Algılayıcılar (Sensors)
|
|
|
- Esen Tandoğan
- 9 yıl önce
- İzleme sayısı:
Transkript
1 Algılayıcılar (Sensors) Sayısal işlem ve ölçmeler sadece elektriksel büyüklüklerle yapılmaktadır. Genelde teknik ve fiziksel büyüklükler (sıcaklık, ağırlık kuvveti ve basınç gibi) elektrik dalından olmayan bir büyüklük olarak sayılmaktadır. Bu demektir ki bu değişkenlerle bilgisayar ortamında işlem yapılamaz. Bunun için dönüştürücülere gereksinim vardır. Elektriksel olmayan büyüklükleri elektriksel sinyale (gerilim veya akım) dönüştürmeyi sağlayan dönüştürücüler algılayıcı (sensor) olarak adlandırılır. Bu gruba basit ve ucuz ölçme algılayıcıları girdiği gibi, aynı zamanda algılayıcıların çıkışına bağlanan ölçüm değerinin hazırlanması için kullanılan elektronik devrelerde (kuvvetlendirici, ısı kompanzasyonu ve doğrusallaştırma) sayılmaktadır. Bunun yanında ayrıca bu sınıfa gaz cinsindeki maddelerin yoğunluğu yada varlığını veya hava nemliliğini gösteren devre elemanları da girmektedir. Aşağıdaki verilen özellikler genel anlamda bir algılayıcının kalitesini belirler: Doğrusallık Isı kararlılığı Hassasiyet Cevap verme süresi Alt ve üst sınır frekansı Uzun süre kararlılık Histerezis Doğrusallık: Dönüştürmenin kesinlikle oransal olmalı, yani dönüştürme eğrisi bir doğru vermelidir. Isı Kararlılığı: Kullanılan algılayıcı (ısı algılayıcı hariç) çalışılan ortamdaki sıcaklık değişiminden etkilenmemeli. Hassasiyet: Algılayıcın hassasiyeti öyle seçilmelidir ki, giriş büyüklüğünün en küçük dönüştürme aralığı, yeterince büyük bir elektrik gerilim değişimini çıkışa yansıtmalıdır. Gecikme zamanı: Giriş büyüklüğündeki ani değişimin başlaması ile algılayıcının çıkış işaretindeki değişimine kadar geçen süredir. Algılayıcının kullanıldığı ortamdaki fiziksel giriş büyüklüğünün değişimine algılayıcı daha hızlı tepki göstermelidir. Alt ve Üst sınır frekansı: Periyodik değişen giriş işaretinin en alt ve en üst frekansıdır. Algılayıcı bu giriş işaretlerinde izin verilen ölçüm hata aralığında henüz doğru dönüştürme yapmaktadır. Genelde uygulamalarda alt sınır olarak 0 Hz istenir. Uzun süre Kararlılık: Bir algılayıcı uzun süre boyunca aynı giriş işareti için uygun aynı çıkış işaretini vermelidir. Ne yazık ki birçok elektronik eleman eskimektedir. Kararlı olmayan yapıya özel örnek gergi yayı ilk akla gelmektedir. Bu tip algılayıcıda aynı kuvvet uygulansa da farklı çıkış işareti alınabilmektedir. Histerizes bandı: Demirin mıknatıslanmasında bilinen histerizes eğrisi Algılayıcılarda da ortaya çıkmaktadır. Örneğin algılayıcı aynı ortam sıcaklığında farklı çıkış gerilimi verebilir. Bu durum ölçümün yükselen ısı veya düşen ısı için yapılmasına bağlıdır. Algılayıcının ölçüm doğruluğunu lineer olma, ısı kararlılığı, uzun süre kararlılık ve histerezis bandı belirler. B.Ç.
2 İşlemsel Kuvvetlendiriciler (Operational Amplifier) Her türlü elektrik işareti için kuvvetlendiricidir. Genel olarak karşılaştırma, kuvvetlendirme, filtre devreleri, toplayıcı, çıkarıcı, türev, integral gibi uygulamalarda kullanılmaktadır. Giriş +Vcc Giriş + Çıkış Vcc İdeal durumda işlemsel kuvvetlendiricinin giriş direnci sonsuz ve çıkış direnci sıfırdır. Kuvvetlendirme katsayısı da sonsuzdur. Gerçek durumda ise giriş direnci MOhm ile GOhm arasında ve çıkış direnci ise 0 Ohm dur. Kuvvetlendirme katsayısı ise civarındadır. Çalışma frekansı 00 MHz civarındadır. Çıkış geriliminin denetim aralığı 0,6Vcc..0,9Vcc dir. Terslemeyen bağlantı Tersleyen Bağlantı Eksi girişe çıkışın geri beslenmesi bağlantının kuvvetlendirici, çıkışın artı girişe bağlanması ise Schmitttetikleyici ve çıkışın girişe bağlantısı yoksa işlemsel karşılaştırıcı devre elde edilir. V + = ±(R /R +R ).V cc V cc R R B.Ç.
3 Gerilim İzleyici + Gerilim izleyici devrede kuvvetlendirme faktörü dir. Giriş işareti ile çıkış işareti aynı fazdadır. Basit geri besleme devresidir. Giriş kuvvetlendirilmeden aynen çıkışa yansımaktadır. Yüksek giriş direnci ve alçak çıkış direnci, dolayısıyla hassas giriş ve kuvvetli çıkış sağlanır. Bağlı olduğu devrenin çıkışına yüklenmez. Bundan dolayı bir uyum devresi veya tampon devresi olarak görülmektedir. U çıkış / = Terslemeyen Kuvvetlendirici V cc R R Burada giriş işareti belli bir oranda çıkışa terslenmeden aktarılmaktadır. U çıkış / =+R /R, R =0 olursa kuvvetlendirme katsayısı olur. B.Ç. 3
4 Toplayıcı Devresi U R R F U R V cc RF RF = ( U U ), Eğer R =R =R F olursa = (U +U ) R R Çıkarıcı Devresi U R R F U R V cc R F RF U =0 için U + = U R R F = R F R U R ( R R F F = ( R RF ) R ) R U R ( R R ) F F RF = U U,R =R olursa, = R F ( U U ) R ( R R R R F ) B.Ç. 4
5 İntegral alıcı Devre I = (V i V x ) / R = V i / R olarak yazılabilir. V o = (/C f ) I f dt ve I f = I olduğuna göre; V o = ( / C f ) I dt V o = ( / C f ) (V i / R ) dt' V o = [ / (R.C f )] V i dt olarak bulunur. Girişteki kayma (offset) geriliminin işlemsel yükselteci doyuma götürmemesi için C f kondansatörüne paralel R f direnci bağlamak gerekir. Türev Alıcı Devre Türev alıcı devre bir eviren yükselteç devresidir. İşlemsel yükseltecin eviren giriş ucundaki gerilim yaklaşık olarak 0 (sıfır) Volt tur (V x = 0V). I = C. (dv i / dt)'dir. Türev alıcı devrenin çıkış gerilimi, V o = R f. I f 'dir. I f = I olduğundan V o = R f. C. (dv i / dt) olur. Türev alma işlemini C kondansatörü yapmaktadır. Yüksek frekanslarda kondansatör kısa devre gibi davranır ve kazanç çok yüksek olur. Kazancın yüksek olması istenmeyen salınımlar doğurur. Bunu önlemek için C kondansatörüne seri bir direnç bağlamak gerekir. Seri direnç, eviren işlemsel yükselteçteki kazanç sınırlama direnci gibi davranır. Yüksek frekanslarda kazanç A = R f /R olur. B.Ç. 5
6 Giriş İşareti Türev Devre Çıkışı İntegral Devre Çıkışı Algılayıcının başlangıç değeri sıfırdan farklı olursa işlemsel kuvvetlendirici kullanarak kayma ortadan kaldırılabilir K V cc µ B.Ç. 6
7 İşlemsel Yükseltecin statik çalışmasında yani, girişte sinyal yokken çıkış geriliminin sıfır Volt olması gerekir. Genel olarak işlemsel kuvvetlendiricide kayma olursa, basit uygulama devresi ile çıkış ve giriş arasındaki gerilim farkı çözülebilmektedir. 5 (6) K ANALOG DİJİTAL VE DİJİTALANALOG DÖNÜŞTÜRÜCÜLER Analog ve Sayısal Sinyaller: Doğa analogtur. (Natura non facit saltus) Doğa da kesintisizdir. Analog sinyaller Uzunluk, zaman, hız, ivme Ağırlık, yük, kuvvet, basınç Gerilim, akım, frekans Isı, ışık şiddeti Kesintisiz olarak sürekli değer alan ve sahip olduğu değerler belirli sınırlar içinde sürekli değişen büyüklük, analog büyüklük olarak adlandırılır. Analog sinyallerde alt sınır olarak genelde sıfır değeri alınır. Üst sınır ise sisteme göre değişmektedir. Sayısal (digital) sinyal ise, süreklilik yoktur ve değişim aniden olur. Sayı, harf ve kontrol işareti vs. gibi sayısal büyüklüğü gösterebilmek için 0 ve iki değer alabilen sayısal işaret kullanılır. Sadece sayısal işaretlerle işlem yapılan sistem sayısal sistem, sadece analog devre ve dolayısıyla analog işaret ile işlem yapılıyorsa bu sistemler de analog sistem olarak adlandırılır. Hem analog ve hem de sayısal işaretler ile çalışan sistemler ise karma (hibrit) sistemler olarak adlandırılmaktadır. Sayısal sistemlerin tasarımı daha kolaydır. Anahtarlama (aç/kapa) mantığı kullanıldığından akım ve gerilim kesin değerleri önemli değildir. Sayısal sistemlerde bilgi saklanması basittir. Sayısal sistemde bilginin (verinin) bir yerde saklanması (örneğin elektronik bellek, RAM) ve tekrar işlenmesi mümkündür. B.Ç. 7
8 Sayısal sistemde doğruluk yüzdesi ve birbirine bağlanabilecek devrelerin sayısı yüksek olabilir. Analog devrelerde ise üç dört basamaklı birbiriyle bağlantı olabilmektedir. Sayısal sistemde işlem akışı programlanabilmektedir. Analog devrelerde programlama yapmak mümkün fakat programlama da esneklik zordur. Sinyalin gürültüden etkilenmesi analog sistemde daha belirgin ve kritik olmasına karşın sayısal sistemde ise 0 ve olarak kabul edilen gerilim sınırlarını zorlamadığı sürece önemli değildir. Sayısal sistemde bir entegre devresinde çok sayıda sayısal devre yerleştirilirken, analog sistem (yüksek değerli kondensatör, bobin ve yüksek güçlü trafolar)için bazen entegre devresi üretmek ekonomik olmayabilir. Sayısal sistemde işlem yoğunluğu direkt çözünürlüğe bağlıdır. İstenildiğinde daha iyi çözünürlük elde edilebilir. Analog sistemde ise çözünürlük yani, seviye sayısı sonsuzdur. Analog Sayısal Ölçme Çözünürlük Sınır yok Basamak sayısı ile sınırlı Hassasiyet Elemanlarla sınırlı Teorik: sınır yok, pratik: Sınırlı İletim Kayıp var Kayıp olmaz, Hata düzeltilir. Depolama Zor Basit, uzun süre İşlem Hassasiyet Düşük, gürültü ve kararsızlıktan İsteğe bağlı dolayı % Hız Sistemin frekansına bağlı Seri iletimde düşük Gösterge Daha ayrıntılı, Okuma hatalı Ayrıntılı, Okuma hatası az Maliyet Karmaşık değil, fakat pahalı Çok fonksiyonlu hem de uygun AnalogSayısal Dönüştürücüler A/S Dönüştürücülerin girişine yavaş yavaş değişen yaklaşık lineer bir sinyal uygulanır. AS Dönüştürücü devrenin girişine uygulanan analog işaretin gerilim seviyesine göre çıkışında ikili sayı sisteminde sayısal bir işaret alınır. Analog/sayısal dönüştürücü için birçok farklı yöntem geliştirilmiştir. Analog sinyal genelde 0..5V arası değişen bir işaret olarak düşünülebilir. Dönüştürücünün çıkışındaki 8bit çözünürlük ile hassasiyet normal olarak LSB sayısal değerine karşılık gelen analog gerilime bağlıdır. 8bit çözünürlüğün farklı seviye sayısı 56 adımdır. LSB yaklaşık 9.5 mv dur. Dolayısıyla hassasiyet yüzde olarak % 0,4 hesaplanır. Devrenin iç yapısından kaynaklanan hassasiyet değiştirebilir. B.Ç. 8
Deney 3: Opamp. Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi.
Deneyin Amacı: Deney 3: Opamp Opamp ın (işlemsel yükselteç) çalışma mantığının ve kullanım alanlarının öğrenilmesi, uygulamalarla pratik bilginin pekiştirilmesi. A.ÖNBİLGİ İdeal bir opamp (operational-amplifier)
Op-Amp Uygulama Devreleri
Op-Amp Uygulama Devreleri Tipik Op-amp devre yapıları şunları içerir: Birim Kazanç Arabelleği (Gerilim İzleyici) Evirici Yükselteç Evirmeyen Yükselteç Toplayan Yükselteç İntegral Alıcı Türev Alıcı Karşılaştırıcı
Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü
HAZIRLIK ÇALIŞMALARI İŞLEMSEL YÜKSELTEÇLER VE UYGULAMALARI 1. 741 İşlemsel yükselteçlerin özellikleri ve yapısı hakkında bilgi veriniz. 2. İşlemsel yükselteçlerle gerçekleştirilen eviren yükselteç, türev
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deney, tersleyen kuvvetlendirici, terslemeyen kuvvetlendirici ve toplayıcı
6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1
6. DİJİTAL / ANALOG VE ANALOG /DİJİTAL ÇEVİRİCİLER 1 Günümüzde kullanılan elektronik kontrol üniteleri analog ve dijital elektronik düzenlerinin birleşimi ile gerçekleşir. Gerilim, akım, direnç, frekans,
AREL ÜNİVERSİTESİ DEVRE ANALİZİ
AREL ÜNİVERSİTESİ DEVRE ANALİZİ İŞLEMSEL KUVVETLENDİRİCİLER DR. GÖRKEM SERBES İŞLEMSEL KUVVETLENDİRİCİ İşlemsel kuvvetlendirici (Op-Amp); farksal girişi ve tek uçlu çıkışı olan DC kuplajlı, yüksek kazançlı
EEM211 ELEKTRİK DEVRELERİ-I
EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku
T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU
T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK LABORATUVARI-II DENEY RAPORU İŞLEMSEL KUVVETLENDİRİCİLER ADI SOYADI: ÖĞRENCİ NO: GRUBU: Deneyin
Ders İçerik Bilgisi. Dr. Hakan TERZİOĞLU Dr. Hakan TERZİOĞLU 1
Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi PID Parametrelerinin Elde Edilmesi A. Salınım (Titreşim) Yöntemi B. Cevap Eğrisi Yöntemi Karşılaştırıcı ve Denetleyicilerin Opamplarla Yapılması 1. Karşılaştırıcı
Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI
Öğr. Gör. Oğuzhan ÇAKIR 377 42 03, KTÜ, 2010 Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Laboratuvarı I İŞLEMSEL YÜKSELTECİN TEMEL ÖZELLİKLERİ VE UYGULAMALARI 1. Deneyin
ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ. Grup Numara Ad Soyad RAPORU HAZIRLAYAN:
ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ SAYISAL TASARIM LABORATUVARI DENEY 6 ANALOG/DİGİTAL DÖNÜŞTÜRÜCÜ DENEYİ YAPANLAR Grup Numara Ad Soyad RAPORU HAZIRLAYAN: Deneyin Yapılış Tarihi Raporun Geleceği Tarih Raporun
Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Giriş
Deney 10: Analog - Dijital Dönüştürücüler (Analog to Digital Converters - ADC) Analog - Dijital Dönüştürücülerin ADC0804 entegre devresi ile incelenmesi Giriş Sensör ve transdüser çıkışlarında genellikle
ĐŞLEMSEL YÜKSELTEÇLER
K TÜ Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Sayısal Elektronik Laboratuarı ĐŞLEMSEL YÜKSELTEÇLER Đşlemsel yükselteçler ilk olarak analog hesap makinelerinde toplama, çıkarma, türev ve integral
DENEY 8. OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler
DENEY 8 OPAMP UYGULAMALARI-II: Toplayıcı, Fark Alıcı, Türev Alıcı, İntegral Alıcı Devreler 1. Amaç Bu deneyin amacı; Op-Amp kullanarak toplayıcı, fark alıcı, türev alıcı ve integral alıcı devrelerin incelenmesidir.
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ - 2 DENEYİ Amaç: Bu deneyde terslemeyen kuvvetlendirici, toplayıcı kuvvetlendirici ve karşılaştırıcı
DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları
DENEY FÖYÜ 7: İşlemsel Yükselteçlerin Doğrusal Uygulamaları Deneyin Amacı: Bu deneyin amacı; İşlemsel yükselteçlerle (OP-AMP) yapılabilecek doğrusal uygulamaları laboratuvar ortamında gerçekleştirmek ve
Çukurova Üniversitesi Biyomedikal Mühendisliği
Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#6 İşlemsel Kuvvetlendiriciler (OP-AMP) - 2 Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-1 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ
KIRIKKALE ÜNİVERSİTESİ
KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde
DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ
DENEY 5: İŞLEMSEL YÜKSELTEÇLER ve UYGULAMA DEVRELERİ Amaç: İşlemsel yükselteç uygulamaları Kullanılan Cihazlar ve Devre Elemanları: 1. Dirençler: 1k, 10k, 100k 2. 1 adet osiloskop 3. 1 adet 15V luk simetrik
ANOLOG-DİJİTAL DÖNÜŞTÜRÜCÜLER
ADC ve DAC 1 BM-201 2 ANOLOG-DİJİTAL DÖNÜŞTÜRÜCÜLER Maksimum ve minimum sınırları arasında farklı değerler alarak değişken elektriksel büyüklüklere analog bilgi ya da analog değer denir. Akım ve gerilim
ANALOG VE SAYISAL KAVRAMLARI
ANALOG VE SAYISAL KAVRAMLARI Giriş Günlük hayatımızda fiziksel varlıkların büyüklükleri ile ilgilenilmektedir. Bu büyüklüklerin; ölçülebilme, görüntülenebilme, kaydedilebilme, aritmetik olarak hesaplanabilme
KAYNAK KİTAP: 1-DIGITAL DESIGN PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES. PRENTICE HALL. Yazar: JOHN F.
KAYNAK KİTAP: 1-DIGITAL DESIGN PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES PRINCIPLES & PRACTICES. PRENTICE HALL. Yazar: JOHN F. WAKERLY DERSIN TANIMI Dersin Adı: SAYISAL TASARIM-I/BM-205 Dersin Kredisi:
DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI. Malzeme ve Cihaz Listesi:
1 DENEY NO: 7 İŞLEMSEL KUVVETLENDİRİCİ VE UYGULAMALARI Malzeme ve Cihaz Listesi: 1. 70 direnç 1 adet. 1 k direnç adet. 10 k direnç adet 4. 15 k direnç 1 adet 5. k direnç 1 adet. 47 k direnç adet 7. 8 k
AFYON KOCATEPE ÜNİVERSİTESİ
AFYON KOCATEPE ÜNİVERSİTESİ Ders: Veri Toplama ve İşleme Yöntemleri Ders-2 Bir odanın sıcaklığı, bir ışık kaynağının yoğunluğu veya bir nesneye uygulanan kuvvet gibi bir fiziksel büyüklük ölçümü, bir sensörle
İşlemsel Yükselteçler
İşlemsel Yükselteçler Bölüm 5. 5.1. Giriş İşlemsel yükselteçler aktif devre elemanlarıdır. Devrede gerilin kontrollü gerilim kaynağı gibi çalışırlar. İşlemsel yükselteçler sinyalleri toplama, çıkarma,
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ. Amaç:
KOCAELİ ÜNİVERSİTESİ ELEKTRONİK VE HABERLEŞME MÜHENDİSLİĞİ ELEKTRONİK LAB 1 DERSİ İŞLEMSEL KUVVETLENDİRİCİ 1 DENEYİ Amaç: Bu laboratuvarda, yüksek giriş direnci, düşük çıkış direnci ve yüksek kazanç özellikleriyle
SAYISAL DEVRELERE GİRİŞ ANALOG VE SAYISAL KAVRAMLARI (ANALOG AND DIGITAL) Sakarya Üniversitesi
SAYISAL DEVRELERE GİRİŞ ANALOG VE SAYISAL KAVRAMLARI (ANALOG AND DIGITAL) Sakarya Üniversitesi DERS İÇERİĞİ Analog Büyüklük, Analog İşaret, Analog Gösterge ve Analog Sistem Sayısal Büyüklük, Sayısal İşaret,
OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH
OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları
(VEYA-DEĞİL kapısı) (Exlusive OR kapısı) (Exlusive NOR kapısı)
1.1 Ön Çalışma Deney çalışmasında yapılacak uygulamaların benzetimlerini yaparak, sonuçlarını ön çalışma raporu olarak hazırlayınız. 1.2 Deneyin Amacı Temel kapı işlemlerinin ve gerçekleştirilmesi. bu
SAYISAL TASARIM. Ege Üniversitesi Ege MYO Mekatronik Programı
SAYISAL TASARIM Ege Üniversitesi Ege MYO Mekatronik Programı BÖLÜM 6 DAC, Sayısal Analog Dönüştürücüler DAC Sayısal Analog Dönüştürücüler Analog sayısal dönüşümün tersini gerçekleyen elemanlara sayısal
BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme
BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere
Şekil 6.1 Faz çeviren toplama devresi
23 Deney Adı : İşlemsel Kuvvetlendiricinin Temel Devreleri Deney No : 6 Deneyin Amacı : İşlemsel kuvvetlendiricilerle en ok kullanılan devreleri gerekleştirmek, fonksiyonlarını belirlemek Deneyle İlgili
DENEY 6a- Dijital/Analog Çevirici (DAC) Devreleri
DENEY 6a- Dijital/Analog Çevirici (DAC) Devreleri DENEYİN AMACI 1. Dijitalden Analog a çevrimin temel kavramlarının ve teorilerinin anlaşılması GENEL BİLGİLER Şekil-1 Şekil-1 de bir direnç ağıyla gerçekleştirilmiş
KZ MEKATRONİK. Temel Elektrik Elektronik Eğitim Seti Ana Ünite
Ana Ünite ana ünitesi, analog uygulamalar, dijital uygulamalar ve temel devre analizi uygulamalarının yapılabileceği şekilde çantalı ve masa üstü kullanıma uygun yapıda tasarlanmıştır. İsteğe bağlı olarak
Elektrik Devre Lab
2010-2011 Elektrik Devre Lab. 2 09.03.2011 Elektronik sistemlerde işlenecek sinyallerin hemen hepsi düşük genlikli, yani zayıf sinyallerdir. Elektronik sistemlerin pek çoğunda da yeterli derecede yükseltilmiş
DENEY 2 Op Amp: AC Uygulamaları
A. DNYİN AMACI : Opampın kuvvetlendirici özelliğinin ac devrelerde ve ac işaretlerle daha iyi bir şekilde anlaşılması amacıyla uygulamalı devre çalışmaları yapmak. B. KULLANILACAK AAÇ V MALZML : 1. Sinyal
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2
T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1 OPAMP DEVRELERİ-2 DENEY SORUMLUSU Arş. Gör. Memduh SUVEREN MART 2015 KAYSERİ OPAMP DEVRELERİ
DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ
DENEY: 1.1 EVİREN YÜKSELTECİN DC DA ÇALIŞMASININ İNCELENMESİ HAZIRLIK BİLGİLERİ: Şekil 1.1 de işlemsel yükseltecin eviren yükselteç olarak çalışması görülmektedir. İşlemsel yükselteçler iyi bir DC yükseltecidir.
BC237, BC338 transistör, 220Ω, 330Ω, 4.7KΩ 10KΩ, 100KΩ dirençler ve bağlantı kabloları Multimetre, DC güç kaynağı
DENEY 7: BJT ÖNGERİLİMLENDİRME ÇEŞİTLERİ 7.1. Deneyin Amacı BJT ön gerilimlendirme devrelerine örnek olarak verilen üç değişik bağlantının, değişen β değerlerine karşı gösterdiği çalışma noktalarındaki
ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALARI HAKAN KUNTMAN EĞİTİM-ÖĞRETİM YILI
ENDÜSTRİYEL ELEKTRONİK İŞLEMSEL KUVVETLENDİRİCİLERİN LİNEER UYGULAMALAR HAKAN KUNTMAN 03-04 EĞİTİM-ÖĞRETİM YL İşlemsel kuvvetlendiriciler, endüstriyel elektronik alanında çeşitli ölçü ve kontrol düzenlerinin
ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.
BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V
Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.
DC AKIM ÖLÇMELERİ Doğru Akım Doğru akım, zamana bağlı olarak yönü değişmeyen akıma denir. Kısa gösterimi DA (Doğru Akım) ya da İngilizce haliyle DC (Direct Current) şeklindedir. Doğru akımın yönü değişmese
BİLGİSAYARLI KONTROL OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER
BÖLÜM 4 OPERASYONAL AMFLİKATÖRLER VE ÇEVİRİCİLER 4.1 OPERASYONEL AMPLİFİKATÖRLER (OPAMP LAR) Operasyonel amplifikatörler (Operational Amplifiers) veya işlemsel kuvvetlendiriciler, karmaşık sistemlerin
Deney 2: FARK YÜKSELTEÇ
Deney : FARK YÜKSELTEÇ Fark Yükselteç (Differential Amplifier: Dif-Amp) Fark Yükselteçler, çıkışı iki giriş işaretinin cebirsel farkıyla orantılı olan amplifikatörlerdir. O halde bu tip bir amplifikatörün
EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI
EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI SENSÖRLER VE DÖNÜŞTÜRÜCÜLER SÜREÇ KONTROL Süreç Kontrol Süreç kontrolle ilişkili işlemler her zaman doğada var olmuştur. Doğal süreç kontrolünü yaşayan bir
İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs)
BLM224 ELEKTERONİK DEVRELER Hafta 12 İşlemsel Kuvvetlendiriciler (Operational Amplifiers: OPAMPs) Opamp Sembolü ve Terminalleri Standart bir opamp; iki adet giriş terminali, bir adet çıkış terminaline
Deneyle İlgili Ön Bilgi:
DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise
OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ
OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;
DENEY 5- TEMEL İŞLEMSEL YÜKSELTEÇ (OP-AMP) DEVRELERİ
DENEY 5 TEMEL İŞLEMSEL YÜKSELTEÇ (OPAMP) DEVRELERİ 5.1. DENEYİN AMAÇLARI İşlemsel yükselteçler hakkında teorik bilgi edinmek Eviren ve evirmeyen yükselteç devrelerinin uygulamasını yapmak 5.2. TEORİK BİLGİ
Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki
BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ
BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ 9.1 DALGA MEYDANA GETİRME USÜLLERİNE GİRİŞ Dalga üreteçleri birkaç hertzden, birkaç gigahertze kadar sinyalleri meydana getirirler. Çıkışlarında sinüsoidal, kare,
DENEY 13 İŞLEMSEL KUVVETLENDİRİCİ (Op Amp)
İŞLMSL KUVVTLNDİİCİ (Op Amp) A. DNYİN AMACI : Opampın kuvvetlendirici özelliğinin daha iyi bir şekilde anlaşılması amacıyla uygulamalı devre çalışmaları yapmak. B. KULLANILACAK AAÇ V MALZML : 1. Multimetre
SCHMITT TETİKLEME DEVRESİ
Karadeniz Teknik Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Elektronik Lab. SCHMITT TETİKLEME DEVRESİ.Ön Bilgiler. Schmitt Tetikleme Devreleri Schmitt tetikleme devresi iki konumlu bir devredir.
Bölüm 14 Temel Opamp Karakteristikleri Deneyleri
Bölüm 14 Temel Opamp Karakteristikleri Deneyleri 14.1 DENEYİN AMACI (1) Temel OPAMP karakteristiklerini anlamak. (2) OPAMP ın ofset gerilimini ayarlama yöntemini anlamak. 14.2 GENEL BİLGİLER 14.2.1 Yeni
SICAKLIK ALGILAYICILAR
SICAKLIK ALGILAYICILAR AVANTAJLARI Kendisi güç üretir Oldukça kararlı çıkış Yüksek çıkış Doğrusal çıkış verir Basit yapıda Doğru çıkış verir Hızlı Yüksek çıkış Sağlam Termokupldan (ısıl İki hatlı direnç
DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI
DENEY-4 İŞLEMSEL KUVVETLENDİRİCİLERİN DOĞRUSAL UYGULAMALARI DENEYİN AMACI: Bu deneyde işlemsel kuvvetlendiricinin doğrusal uygulamaları incelenecek ve işlemsel kuvvetlendirici kullanılarak çeşitli matematiksel
ADC Devrelerinde Pratik Düşünceler
ADC Devrelerinde Pratik Düşünceler ADC nin belki de en önemli örneği çözünürlüğüdür. Çözünürlük dönüştürücü tarafından elde edilen ikili bitlerin sayısıdır. Çünkü ADC devreleri birçok kesikli adımdan birinin
LCR METRE KALİBRASYONU
599 LCR METRE KALİBRASYONU Yakup GÜLMEZ Gülay GÜLMEZ Mehmet ÇINAR ÖZET LCR metreler, genel olarak indüktans (L), kapasitans (C), direnç (R) gibi parametreleri çeşitli frekanslardaki alternatif akımda ölçen
DENEY 6- Dijital/Analog Çevirici (DAC) Devreleri
DENEY 6- Dijital/Analog Çevirici (DAC) Devreleri DENEYİN AMACI 1. Dijitalden Analog a çevrimin temel kavramlarının ve teorilerinin anlaşılması GENEL BİLGİLER Şekil-1 Şekil-1 de bir direnç ağıyla gerçekleştirilmiş
ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI
ALÇAK FREKANS GÜÇ YÜKSELTEÇLERİ VE ÇIKIŞ KATLARI Giriş Temel güç kuvvetlendiricisi yapılarından olan B sınıfı ve AB sınıfı kuvvetlendiricilerin çalışma mantığını kavrayarak, bu kuvvetlendiricileri verim
ÖN SÖZ... İİİ İÇİNDEKİLER... V BÖLÜM 1: DİJİTAL ÖLÇME TEKNİKLERİ... 1
İÇİNDEKİLER ÖN SÖZ... İİİ İÇİNDEKİLER... V BÖLÜM 1: DİJİTAL ÖLÇME TEKNİKLERİ... 1 GENEL AÇIKLAMALAR TEMEL KARAKTERİSTİKLER... 1 1. GİRİŞ... 1 2. DİJİTAL ÖLÇME CİHAZLARINI FARKLANDIRAN TEMEL BELİRTİLER...
Elektrik Devre Temelleri 3
Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini
RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ
RF İLE ÇOK NOKTADAN KABLOSUZ SICAKLIK ÖLÇÜMÜ Fevzi Zengin [email protected] Musa Şanlı [email protected] Oğuzhan Urhan [email protected] M.Kemal Güllü [email protected] Elektronik ve Haberleşme Mühendisliği
EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI
EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI SENSÖRLER VE DÖNÜŞTÜRÜCÜLER SENSÖRLER TANIMLAR VE TERİMLER SENSÖR Sensör İngilizce sense, yani algılama sözcüğünden türetilmiş olup algılayıcı anlamında kullanılan
Şekil 5.1 Opamp Blok Şeması ve Eşdeğer Devresi
DENEY NO :5 DENEYİN ADI :İşlemsel Kuvvetlendirici - OPAMP Karakteristikleri DENEYİN AMACI :İşlemsel kuvvetlendiricilerin performansını etkileyen belli başlı karakteristik özelliklerin ölçümlerini yapmak.
KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ
KONUM ALGILAMA YÖNTEMLERİ VE KONTROLÜ 1. AMAÇ: Endüstride kullanılan direnç, kapasite ve indüktans tipi konum (yerdeğiştirme) algılama transdüserlerinin temel ilkelerini açıklayıp kapalı döngü denetim
NECMETTİN ERBAKAN ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK-1 LABORATUVARI DENEY FÖYÜ
NECMETTİN ERBAKAN ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK-1 LABORATUVARI DENEY FÖYÜ 1 LABORATUVARDA UYULMASI GEREKEN KURALLAR Laboratuvara kesinlikle
13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ
13. ÜNİTE AKIM VE GERİLİM ÖLÇÜLMESİ KONULAR 1. Akım Ölçülmesi-Ampermetreler 2. Gerilim Ölçülmesi-Voltmetreler Ölçü Aleti Seçiminde Dikkat Edilecek Noktalar: Ölçü aletlerinin seçiminde yapılacak ölçmeye
Elektrik-Elektronik Mühendisliği Bölümü DENEY-5-
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik-Mimarlık Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Elektrik Makinaları ve Güç Sistemleri Laboratuarı DENEY-5- HAZIRLIK ÇALIŞMASI 1. Opamp uygulama devreleri
ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ
TC SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL NO:
KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI
DİRENÇ-ENDÜKTANS VE DİRENÇ KAPASİTANS FİLTRE DEVRELERİ HAZIRLIK ÇALIŞMALARI 1. Alçak geçiren filtre devrelerinin çalışmasını anlatınız. 2. Yüksek geçiren filtre devrelerinin çalışmasını anlatınız. 3. R-L
MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ
KARADENİZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR ORGANİZASYONU LABORATUVARI MİKROİŞLEMCİ İLE A/D DÖNÜŞÜMÜ 1. GİRİŞ Analog işaretleri sayısal işaretlere dönüştüren elektronik devrelere
ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ
TC SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELM202 ELEKTRONİK-II DERSİ LABORATUAR FÖYÜ DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI: SINIFI: OKUL
SICAKLIK KONTROLLÜ HAVYA
SICAKLIK KONTROLLÜ HAVYA Dirençler sıcaklığa bağımlıdır. Havyanın ısıtıcı direnci de istisna değildir. Böylece her havyanın sıcaklığı kontrol edilebilir. Ancak, elde 24V la çalışan bir havya olmalıdır
Şekil Sönümün Tesiri
LC Osilatörler RC osilatörlerle elde edilemeyen yüksek frekanslı osilasyonlar LC osilatörlerle elde edilir. LC osilatörlerle MHz seviyesinde yüksek frekanslı sinüsoidal sinyaller elde edilir. Paralel bobin
9- ANALOG DEVRE ELEMANLARI
9- ANALOG DEVRE ELEMANLARI *ANALOG VE DİJİTAL KAVRAMLARI *Herhangi bir fiziksel olayı ifade eden büyüklüklere işaret denmektedir. *Zaman içerisinde kesintisiz olarak devam eden işaretlere Analog işaret
V-LAB BİLGİSAYAR ARAYÜZLÜ EĞİTİM SETİ
Çeşitli ölçüm ünitelerine ve sinyal üreteçlerine sahip olan, tüm entegre cihazlarının bilgisayar üzerinden kontrol edilebilir ve gözlemlenebilir olması özellikleri ile Mesleki Eğitim'in önemli bir enstrümanıdır.
BÖLÜM 11 SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER SAYISAL TASARIM. Bu bölümde aşağıdaki konular anlatılacaktır.
SYISL TSIM BÖLÜM SYISLNLOG (DC NLOGSYISL(DC DÖNÜŞTÜÜCÜLE Bu bölümde aşağıdaki konular anlatılacaktır. Sayısal ve nalog sinyaller İşlemsel yükselteçler (Operatinal mplifieropmp Sayısalnalog Çeviriciler
Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım
Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi
Çukurova Üniversitesi Biyomedikal Mühendisliği
Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuarı Deney Föyü Deney#8 I-V ve V-I Dönüştürücüler Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 8 I-V ve
Sistem nedir? Başlıca Fiziksel Sistemler: Bir matematiksel teori;
Sistem nedir? Birbirleriyle ilişkide olan elemanlar topluluğuna sistem denir. Yrd. Doç. Dr. Fatih KELEŞ Fiziksel sistemler, belirli bir görevi gerçekleştirmek üzere birbirlerine bağlanmış fiziksel eleman
4. 8 adet breadboard kablosu, 6 adet timsah kablo
ALINACAK MALZEMELER 1. 0.25(1/4) Wattlık Direnç: 1k ohm (3 adet), 100 ohm(4 adet), 10 ohm (3 tane), 1 ohm (3 tane), 560 ohm (4 adet) 33k ohm (1 adet) 15kohm (1 adet) 10kohm (2 adet) 4.7 kohm (2 adet) 2.
Elektrik Devre Temelleri
Elektrik Devre Temelleri Yrd. Doç. Dr. Sibel ÇİMEN Elektronik ve Haberleşeme Mühendisliği Kocaeli Üniversitesi Ders Kitabı Fundamentals of Electric Circuits, by Charles K. Alexander and Matthew N. O. Sadiku,
SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER
SAYISAL-ANALOG (DAC) ANALOG-SAYISAL(ADC) DÖNÜŞTÜRÜCÜLER Fiziksel sistemlerdeki ısı, sıcaklık, basınç, ağırlık, nem oranı, ışık şiddeti, ses şiddeti gibi büyüklükler analog olarak değişirler. Dış ortamdaki
İzolasyon Yalıtım Direnç Ölçer Marka/Model METREL/ 3201
İzolasyon Yalıtım Direnç Ölçer Marka/Model METREL/ 3201 250V-5kV arası 25V luk adımlarla ayarlanabilir test gerilimi 5mA güçlü kısa devre akımı 10 T Ohm a kadar direnç ölçebilme Doğruluk-İzolasyon: 5 %
Bölüm 12 İşlemsel Yükselteç Uygulamaları
Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini
Bölüm 13 FSK Modülatörleri.
Bölüm 13 FSK Modülatörleri. 13.1 AMAÇ 1. Frekans Kaydırmalı Anahtarlama (FSK) modülasyonunun çalışma prensibinin anlaşılması.. FSK işaretlerinin ölçülmesi. 3. LM5 kullanarak bir FSK modülatörünün gerçekleştirilmesi.
DENEY 2. Şekil 2.1. 1. KL-13001 modülünü, KL-21001 ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.
DENEY 2 2.1. AC GERİLİM ÖLÇÜMÜ 1. AC gerilimlerin nasıl ölçüldüğünü öğrenmek. 2. AC voltmetrenin nasıl kullanıldığını öğrenmek. AC voltmetre, AC gerilimleri ölçmek için kullanılan kullanışlı bir cihazdır.
ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.
ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt [email protected] http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün
Şekil-1. Doğru ve Alternatif Akım dalga şekilleri
2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda
Deney 4: 555 Entegresi Uygulamaları
Deneyin Amacı: Deney 4: 555 Entegresi Uygulamaları 555 entegresi kullanım alanlarının öğrenilmesi. Uygulama yapılarak pratik kazanılması. A.ÖNBİLGİ LM 555 entegresi; osilasyon, zaman gecikmesi ve darbe
ANALOG SAYISAL DÖNÜŞTÜRÜCÜ DENEYİ TÜMLEŞİK (ENTEGRE) ADC DEVRESİ İLE
1 Deneyin Amacı: ANALOG SAYISAL DÖNÜŞTÜRÜCÜ DENEYİ TÜMLEŞİK (ENTEGRE) ADC DEVRESİ İLE Analog Sayısal Dönüştürücüleri (Analog to Digital Converter, ADC) tanımak ve kullanmaktır. Sayısal elektronik devrelerinin
İŞLEMSEL YÜKSELTEÇLER DERS NOTLARI
İŞLEMSEL YÜKSELTEÇLER DERS NOTLARI Hazırlayan: Öğr. Gör. Bora Döken 1 İÇİNDEKİLER Sayfa İÇİNDEKİLER... 2 1. OPAMP IN TANITILMASI... 2 1.1 Opamp Sembolü ve Terminalleri... 3 1.2 Opamp'ların Özellikleri...
BÖLÜM 3 OSİLASYON KRİTERLERİ
BÖLÜM 3 OSİİLATÖRLER Radyo sistemlerinde sinüs işaret osilatörleri, taşıyıcı işareti üretmek ve karıştırıcı katlarında bir frekansı diğerine dönüştürmek amacıyla kullanılır. Sinüs işaret osilatörlerinin
AFYON KOCATEPE ÜNİVERSİTESİ
AFYON KOCATEPE ÜNİVERSİTESİ Ders: Veri Toplama ve İşleme Yöntemleri VERİ NEDİR Veri (İng. ve Lat. datum; ç. data), ham (işlenmemiş) gerçek bilgi parçacığına verilen addır. Veriler ölçüm, sayım, deney,
Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları
Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları Direnç (R) Alternatif gerilimin etkisi altındaki direnç, Ohm kanunun bilinen ifadesini korur. Denklemlerden elde edilen sonuç
ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID) KONTROL ELEMANLARININ İNCELENMESİ *
Deneyden sonra bir hafta içerisinde raporunuzu teslim ediniz. Geç teslim edilen raporlar değerlendirmeye alınmaz. ELE 301L KONTROL SİSTEMLERİ I LABORATUVARI DENEY 3: ORANSAL, TÜREVSEL VE İNTEGRAL (PID)
Sıcaklık Nasıl Ölçülür?
Sıcaklık Nasıl Ölçülür? En basit ve en çok kullanılan özellik ısıl genleşmedir. Cam termometredeki sıvıda olduğu gibi. Elektriksel dönüşüm için algılamanın farklı metotları kullanılır. Bunlar : rezistif
Çukurova Üniversitesi Biyomedikal Mühendisliği
Çukurova Üniversitesi Biyomedikal Mühendisliği BMM309 Elektronik-2 Laboratuvarı Deney Föyü Deney#10 Analog Aktif Filtre Tasarımı Doç. Dr. Mutlu AVCI Arş. Gör. Mustafa İSTANBULLU ADANA, 2015 DENEY 10 Analog
