1.1 Transistör DC Polarma Devreleri 1.1.1 Gerilim Bölücülü Polarma Devresi 1.2 Transistörlü Yükselteç Devreleri 1.2.1 Gerilim Bölücülü Yükselteç Devresi Konunun

Detaylı

Geçmiş yıllardaki vize sorularından örnekler

Geçmiş yıllardaki vize sorularından örnekler Geçmiş yıllardaki vize sorularından örnekler Notlar kapalıdır, hesap makinesi kullanılabilir, öncelikle kağıtlardaki boş alanları kullanınız ve ek kağıt gerekmedikçe istemeyiniz. 6 veya 7.ci sorudan en

Detaylı

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Numara : Adı Soyadı : Grup Numarası : DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ Amaç: Teorik Bilgi: Ġstenenler: Aşağıda şemaları verilmiş olan 3 farklı devreyi kurarak,

Detaylı

KIRPICI DEVRELER VE KENETLEME DEVRELERİ

KIRPICI DEVRELER VE KENETLEME DEVRELERİ A) Kırpıcı Devreler KIRPICI DEVRELER VE KENETLEME DEVRELERİ Bir işaretteki belli bir gerilim ya da frekans seviyesinin üstündeki veya altındaki parçasını geçirmeyen devrelere kırpıcı devreler denir. Kırpıcı

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L

Detaylı

GERİLİM REGÜLATÖRLERİ DENEYİ

GERİLİM REGÜLATÖRLERİ DENEYİ GERİLİM REGÜLATÖRLERİ DENEYİ Regüleli Güç Kaynakları Elektronik cihazlar harcadıkları güçlere göre farklı akımlara ihtiyaç duyarlar. Örneğin; bir radyo veya amplifikatörün hoparlöründen duyulan ses şiddetine

Detaylı

ÖN BİLGİ: 5.1 Faz Kaymalı RC Osilatör

ÖN BİLGİ: 5.1 Faz Kaymalı RC Osilatör DENEY 7 : OSİLATÖR UYGULAMASI AMAÇ: Faz Kaymalı RC Osilatör ve Schmitt Tetikleyicili Karedalga Osilatörün temel çalışma prensipleri MALZEMELER: Güç Kaynağı: 12VDC, 5VDC Transistör: BC108C veya Muadili

Detaylı

Şekil 6.1 Faz çeviren toplama devresi

Şekil 6.1 Faz çeviren toplama devresi 23 Deney Adı : İşlemsel Kuvvetlendiricinin Temel Devreleri Deney No : 6 Deneyin Amacı : İşlemsel kuvvetlendiricilerle en ok kullanılan devreleri gerekleştirmek, fonksiyonlarını belirlemek Deneyle İlgili

Detaylı

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ

DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ DENEY 5 TEMEL İŞLEMSEL YÜKSELTEÇ (OPAMP) DEVRELERİ 5.1. DENEYİN AMAÇLARI İşlemsel yükselteçler hakkında teorik bilgi edinmek Eviren ve evirmeyen yükselteç devrelerinin uygulamasını yapmak 5.2. TEORİK BİLGİ

Detaylı

DENEY 6-3 Ortak Kollektörlü Yükselteç

DENEY 6-3 Ortak Kollektörlü Yükselteç Deney 10 DENEY 6-3 Ortak Kollektörlü Yükselteç DENEYİN AMACI 1. Ortak kollektörlü (CC) yükseltecin çalışma prensibini anlamak. 2. Ortak kollektörlü yükseltecin karakteristiklerini ölçmek. GENEL BİLGİLER

Detaylı

T.C. ULUDAĞ ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK - ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ ELEKTRONĠK DEVRELER LABORATUVARI I

T.C. ULUDAĞ ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK - ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ ELEKTRONĠK DEVRELER LABORATUVARI I T.. ULUDAĞ ÜNĠVRSĠTSĠ MÜHNDĠSLĠK FAKÜLTSĠ LKTRĠK - LKTRONĠK MÜHNDĠSLĠĞĠ ÖLÜMÜ LKTRONĠK DVRLR LAORATUVARI I DNY 3: ĠPOLAR TRANZĠSTÖR (JT) KARAKTRĠSTĠKLRĠ Tranzistörün giriş karakteristiği Tranzistörün çıkış

Detaylı

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE

ANALOG ELEKTRONİK - II YÜKSEK GEÇİREN FİLTRE BÖLÜM 7 YÜKSEK GEÇİREN FİLTRE KONU: Opamp uygulaması olarak; 2. dereceden Yüksek Geçiren Aktif Filtre (High-Pass Filter) devresinin özellikleri ve çalışma karakteristikleri incelenecektir. GEREKLİ DONANIM:

Detaylı

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI

DENEY 5 RC DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMASI DENEY 5 R DEVRELERİ KONDANSATÖRÜN YÜKLENMESİ VE BOŞALMAS Amaç: Deneyin amacı yüklenmekte/boşalmakta olan bir kondansatörün ne kadar hızlı (veya ne kadar yavaş) dolmasının/boşalmasının hangi fiziksel büyüklüklere

Detaylı

KOB Statik Giriş Direnci. Kollektörü Ortak Yükselteç (KOB) Kollektörü Ortak Yükseltecin (KOB) Statik Karakteristikleri

KOB Statik Giriş Direnci. Kollektörü Ortak Yükselteç (KOB) Kollektörü Ortak Yükseltecin (KOB) Statik Karakteristikleri Kollektörü Ortak Yükselteç (KOB) Kollektörü ortak baglantılı yüselteçte, kollektör hem girişte hem de çıkışta ortaktır "Kollektörü ortak bağlantının" ilk harfleri alınarak "KOB" kısaltması üretilmiştir.

Detaylı

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği ZENER DİYOT VE AKIM-GERİLİM KARAKTERİSTİĞİ Küçük sinyal diyotları, delinme gerilimine yakın değerlerde hasar görebileceğinden, bu değerlerde kullanılamazlar. Buna karşılık, Zener diyotlar delinme gerilimi

Detaylı

AC DEVRELERDE BOBİNLER

AC DEVRELERDE BOBİNLER AC DEVRELERDE BOBİNLER 4.1 Amaçlar Sabit Frekanslı AC Devrelerde Bobin Bobinin voltaj ve akımının ölçülmesi Voltaj ve akım arasındaki faz farkının bulunması Gücün hesaplanması Voltaj, akım ve güç eğrilerinin

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

Bu bölümde iki kutuplu (bipolar) tranzistörlerin çalışma esasları incelenecektir.

Bu bölümde iki kutuplu (bipolar) tranzistörlerin çalışma esasları incelenecektir. TRANZİSTÖRLERİN ÇALIŞMASI VE KARAKTERİSTİKLERİ Bu bölümde iki kutuplu (bipolar) tranzistörlerin çalışma esasları incelenecektir. Temel kavramlar PNP ve NPN olmak üzere iki çeşit BJT tranzistör vardır.

Detaylı

Enerji Sistemleri Mühendisliği Bölümü

Enerji Sistemleri Mühendisliği Bölümü YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ Enerji Sistemleri Mühendisliği Bölümü ESM 413 Enerji Sistemleri Laboratuvarı-II RL, RC ve RLC DEVRELERİNİN AC ANALİZİ Puanlandırma Sistemi: Hazırlık Soruları:

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

8. FET İN İNCELENMESİ

8. FET İN İNCELENMESİ 8. FET İN İNCELENMESİ 8.1. TEORİK BİLGİ FET transistörler iki farklı ana grupta üretilmektedir. Bunlardan birincisi JFET (Junction Field Effect Transistör) ya da kısaca bilinen adı ile FET, ikincisi ise

Detaylı

DENEY 6 BİPOLAR KUVVETLENDİRİCİ KÜÇÜK İŞARET

DENEY 6 BİPOLAR KUVVETLENDİRİCİ KÜÇÜK İŞARET DENEY 6 BİPOLAR KUVVETLENDİRİCİ KÜÇÜK İŞARET AMAÇLAR: Ortak emetörlü kuvvetlendiricinin küçük işaret analizini gerçekleştirmek Doğrusallık ve kazanç arasındaki ilişkiyi göstermek ÖN BİLGİ: Şekil 1 de görülen

Detaylı

DENEY NO:1 DENEYİN ADI: 100 Hz Hz 4. Derece 3dB Ripple lı Tschebyscheff Filtre Tasarımı

DENEY NO:1 DENEYİN ADI: 100 Hz Hz 4. Derece 3dB Ripple lı Tschebyscheff Filtre Tasarımı DENEY NO:1 DENEYİN ADI: 100-200 4. Derece 3dB Ripple lı Tschebyscheff Filtre Tasarımı DENEYİN AMACI: Bu deneyi başarıyla tamamlayan her öğrenci 1. Filtre tasarımında uyulması gereken kuralları bilecek

Detaylı

TRANSİSTÖRLÜ KUVVETLENDİRİCİLER. ELEKTRONİK DEVRE TASARIM LABORATUARI-II Özhan Özkan / 2010

TRANSİSTÖRLÜ KUVVETLENDİRİCİLER. ELEKTRONİK DEVRE TASARIM LABORATUARI-II Özhan Özkan / 2010 TRANSİSTÖRLÜ KUVVETLENDİRİCİLER ELEKTRONİK DEVRE TASARIM LABORATUARI-II Özhan Özkan / 2010 Transistörlü Kuvvetlendiricilerde Amaç: Giriş Sinyali Kuvvetlendirici Çıkış sinyali Akım kazancı sağlamak Gerilim

Detaylı

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop

DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop Deneyin Amacı: DENEY FÖYÜ 4: Alternatif Akım ve Osiloskop Osiloskop kullanarak alternatif gerilimlerin incelenmesi Deney Malzemeleri: 5 Adet 1kΩ, 5 adet 10kΩ, 5 Adet 2k2Ω, 1 Adet potansiyometre(1kω), 4

Detaylı

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DENEY 1: DİYOT KARAKTERİSTİKLERİ DENEY 1: DİYOT KARAKTERİSTİKLERİ Diyot, yalnızca bir yönde akım geçiren devre elemanıdır. Bir yöndeki direnci ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin

Detaylı

Şekil 1. Geri beslemeli yükselteçlerin genel yapısı

Şekil 1. Geri beslemeli yükselteçlerin genel yapısı DENEY 5: GERİ BESLEME DEVRELERİ 1 Malzeme Listesi Direnç: 1x82K ohm, 1x 8.2K ohm, 1x12K ohm, 1x1K ohm, 2x3.3K ohm, 1x560K ohm, 1x9.1K ohm, 1x56K ohm, 1x470 ohm, 1x6.8K ohm Kapasite: 4x10uF, 470 uf, 1nF,4.7uF

Detaylı

Şekil 1: Diyot sembol ve görünüşleri

Şekil 1: Diyot sembol ve görünüşleri DİYOTLAR ve DİYOTUN AKIM-GERİLİM KARAKTERİSTİĞİ Diyotlar; bir yarısı N-tipi, diğer yarısı P-tipi yarıiletkenden oluşan kristal elemanlardır ve tek yönlü akım geçiren yarıiletken devre elemanlarıdır. N

Detaylı

Bölüm 5 Transistör Karakteristikleri Deneyleri

Bölüm 5 Transistör Karakteristikleri Deneyleri Bölüm 5 Transistör Karakteristikleri Deneyleri 5.1 DENEYİN AMACI (1) Transistörlerin yapılarını ve sembollerini anlamak. (2) Transistörlerin karakteristiklerini anlamak. (3) Ölçü aletlerini kullanarak

Detaylı

Çukurova Üniversitesi Biyomedikal Mühendisliği

Çukurova Üniversitesi Biyomedikal Mühendisliği Çukurova Üniversitesi Biyomedikal Mühendisliği BMM22 Elektronik- Laboratuvarı Deney Föyü Deney#0 BJT ve MOSFET li Kuvvetlendiricilerin Frekans Cevabı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA,

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ

ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ TC SKRY ÜNERSTES TEKNOLOJ FKÜLTES ELEKTRK-ELEKTRONK MÜHENDSLĞ ELM22 ELEKTRONK-II DERS LBORTUR FÖYÜ DENEY YPTIRN: DENEYN DI: DENEY NO: DENEY YPNIN DI ve SOYDI: SINIFI: OKUL NO: DENEY GRUP NO: DENEY TRH

Detaylı