ELEKTROMANYETİK DALGALAR VE ANTENLER BARIŞ POLAT SEMA BACANAK

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ELEKTROMANYETİK DALGALAR VE ANTENLER BARIŞ POLAT 07102019 SEMA BACANAK 07102009"

Transkript

1 ELEKTROMANYETİK DALGALAR VE ANTENLER BARIŞ POLAT SEMA BACANAK

2 İÇERİK Elektromanyetik dalga nedir? Maxwell denklemlerine bakış Elektromanyetik dalga nasıl üretilir? Elektromanyetik dalganın özellikleri nelerdir? Elektromanyetik dalga çeşitleri nelerdir? Uzayda iletişim nasıl sağlanır? Anten nedir? Anten parametreleri nelerdir? Anten çeşitleri nelerdir?

3 ELEKTROMANYETİK DALGALAR İnsanlar ışığın doğasını anlamak için birçok çaba gösterdi, ama bu kolay olmadı yılında James Clerk Maxwell ışığın elektromanyetik dalgalardan oluştuğunu farketti. Işığın değişen bir elektrik alanı (E) ve yine değişen ve elektrik alana dik olan bir manyetik alan (B)'den oluştuğu önermesinde bulundu. E ve B'nin oranı her noktada aynı idi.

4 Ama bunlar diğer bildiğimiz su dalgası veya ip üzerindeki bir dalgaya hiç benzemiyorlardı; çünkü ilerleyebilmeleri için bir ortam gerekmiyordu ve Maxwell bu elektromanyetik dalgaların uzay boşluğunda x 10 8 m/s 'lik bir hızla ilerlediklerini gösterebildi. Her dalga gibi bu dalgalar da devamlı dalgalar idi. Yani parça parça değillerdi.

5 Aşağıda bir elektromanyetik dalganın animasyonunu görmektesiniz: (Mavi alan elektrik alanı, yeşil alan ise manyetik alanı simgelemektedir.)

6 İki dalga tepesi arasında kalan uzaklık dalga boyu olarak adlandırılır. Saniyedeki titreşim sayısı ise frekans olarak isimlendirilir. Bir dalga için, dalga boyu ve frekans arasındaki bağıntı: V = λ.f şeklinde gösterilir. Burada V: dalganın hızı, λ: dalga boyu ve f ise frekanstır. Elektromanyetik dalgalar söz konusu olduğunda ' V ' ışık hızı anlamına gelen ' c ' harfine eşit olur. Formülümüz ise, şu hale gelir:

7 Dalga boyu: metre cinsinden ve frekans ise 1/saniye veya Hz (hertz) cinsindendir. Farzedelim ki, bir elektromanyetik dalgamız var ve dalga boyunun 650nm olduğunu biliyoruz. (1nm (nanometre) 10-9 metreye eşittir, yani 650nm 'in karşılığı 650 x10-9 m 'dir). Bu dalga boyu elektromanyetik spektrum'un görünür ışık bölgesindeki kırmızı ışıktır. Bu elektromanyetik dalgaların frekansını hesaplayalım. Bu demek oluyor ki; dalga aynı hareketi saniyede 4,615 x10 14 kere tekrarlıyor!

8 MAXWELL DENKLEMLERİ James Clerk Maxwell elektromanyetik dalgaları matematiksel olarak incelemek için bazı fiziksel büyüklükler kullanmıştır. Bu büyüklükler manyetik dolanım, elektriksel dolanım, manyetik akı, elektriksel akı, vb. dir.

9 Elektriksel Dolanım (D E ): Değişen bir manyetik alan etrafında birim yükü bir tur döndürmek için elektrik alana karşı yapılan iş. D E =E.2π.r

10 Manyetik Dolanım (D B ): Düz bir telden geçen akım veya değişken bir elektrik alan etrafında birim kuzey kutbunun bir tur dönmesi sırasında manyetik alana karşı yapılan iş. D B =B.2π.r B=2Ki/r D B =2Ki/r.2π.r =4πKi

11 Elektrik Akı: Elektrik alan şiddeti ile yüzey alanının çarpımına eşittir. Manyetik Akı: Bir yüzeyden geçen manyetik alan çizgileri sayısının bir ölçüsüdür.

12 ELEKTROMANYETİK DALGALAR NASIL ÜRETİLİR? Elektromanyetik dalgaların dalga boylarına bağlı olarak elektromanyetik üreticinin yapısı da farklılaşır. Şekilde kısa dalga yayın yapan elektromanyetik dalga üreteci gösterilmiştir.

13 Şekildeki elektromanyetik dalga üreteci w=1/ frekansıyla titreşen LC devresini içermektedir. Bu sistemdeki yük ve akımlar rezonans frekansında salınırlar. Elektromanyetik enerji, titreşim periyodunun yarısında, yüklerin kondansatörde elektrik enerjisi depolaması, diğer yarısında ise akımların bobinde manyetik enerji depolaması şeklinde depolanır. LC salınıcısındaki anten w frekanslı salınımlarla rezonansa gelir.

14 REZONANS FREKANSI NEDİR? Rezonans, fizikte bir sistemin (genellikle doğrusal bir sistemin) bazı frekanslarda diğerlerine nazaran daha büyük genliklerde salınması eğilimidir. Bunlar, o sistemin rezonans (tınlaşım) frekansları olarak adlandırılır. Bu frekanslarda küçük periyodik kuvvetler bile çok büyük genlikler üretebilir.

15 Çevreye elektromanyetik dalga şeklinde enerji yayılır. Yani LC salınım devresi ve anten sistemi, bir enerji dönüşümü gerçekleştirir. Elektrik dipol antenin iki kolunun uçları arasında elektrik yüklerinin salınım hareketini yaparlar. Bu hareketlerin sonucunda üretilen elektromanyetik dalga aşağıdaki şekilde gösteriliği gibi yayılır. Elektrik ve manyetik alan çizgileri, dipol antenin ekseni civarında dönel şekiller oluşturarak c ışık hızıyla uzaklaşırlar.

16 Şekilde dipol antenin uçları arasındaki yüklerin salınımı sonucu yayınlanan elektromanyetik alan çizgilerinin yayılımı gösterilmektedir.

17 Elektromanyetik Dalgaların Özellikleri Boşlukta düz bir doğrultuda yayılırlar. Hızları ışık hızına eşittir. Geçtikleri ortama; frekanslarıyla doğru orantılı, dalga boylarıyla ters orantılı olmak üzere enerji aktarırlar. Enerjileri; maddeyi geçerken yutulma, saçılma nedeniyle azalır, boşlukta ise uzaklığın karesiyle ters orantılı olarak azalır. Elektromanyetik radyasyonlar sinüsoidal yayılım yaparlar. Bu yayılımı anlayabilmek için dalga modelini incelemek gerekir. Elektriksel ve manyetik güçleri birbirine dik ve eş zamanlı olarak salınım yaparlar.

18 ELEKROMANYETIK DALGA ÇEŞITLERI Kozmik Işınlar Dış uzaydan gelen radyasyonlardır. Elektromanyetik Spektrumdaki en kısa dalga boyuna sahiptirler. Büyük patlama anında oluştuğu, evrenin her tarafına yayıldığı ve hala da yayılmaya devam etmekte olduğu düşünülmektedir.

19 Gama Işınları Bunlar atom çekirdeğinden gelen radyasyonlardır ve genelde çekirdekteki anlık değişimlerden sonra yayılırlar (radyoaktivite). Bir atom çekirdeğinin çapından daha küçük dalga boylu dalgalar içerirler. Genelde çekirdek tepkimeleri sonucunda üretilirler.

20 X-Işınları Kaynaklar: lambalar, x ısını tüpleri ve metal bir hedefe çarpan hızlı elektronlardır. X ışınları yumuşak maddelerin içine nüfuz ederler.

21 Ultraviyole Işınlar Kaynaklar; lambalar, gaz deşarjları ve de yıldızlardır. Kısa dalga boylu morötesi ışınlar zararlı olabilirler.

22 Görünen Işık Işık diye hitap edilen elektromanyetik spektrumun bu küçük bölümünü insan görebilir. Bu bölümde mor ile başlayan ve kırmızıyla biten renkler vardır.

23 Kızılötesi Işınlar Bütün sıcak ve soğuk maddeler tarafından oluşturulurlar. Atomlar tarafından emildiklerinde maddeyi ısıtırlar, onun için de ısı radyasyonu da denir.

24 Mikrodalgalar Radarlarda kullanılan çok kısa dalga boyuna sahip radyo dalgalarıdır. Aynı zamanda mikrodalga fırınlarda ve kablo gerektirmeyen uzak mesafe iletişimlerde kullanılır.

25 Mikrodalga fırınlar şu şekilde çalışır; Magnetron denilen araç fırın içerisinde mikrodalgalar üretmek için fişten aldığı enerjiyi kullanır.bu dalgalar bir anten yardımıyla dalgakılavuzu denilen boş bir tüpe yöneltilir.bu tüp tarafından vantilatör gibi karıştırıcıya aktarılan dalgalar,fırının içine serbest bir biçimde dağıtılır.son aşamada fırın duvarlarından yansıtılan dalgalar,besin içindeki su molekülleri tarafından emilir.su moleküllerinin bir ucunda hafif pozitif(+) bir yük,diğerinde hafif negatif (-) yük bulunmaktadır.emilme süreci öncesi bu yükler,besin içerisinde rastgele dağıtılmamışlardır.fakat fırın duvarından yansıyan mikrodalgaları emen moleküller,dalgaların elektrik alanına göre dizilirler.elektrik alanı saniyede milyarlarca kez salınır ve su moleküllerini tahrik ederek konumlarını değiştirir.bu hızlı molekül salınımları ısı oluşturur ve böylece yiyeceği pişirir.

26 Radyo Dalgaları Bunların kaynakları elektrik osilasyonlarıdır. Telefon, televizyon ve radyoda bağlantı kablosu gerektirmeden kullanılır.

27

28 UZAYDA İLETİŞİM NASIL SAĞLANIR? Uzayda iletişim elektromanyetik dalgalarla sağlanır. Uzay boşluğunda ses dalgaları ilerlemez. Çünkü ses dalgalarının taşınabilmesi için maddesel bir ortam gereklidir. Çözüm olarak; ses dalgaları elektromanyetik dalgalara dönüştürülerek, uzayda bir yerden başka bir yere iletilebilir.

29 Atmosferde de ses dalgaları elektromanyetik dalgalara dönüştürülerek iletilir. Bunun nedeni iletişimi hızlandırmaktır. Çünkü ses dalgaları çok yavaş ilerler ama elektromanyetik dalgalar ışık hızıyla (yani saniyede km hızla) ilerler.

30 Elektromanyetik dalgalar elektrik üretirler. Bir elektrik kablosunu güçlü bir elektromanyetik ortama tutarsanız içinde elektrik oluşur. Bunun tersi de doğrudur. Yani bir kablonun içinden elektrik geçirirseniz o kablonun etrafında elektromanyetik dalga oluşur.

31 Zaten bu durum elektromanyetik dalgalarla iletişimin temelidir. Mikrofon aracılığı ile ses önce elektriğe dönüştürülür. Bir antene bu elektriği yüklediğinizde o anten elektromanyetik dalga yaymaya başlar. Uzaktaki anten de o elektromanyetik dalganın etkisiyle elektrik üretir. O elektrik de hoparlör aracılığı ile tekrar sese dönüştürülür.

32 ANTEN NEDIR? Elektromanyetik dalgaları bir sistemden alıp, çevreye veren ya da çevresindeki elektromanyetik dalgalarda aldığı işaretle bir sistemi besleyen cihazlara anten denir.

33 Hertz in kullandığı ilk antenin yapısı böceklerin etraflarını izlemek için kullandıkları duyargaya benzediği için, böcek duyargası anlamına gelen anten kelimesi fizik diline sokulmuştur. Bir radyo haberleşme sistemi üç ana öğeden oluşur; -Verici -Alıcı -Haberleşme ortamı

34 Anten çift yönlü (resiprak) bir dönüştürücüdür. Verici olarak kullanıldığında besleme noktalarına uygulanan volt büyüklüğündeki gerilimi volt/metre büyüklüğündeki elektrik alana dönüştürmekte. Alıcı antenlerde ise ortamda bulunan elektromanyetik dalgalardan kaptığı volt/metre büyüklüğündeki elektrik alan enerjisini uçlarına volt büyüklüğünde bir gerilim farkı olarak dönüştürmekte.

35 Şekilde tipik bir çubuk anten ve etrafında oluşturduğu elektrik alan dağılımı gösterilmekte. Ortasından beslenen / uzunluğundaki bir iletken çubuk (ince bir tel) antenin çevresinde oluşan elektromanyetik dalgaların elektrik alan bileşeni çubuk eksenine paralel. Şekilde sağda verilen üç boyutlu değişim ise elektrik alanın yoğun olduğu yerleri göstermekte. Bu durumda antenden uzaklaştıkça belli yerlerde alan şiddeti yüksek, belli yerlerde ise sıfır olmakta. Çubuk doğrultusunda (z- yönünde) hiç ışıma yapmazken, yatay doğrultuda maksimum ışıma yapmakta.

36 ANTENİN PARAMETRELERİ GİRİŞ EMPEDANSI IŞIMA DİRENCİ DURAN DALGA ORANI IŞIMA GÜCÜ VE DİRENCİ ANTEN VERİMİ ETKİN YÜZEY YAKIN-UZAK ALAN POLARİZASYON YÖNELTİCİLİK KAZANÇ DEMET GENİŞLİĞİ ANTEN FAKTÖRÜ IŞIMA DİYAGRAMLARI

37 GİRİŞ EMPEDANSI Bir anten, besleme noktasında iki kapılı bir devrenin giriş kapısı gibi davranır. Bu noktada, besleme gerilim kaynağının bağlanacağı uçlar arasında bir empedans değeri gösterir. Bu değere giriş empedansı denir. Giriş empedansı kaynaktan çekilecek ve antene aktarılacak güçler için önemli.

38 Şekilde empedansı Z k olan kaynak, karakteristik empedansı Z o olan bir hat üzerinden anteni beslemekte. Empedansı olarak verilen antende R L kayıpları, R r ışınan gücü ve X A depolanan enerjiyi temsil etmekte.

39 Kaynak empedansının sanal kısmı anten giriş R L empedansının sanal kısmını yok edecek şekilde (örneğin biri endüktif diğeri kapasitif) ise devrede güç birikimi söz konusu olmaz. Ayrıca kayıpların minimize edilmesi durumunda R L sıfır kabul edilirse antenin kaynaktan çekeceği gücün tamamı ışınan güç olur ki idealde istenen durum budur. Genelde kaynak direnci ve iletim hattı karakteristik empedansı 50 Ω seçilir ve hesaplar ona göre yapılır. Alıcı anten için bir eşdeğer devre Şekilde resmedilmekte.

40 Uzaydan kaptığı elektromanyetik enerjiyi uçlarına bir V A gerilimi şeklinde aktaran alıcı anten bu enerjiyi alıcı devre girişini temsil eden bir Z Y empedansı üzerinde harcamakta. Yükün gördüğü anten empedansı ise Z A ise yine yük, iletim hattı ve anten empedansı arasında uyum olması durumunda antenden maksimum güç çekilmekte antenin etkin yüzeyi yüksek olup ortamdan yüksek elektromanyetik güç çekmesine karşın bunun tamamını alıcı devreye aktarması için empedans uyumu şart. Yine idealde hesaplar iletim hattı karakteristik empedansının ve yükün 50 Ω olmasına göre yapılır.

41 ANTEN ETKİN YÜZEYİ Işıma gücü P t olan izotropik bir antenden R kadar ötede güç yoğunluğu dir. Watt/metrekare boyutunda olan güç yoğunluğu anteni çevreleyen kapalı bir yüzey üzerinde toplandığında (yani ile çarpıldığında) ışıma gücünü verir. Ortam kayıplı (yani ortamın iletkenliği sıfırdan farklı) ise elektromanyetik dalgalar yayıldıkça ortam tarafından yutulacak ve zayıflayacak. Bu durumda enerji korunumu kapalı bir yüzeyde yayılan güç ve yutulan gücün toplamı anten ışıma gücünü verecek şekilde olur.

42 Anten, etrafındaki güç yoğunluğundan güç çektiğine göre çekilen güç, var olan güç yoğunluğu çarpı metrekare boyutunda bir yüzey şeklinde hesaplanmalı. İşte bu metrekare büyüklüğündeki parametreye etkin yüzey denmekte. Parabolik ve horn benzeri antenlerde etkin yüzey anten yüzeyi ile ilişkili iken, örneğin çubuk antenlerde böyle bir ilişki söz konusu değil. Basit ve düşük kazançlı antenlerde etkin yüzey şeklinde hesaplanmakta.

43 DURAN DALGA ORANI Anten giriş empedansı genelde uçlarına bağlanan besleme kaynağının empedansından farklı olduğundan kaynak, iletim hattı ve anten arasında bir empedans uygunsuzluğu söz konusu. Bu farkın belirlediği oranda antene gelen gücün bir kısmı geri yansımakta. Aynı şekilde kaynak ucunda da bir uyumsuzluk söz konusu olduğundan burada da bir güç yansıması olmakta. Anten girişinde yansıyan ve giden gerilim dalgalarının oluşturduğu maksimum gerilimin minimum gerilime oranı duran dalga oranı (DDO) olarak isimlendirilir. DDO, anten girişinde geri yansıyan gücü belirten bir parametre.

44 IŞIMA GÜCÜ VE DİRENCİ Antenin ışıma gücü P t,uzaya elektromanyetik dalga olarak yaydığı güç. Işıma gücü ile üzerinden akan akım arasında Ohm yasasına göre bulunan dirence de ışıma direnci denmekte ve R r ile gösterilmekte. Işıma direnci anten gücü ile üzerinden akan akımı birbirine bağlayan sanal bir direnç.

45 YAKIN ALAN-UZAK ALAN Anten ya da herhangi bir ışıma elemanına yakın olan bölge yakın alan olarak tanımlanmakta. Yakın alan, elektrik ve manyetik alan bileşenlerinin düzlem dalga karakteri göstermedikleri bölge.daha çok reaktif enerji birikimi olur. Uzak alan ise düzlem dalga yaklaşımı yapılabildiği bölgedir. Yakın ve uzak alan tanımları anten cinsine ve etkileşimlere göre, frekans, anten boyutları, gibi parametreler cinsinden belirlenmekte. Basit ve düşük kazançlı antenler için uzak alan sınırı olarak alınabilmekte.

46 Daha karmaşık ve yüksek güçlü antenlerde ise D antenin uzun kenarı (ya da çapı) olmak üzere uzak alan sınırı şeklinde hesaplanmakta. Bu tanım, antenin yarattığı elektromanyetik dalgaların eş faz yüzeylerinin belli bir hata ile düzlem kabul edilebildiği uzaklık olarak verilir (Şekil 5). Örneğin D=50 cm anten boyu ve 300 MHz işaret frekansı (λ=1 m) için 0.5 m olan uzak alan sınırı 3 GHz de (λ=10 cm için) 5 m olur.

47

48 ANTEN VERİMİ Antenin kaynaktan çektiği gücün bir kısmı ısıl kayıp olarak antende harcanır. Işıma gücü ve ısıl kayıpların toplamı kaynaktan çekilen güce eşit. Anten verimi ışıma gücünün kaynaktan çekilen güce oranı olarak tanımlanmakta. Isıl kayıplar ne kadar az ise verim o kadar yüksek olur.

49 POLARİZASYON Polarizasyon, elektrik alanının zamanla çizdiği şekle göre tanımlanır. Antenin yaydığı elektromanyetik dalgalar için iletim boyunca elektrik alan eğer zemine dik ise düşey, paralel ise yatay polarizasyonlu dalga adını alır. En genel polarizasyon elips biçimindedir. Bunun özel hali dairesel polarizasyon, dairesel polarizasyonun iki bileşeni de yatay ve düşey polarizasyon.

50 DEMET GENİŞLİĞİ Anten demet genişliği, yönelticiliği olan antenlerde yönelticiliğin bir ölçüsü. Maksimum ışıma doğrultusundaki gücün yarıya (3 db) düştüğü (yatayda yada düşeyde) açısal genişlik anten ışıma demeti olarak tanımlanır.

51 ANTEN YÖNELTİCİLİĞİ VE KAZANCI Anten yönelticiliği ve kazanç belli bir referans antene göre tanımlanan iki önemli parametre. Bir noktasal kaynak her yöne eşit ışıma yapar. Bu kaynağa izotropik kaynak adı verilir ve referans olarak kullanılır. İzotropik kaynağın her yöne yaydığı güce eşit gücü belli bir doğrultuya yayabilme özelliğine anten yönelticiliği denir. İzotropik antene göre kısa dipol antenin yönelticiliği 1.5 (1.75 db), yarım dalga dipolünün yönelticiliği ise 1.64 (2.15 db).

52 Kayıpsız antenlerde yönelticilik aynı zamanda anten kazancıdır. Ancak, kayıplı antenlerde kazanç yönelticilik ile kayıp oranının (verimin) çarpımına eşit. Anten yönelticiliğinin analitik olarak hesaplanabilmesine karşın kazanç ancak referans antene göre yapılan ölçülerle bulunabilir. Anten kazancı ile doğrudan ilgili olan diğer parametre ise etkin yüzeydir. Anten etkin yüzeyi, uzaydaki elektrik alanlardan anten uçlarına güç aktarabilme yeteneği olarak tanımlanır.

53 IŞIMA DİYAGRAMLARI Işıma diyagramları, antenlerin hangi yöne ne kadar güç yaydığını gösteren şekiller. Işıma diyagramı her hangi bir düzlemde söz konusu olsa da, genelde, yatayda yada düşeydeki diyagramlarla ilgilenilir. Işıma diyagramı ve yöneltmiş antenlerde kullanılan tanımlar şunlar:

54 Ana ışıma kulakçığı : Antenin en fazla ışıma yaptığı yöndeki demet. Yan kulakçıklar: ana kulakçık etrafında oluşan istenmeyen kulakçıklar. Arka kulakçık: Antenin gerisinde oluşan kulakçık Ön-Arka bastırma oranı: Ana kulakçık arka kulakçık güç oranı Ön- yan bastırma oranı: Ana kulakçık yan kulakçık güç oranı Işıma demeti: Ana kulakçık gücünün yarıya (3 db) düştüğü noktalar arasındaki açı

55 ANTEN ÇEŞİTLERİ Hertz Anten Markoni Anten Rombik Anten Çerçeve Anten VHF-UHF Anten Parabolik Anten Kablosuz Anten Dipol Anten Monopol Anten Mikroşerit Anten Log-Periyodik Anten Horn Anten

56 HERTZ ANTEN (yarım dalga anten) Dalga boyunun yarısı ebadındaki dipol antene hertz anten denir. Genellikle 2 MHz üzerindeki frekanslarda yaygın olarak kullanılır. Hertz anten bir seri rezonans devresine eş değerdir. Yüksek frekanslı elektrik enerjisi antenin orta uçlarından beslendiğinde açık olan anten uçlarında gerilim maksimum, akım ise sıfırdır. Antenin orta kısmına yaklaştıkça akım artar, gerilim azalır. Antenin orta ucundaki empedans yaklaşık 73 ohm dur.

57 MARKONI ANTEN Düşey olarak monte edilmiş alt ucu doğrudan toprağa bağlanmış ya da antenin bir ucu topraklanmış 1/4 dalga boyundaki tek kutuplu antenlere markoni anten deni. Markoni antende toprak üstündeki kısmıyla aynı boyda toprak altında hayali olduğu kabul edilir. Hertz antene göre avantajı boyunun yarı yarıya az olmasıdır.

58 ROMBIK ANTEN Eşkenar dörtgen teşkil edecek şekilde birleştirilmiş dört iletkenden oluşur. Antenin bütün kenarları ve karşılıklı açıları eşittir. Bu antenler rezonanssız antenlerdir. Bu yüzden ucunda sonlandırma direnci vardır. 3 MHz-30MHz arası frekanslarda kullanılır.

59 ÇERÇEVE ANTEN Temel çerçeve anten, bir dalga boyundan yeteri kadar kısa olan ve RF akım taşıyan tek sarımlı tel bobinidir.

60 VHF-UHF ANTENLER

61 VHF-UHF ANTENLER Televizyon antenleri temel üç elemandan meydana gelir. Bunlar; reflektör, dipol ve direktördür. Reflektör; dipolden ¼ dalga boyu geriye yerleştirilmiş boru şeklinde bir iletkendir. Vericiden gönderilen elektromanyetik dalgaları dipole doğru yönlendirmektedir. Dipol; havadaki elektromanyetik dalgaları algılayan ana elemandır. Antenin aslını oluşturur. Dipol empedansı ile koaksiyel kablo empedansı birbirine eşit olmalıdır. Direktör; dipolün ön kısmında 1/8 dalga boyu uzaklığına yerleştirilen metal borulardır. Anten kazancını arttırır. Antenin yön bağımlılığını arttırır.

62 DİPOL ANTEN Her birinin uzunluğu, çekilen sinyalin dalga boyunun 1/4'üne eşit iki koldan oluşan anten tipidir. En yaygın tipi, televizyonların doğrudan üzerine takılan v harfi şeklindeki teleskopik antenlerdir.radyo ve televizyon vericileri dipol antene örnektir.

63 MONOPOL ANTEN Dipol anten'in yarısının yerine ground koyarak elde edilen anten tipidir. Eğer ground düzlemi yeteri kadar büyükse anten dipol gibi davranabilir.

64 KABLOSUZ ANTEN TİPLERİ Quad antenler : Yönlü antenlerdir fakat nokta atışı gibi yönlü değildir, açısı gittikçe genişler. Yapımı oldukça basittir fakat bu basitliğe rağmen oldukça işe yarar bir tiptir. Omni directional antenler: Bu tarz antenler çubuk şeklindeki standart antenlerdir,modemlerin üzerinde de bu tarz antenler mevcuttur ve her yöne yayın yaparlar. Yagi Antenler : Yönlü ve taşınabilir bir anten türü, ortauzak mesafeler için idealdir daha çok sabit iletişim için değil, seyyar dolaşıp çevre taraması yapanlar tarafından kullanılır.

65

66 PARABOLİK REFLEKTÖR ANTEN (ÇANAK ANTEN) Çok uzaktaki hedefleri yaklaşmadan tespit edebilmek amacıyla kullanılan, noktadan noktaya veri iletimi için uygun olan antenlerdir. Uzak mesafeler arası haberleşmede kullanılarak haberleşmenin temel yapı taşını oluşturmaktadırlar. Sadece uydu haberleşmesinde değil dar bir hüzme ve yüksek kazancın gerektiği her alanda kullanılabilecek anten türüdür.

67 MİKROŞERİT ANTENLER Son yıllarda mikroşerit antenlerin uzay araçları, uçaklar, radarlar uydu haberleşmesi, güdümlü mermi gibi birçok askeri alanda kolaylıkla kullanılabilir yapısı ve baskı devre tekniği ile üretilmesi gibi birçok avantaja sahiptirler.küçük boyutludurlar. Dolayısıyla kolay taşınabilirler. Üretimleri bakımından incelemek gerekirse, maliyetleri düşüktür ve seri üretime uygundurlar. Anten dizileri oluşturmak amacıyla kolaylıkla kullanılabilirler. Mikroşerit antenler bazı dezavantajlara da sahiptir. Bunlardan en önemli olanı band genişliğinin genelde istenilen seviyede olmamasıdır. Bununla birlikte kazançlarının düşük olması da kullanımlarını sınırlandıran bir etkendir. Genel olarak incelendiğinde görüyoruz ki, mikroşerit antenler üretim ve kullanılabilirlik açısından birçok artıya sahiptir. Bazı temel dezavantajların ortadan kalkması için de çeşitli tasarımlar ortaya konulabilir.

68 LOG-PERİYODİK ANTENLER En geniş tanımıyla log-periyodik antenler, belli bir geometrik katsayı ile gitgide büyüyen ya da küçülen elemanların elektriksel olarak birleştirilmesiyle oluşturulan ve bu özel yapıları sayesinde geniş bantlar içerisinde yaklaşık olarak frekanstan bağımsız ışınım özellikleri gösterebilen antenlerdir.

69 HORN ANTENLER En temel mikrodalga antenlerinden birisidir.antenin dış yüzeylerinin duvarlarının genişlemesi dalga kılavuzu ile serbest uzay arasındaki uygunsuzluğun azalmasını sağlar. Hem yerde hem de uzayda mikrodalga haberleşmelerinde kullanılmaktadır. Bazı uygulama alanları; Askeriyede Radar sistemlerinde özellikle düşman uçaklarını yakalamada Uçaklarda ve uzay araçlarında gövdeye montajlarının kolay olması sebebiyle tercih edilirler Uzay araştırma projelerinde Sağlık alanında vücut taraması yaparken

Antenler, Türleri ve Kullanım Yerleri

Antenler, Türleri ve Kullanım Yerleri Antenler, Türleri ve Kullanım Yerleri Sunum İçeriği... Antenin tanımı Günlük hayata faydaları Kullanım yerleri Anten türleri Antenlerin iç yapısı Antenin tanımı ve kullanım amacı Anten: Elektromanyetik

Detaylı

Işıma Şiddeti (Radiation Intensity)

Işıma Şiddeti (Radiation Intensity) Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ]

Bir antenin birim katı açıdan yaydığı güçtür. U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Işıma Şiddeti (Radiation Intensity) Bir antenin birim katı açıdan yaydığı güçtür U=Işıma şiddeti [W/sr] P or =Işıma yoğunluğu [ W/m 2 ] Örnek-4 Bir antenin güç yoğunluğu Olarak verildiğine göre, ışıyan

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

İletken Düzlemler Üstüne Yerleştirilmiş Antenler

İletken Düzlemler Üstüne Yerleştirilmiş Antenler İletken Düzlemler Üstüne Yerleştirilmiş Antenler Buraya dek sınırsız ortamlarda tek başına bulunan antenlerin ışıma alanları incelendi. Anten yakınında bulunan başka bir ışınlayıcı ya da bir yansıtıcı,

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

İnce Antenler. Hertz Dipolü

İnce Antenler. Hertz Dipolü İnce Antenler Çapları boylarına göre küçük olan antenlere ince antenler denir. Alanların hesabında antenlerin sonsuz ince kabul edilmesi kolaylık sağlar. Ancak anten empedansı bulunmak istendiğinde kalınlığın

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi Elektromanyetik Dalga Teorisi Ders-2 Dalga Denkleminin Çözümü Düzlem Elektromanyetik Dalgalar Enine Elektromanyetik Dalgalar Kayıplı Ortamda Düzlem Dalgalar Düzlem Dalgaların Polarizasyonu Dalga Denkleminin

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Yıldız Teknik Üniversitesi Elektronik ve Hab. Müh. Mikrodalga Lab.

Yıldız Teknik Üniversitesi Elektronik ve Hab. Müh. Mikrodalga Lab. Deney No:2 Horn Antenin Işıma Özelliklerinin Elde Edilmesi Deneyin Amacı: Bu deneyde, Horn antenin çalışma prensibi ve karakteristikleri. Hüzme genişliği, radyasyon paterni ve kazanç kavramları. Horn antenin

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN

AKDENİZ ÜNİVERSİTESİ. Anten Parametrelerinin Temelleri. Samet YALÇIN AKDENİZ ÜNİVERSİTESİ Anten Parametrelerinin Temelleri Samet YALÇIN Anten Parametrelerinin Temelleri GİRİŞ: Bir antenin parametrelerini tanımlayabilmek için anten parametreleri gereklidir. Anten performansından

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

2. Işık Dalgalarında Kutuplanma:

2. Işık Dalgalarında Kutuplanma: KUTUPLANMA (POLARİZASYON). Giriş ve Temel ilgiler Işık, bir elektromanyetik dalgadır. Elektromanyetik dalgalar maddesel ortamlarda olduğu gibi boşlukta da yayılabilirler. Elektromanyetik dalgaların özellikleri

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

DALGALAR. Dalgalar titreşim doğrultusuna ve Taşıdığı enerjiye göre aşağıdaki şekilde sınıflandırılır.

DALGALAR. Dalgalar titreşim doğrultusuna ve Taşıdığı enerjiye göre aşağıdaki şekilde sınıflandırılır. DALGALAR Dalga hareketi Nedir? Durgun bir su birikintisine bir tas attığımızda, tasın suya düştüğü noktadan dışarıya doğru daireler seklinde bir hareketin yayıldığını görürüz. Bu hareket bir dalga hareketidir.

Detaylı

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5

ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 ELEKTROMANYETİK DALGA TEORİSİ DERS - 5 İletim Hatları İLETİM HATLARI İletim hatlarının tarihsel gelişimi iki iletkenli basit hatlarla (ilk telefon hatlarında olduğu gibi) başlamıştır. Mikrodalga enerjisinin

Detaylı

Fotovoltaik Teknoloji

Fotovoltaik Teknoloji Fotovoltaik Teknoloji Bölüm 3: Güneş Enerjisi Güneşin Yapısı Güneş Işınımı Güneş Spektrumu Toplam Güneş Işınımı Güneş Işınımının Ölçülmesi Dr. Osman Turan Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali

Detaylı

SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bi

SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bi SES FĠZĠĞĠ SES DALGALARı Dalgalar genel olarak, mekanik ve elektromanyetik dalgalar olmak üzere iki ana gruba ayrılır. Elektromanyetik dalgalar, yayılmak için bir ortama ihtiyaç duymazlar ve boşlukta da

Detaylı

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır.

Dizi Antenler. Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. Dizi Antenler Özdeş anten elemanlarından oluşan bir dizi antenin ışıma diyagramını belirleyen faktörler şunlardır. 1. Dizi antenin geometrik şekli (lineer, dairesel, küresel..vs.) 2. Dizi elemanları arasındaki

Detaylı

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends

Waveguide to coax adapter. Rectangular waveguide. Waveguide bends Rectangular waveguide Waveguide to coax adapter Waveguide bends E-tee 1 Dalga Kılavuzları, elektromanyetik enerjiyi kılavuzlayan yapılardır. Dalga kılavuzları elektromanyetik enerjinin mümkün olan en az

Detaylı

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri Deneyin Amacı: Seri ve paralel rezonans devrelerini incelemek, devrelerin karakteristik parametrelerini hesaplamak ve ölçmek, rezonans eğrilerini çizmek.

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

Radyo Antenler

Radyo Antenler AST406 Radyo Antenler Dipol Antenler: Hertz Dipolü Alıcı Dipolün Yön Diyagramı c 2 S E sabit sin 2 4 R Şekil 1 Dipolün anlık yön diyagramı Şekil 2 Yön diyagramı Anten Türleri Çok Yönlü antenler

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

ELEKTROMANYETİK DALGALAR

ELEKTROMANYETİK DALGALAR ELEKTROMANYETİK DALGALAR Hareket eden bir yük manyetik alan oluşturur. Yük sabit hızla hareket ederse, sabit bir akım ve sabit bir manyetik alan oluşturur. Yük osilasyon hareketi yaparsa değişken bir manyetik

Detaylı

Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt

Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt Suya atılan küçük bir taşın su yüzeyinde oluşturduğu hareketler dalga hareketine örnek olarak verilebilir. Su yüzeyinde oluşan dalgalar suyun alt tabakalarını etkilemez. Yani su dalgaları yüzey dalgalarıdır.

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Spektroskopiye Giriş Yrd. Doç. Dr. Gökçe MEREY SPEKTROSKOPİ Işın-madde etkileşmesini inceleyen bilim dalına spektroskopi denir. Spektroskopi, Bir örnekteki atom, molekül veya iyonların

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller eşitlendiğinde yani

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölüm Başkanı Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Direnç,

Detaylı

Elektromanyetik Dalgalar. Test 1 in Çözümleri

Elektromanyetik Dalgalar. Test 1 in Çözümleri 38 Elektromanyetik Dalgalar 1 Test 1 in Çözümleri 1. Radyo dalgaları elektronların titreşiminden doğan elektromanyetik dalgalar olup ışık hızıyla hareket eder. Radyo dalgalarının titreşim frekansı ışık

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu Laboratuar Yeri: E1 Blok Termodinamik Laboratuvarı Laboratuar

Detaylı

ANALOG HABERLEŞME (GM)

ANALOG HABERLEŞME (GM) ANALOG HABERLEŞME (GM) Taşıyıcı sinyalin sinüsoidal olduğu haberleşme sistemidir. Sinüs işareti formül olarak; V. sin(2 F ) ya da i I. sin(2 F ) dır. Formülde; - Zamana bağlı değişen ani gerilim (Volt)

Detaylı

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz.

Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Yıldızlara gidemeyiz; sadece onlardan gelen ışınımı teleskopların yardımıyla gözleyebilir ve çözümleyebiliriz. Işık genellikle titreşen elektromanyetik dalga olarak düşünülür; bu suda ilerleyen dalgaya

Detaylı

ALTERNATİF AKIMIN TANIMI

ALTERNATİF AKIMIN TANIMI ALTERNATİF AKIM ALTERNATİF AKIMIN TANIMI Belirli üreteçler sürekli kutup değiştiren elektrik enerjisi üretirler. (Örnek: Döner elektromekanik jeneratörler) Voltajın zamana bağlı olarak sürekli yön değiştirmesi

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması

KUTUPLANMA (Polarizasyon) Düzlem elektromanyetik dalgaların kutuplanması KUTUPLANMA (Polarizasyon) Kutuplanma enine dalgaların bir özelliğidir. Ancak burada mekanik dalgaların kutuplanmasını ele almayacağız. Elektromanyetik dalgaların kutuplanmasını inceleyeceğiz. Elektromanyetik

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR

SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR SİSMİK PROSPEKSİYON DERS-2 DOÇ.DR.HÜSEYİN TUR SİSMİK DALGA NEDİR? Bir deprem veya patlama sonucunda meydana gelen enerjinin yerkabuğu içerisinde farklı nitelik ve hızlarda yayılmasını ifade eder. Çok yüksek

Detaylı

Şekil Sönümün Tesiri

Şekil Sönümün Tesiri LC Osilatörler RC osilatörlerle elde edilemeyen yüksek frekanslı osilasyonlar LC osilatörlerle elde edilir. LC osilatörlerle MHz seviyesinde yüksek frekanslı sinüsoidal sinyaller elde edilir. Paralel bobin

Detaylı

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? Temel Kavramlar Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz? 1 Elektriksel Yük Elektrik yükü bu dış yörüngede dolanan elektron sayısının çekirdekteki proton

Detaylı

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği

Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü. Ders içeriği ANTENLER Doç. Dr. Sabri KAYA Erciyes Üni. Müh. Fak. Elektrik-Elektronik Müh. Bölümü Ders içeriği BÖLÜM 1: Antenler BÖLÜM 2: Antenlerin Temel Parametreleri BÖLÜM 3: Lineer Tel Antenler BÖLÜM 4: Halka Antenler

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım Yrd. Doç. Dr. Aytaç Gören Paralel devre 2 İlk durum: 3 Ohm kanunu uygulandığında; 4 Ohm kanunu uygulandığında; 5 Paralel devrede empedans denklemi, 6 Kondansatör (Kapasitans) Alternatif gerilimin etkisi

Detaylı

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ 14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ Sinüsoidal Akımda Direncin Ölçülmesi Sinüsoidal akımda, direnç üzerindeki gerilim ve akım dalga şekilleri ve fazörleri aşağıdaki

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ 9.1 DALGA MEYDANA GETİRME USÜLLERİNE GİRİŞ Dalga üreteçleri birkaç hertzden, birkaç gigahertze kadar sinyalleri meydana getirirler. Çıkışlarında sinüsoidal, kare,

Detaylı

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci

ELEKTRİK AKIMI Elektrik Akım Şiddeti Bir İletkenin Direnci ELEKTRİK AKIMI Elektrikle yüklü ve potansiyelleri farklı olan iki iletken küreyi, iletken bir telle birleştirilirse, potansiyel farkından dolayı iletkende yük akışı meydana gelir. Bir iletkenden uzun süreli

Detaylı

Bilal ELÇİ tarafından düzenlenmiştir.

Bilal ELÇİ tarafından düzenlenmiştir. SES BU ÜNİTEDE BİLMENİZ GEREKENLER 1. Bir ses dalgasının belli bir frekans ve genliği olduğunu 2. Sesin titreşimler sonucu oluştuğunu 3. Ses yüksekliğinin sesin ince veya kalın olması anlamına geldiğini

Detaylı

Ünite. Dalgalar. 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları

Ünite. Dalgalar. 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları 7 Ünite Dalgalar 1. Ses Dalgaları 2. Yay Dalgaları 3. Su Dalgaları SES DALGALARI 3 Test 1 Çözümleri 3. 1. Verilen üç özellik ses dalgalarına aittir. Ay'da hava, yani maddesel bir ortam olmadığından sesi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır.

Buna göre, bir devrede yük akışı olabilmesi için, üreteç ve pil gibi aygıtlara ihtiyaç vardır. ELEKTRİK AKIMI ve LAMBALAR ELEKTRİK AKIMI Potansiyelleri farklı olan iki iletken cisim birbirlerine dokundurulduğunda potansiyelleri eşit oluncaya kadar birinden diğerine elektrik yükü akışı olur. Potansiyeller

Detaylı

Elektromanyetik Radyasyon (Enerji) Nedir?

Elektromanyetik Radyasyon (Enerji) Nedir? Elektromanyetik Radyasyon (Enerji) Nedir? Atomlardan çeşitli şekillerde ortaya çıkan enerji türleri ve bunların yayılma şekilleri "elektromagnetik radyasyon" olarak adlandırılır. İçinde X ve γ ışınlarının

Detaylı

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ 4. ÜNİTE ALTERNATİF AKIMDA GÜÇ KONULAR 1. Ani Güç, Ortalama Güç 2. Dirençli Devrelerde Güç 3. Bobinli Devrelerde Güç 4. Kondansatörlü Devrelerde Güç 5. Güç Üçgeni 6. Güç Ölçme GİRİŞ Bir doğru akım devresinde

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri Sanayi fabrika otomasyonunda proximity (yaklasım) sensorler kullanılır. Porximity sensorler profesyonel yapıda cevre sartlarından

Detaylı

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER BÖÜM 3 ATENATİF AKMDA SEİ DEVEE 3.1 - (DİENÇ - BOBİN SEİ BAĞANMAS 3. - (DİENÇ - KONDANSATÖÜN SEİ BAĞANMAS 3.3 -- (DİENÇ-BOBİN - KONDANSATÖ SEİ BAĞANMAS 3.4 -- SEİ DEVESİNDE GÜÇ 77 ATENATİF AKM DEVE ANAİİ

Detaylı

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc KTÜ, Elektrik Elektronik Müh. Böl. Temel Elektrik aboratuarı. Giriş EZONNS DEVEEİ Bir kondansatöre bir selften oluşan devrelere rezonans devresi denir. Bu devre tipinde selfin manyetik enerisi periyodik

Detaylı

Işınım ile Isı Transferi Deneyi Föyü

Işınım ile Isı Transferi Deneyi Föyü Işınım ile Isı Transferi Deneyi Föyü 1. Giriş Işınımla (radyasyonla) ısı transferi ve ısıl ışınım terimleri, elektromanyetik dalgalar ya da fotonlar (kütlesi olmayan fakat enerjiye sahip parçacıklar) vasıtasıyla

Detaylı

1 ALTERNATİF AKIMIN TANIMI

1 ALTERNATİF AKIMIN TANIMI 1 ALTERNATİF AKIMIN TANIMI Alternatif Akımın Tanımı Doğru gerilim kaynağının gerilim yönü ve büyüklüğü sabit olmakta; buna bağlı olarak devredeki elektrik akımı da aynı yönlü ve sabit değerde olmaktadır.

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü ÖLÇME TEKNİĞİ 9. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü ÖLÇME TEKNİĞİ 9. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü ÖLÇME TEKNİĞİ 9. HAFTA İÇİNDEKİLER Güç Çeşitleri ve Ölçümü Güç Çeşitleri Görünür Güç ve Hesaplaması Aktif Güç Aktif güç tüketen tüketiciler GÜÇ ÇEŞİTLERİ VE ÖLÇÜMÜ

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU Bölüm 4 Doğru Akım Devreleri Prof. Dr. Bahadır BOYACIOĞLU Doğru Akım Devreleri Elektrik Akımı Direnç ve Ohm Yasası Elektromotor Kuvvet (EMK) Kirchoff un Akım Kuralı Kirchoff un İlmek Kuralı Seri ve Paralel

Detaylı

FIRAT ÜNİVERSİTESİ Elektrik Elektronik Mühendisliği Antenler ve Mikrodalga Tekniği

FIRAT ÜNİVERSİTESİ Elektrik Elektronik Mühendisliği Antenler ve Mikrodalga Tekniği FIRAT ÜNİVERSİTESİ Elektrik Elektronik Mühendisliği Antenler ve Mikrodalga Tekniği DALGA KILAVUZLARI ve UYGULAMALARI Mustafa ULAŞ 990054 Yalçın YÜKSEL 99004 Cengiz TUNCEL 990053 İÇERİK Dalga Kılavuzları

Detaylı

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması

DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması DENEY FÖYÜ 1: Direnç Ölçme ve Devre Kurulması Deneyin Amacı: Elektrik Elektroniğin temel bileşeni olan direnç ile ilgili temel bilgileri edinme, dirençlerin renk kodlarını öğrenme, devre kurma aracı olarak

Detaylı

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1

KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 KARABÜK ÜNİVERSİTESİ Öğretim Üyesi: Doç.Dr. Tamila ANUTGAN 1 Elektriksel olaylarla ilgili buraya kadar yaptığımız, tartışmalarımız, durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Elektromanyetik Dalgalar. Test 1 in Çözümleri

Elektromanyetik Dalgalar. Test 1 in Çözümleri 35 Elektromanyetik Dalgalar 1 Test 1 in Çözümleri 4. 1. Radyo dalgaları elektronların titreşiminden doğan elektromanyetik dalgalar olup ışık hızıyla hareket eder. Radyo dalgalarının titreşim rekansı ışık

Detaylı

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri

5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Elektrik devrelerinde ölçülebilen büyüklükler olan; 5. Elektriksel Büyüklüklerin Ölçülebilen Değerleri Akım Gerilim Devrede bulunan kaynakların tiplerine göre değişik şekillerde olabilir. Zamana bağlı

Detaylı

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu

RADYASYON FİZİĞİ 2. Prof. Dr. Kıvanç Kamburoğlu RADYASYON FİZİĞİ 2 Prof. Dr. Kıvanç Kamburoğlu 1800 lü yıllarda değişik ülkelerdeki fizikçiler elektrik ve manyetik kuvvetler üzerine detaylı çalışmalar yaptılar Bu çalışmalardan çıkan en önemli sonuç;

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 5 ) EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri

Detaylı

Kızılötesi. Doğrudan alınan güneşışığı %47 kızılötesi, %46 görünür ışık ve %7 morötesi ışınımdan oluşur.

Kızılötesi. Doğrudan alınan güneşışığı %47 kızılötesi, %46 görünür ışık ve %7 morötesi ışınımdan oluşur. Kızılötesi Kızılötesi (IR: Infrared), nispeten daha düşük seviyeli bir enerji olup duvar veya diğer nesnelerden geçemez. Radyo frekanslarıyla değil ışık darbeleriyle çalışır. Bu nedenle veri iletiminin

Detaylı

3 FAZLI SİSTEMLER fazlı sistemler 1

3 FAZLI SİSTEMLER fazlı sistemler 1 3 FAL SİSTEMLER Çok lı sistemler, gerilimlerinin arasında farkı bulunan iki veya daha la tek lı sistemin birleştirilmiş halidir ve bu işlem simetrik bir şekilde yapılır. Tek lı sistemlerde güç dalgalı

Detaylı

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ

DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Deneyin Amacı DENEY 4: SERİ VE PARALEL REZONANS DEVRELERİ Seri ve paralel RLC devrelerinde rezonans durumunun gözlenmesi, rezonans eğrisinin elde edilmesi ve devrenin karakteristik parametrelerinin ölçülmesi

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU DENEY NO : DENEYĠN ADI : DENEY TARĠHĠ : DENEYĠ YAPANLAR : RAPORU HAZIRLAYANIN

Detaylı

Anten Tasarımı. HFSS Anten Benzetimi

Anten Tasarımı. HFSS Anten Benzetimi Bu dokümanda, antene ait temel bilgiler verilmiş ve HFSS programında anten tasarımının nasıl yapıldığı gösterilmiştir. Anten Tasarımı HFSS Anten Benzetimi KAZIM EVECAN Dumlupınar Üniversitesi Elektrik-Elektronik

Detaylı

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ 8. ATENATİF AKIM E SEİ DEESİ AMAÇA 1. Alternatif akım ve gerilim ölçmeyi öğrenmek. Direnç, kondansatör ve indüktans oluşan seri bir alternatif akım devresini analiz etmek AAÇA oltmetre, ampermetre, kondansatör

Detaylı

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları Antenler Yayılım modları Bakış doğrultusunda yayılım Bakış

Detaylı

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. Bölüm 3 AC Devreler DENEY 3-1 AC RC Devresi DENEYİN AMACI 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak. GENEL BİLGİLER Saf

Detaylı

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R

- 1 - ŞUBAT KAMPI SINAVI-2000-I. Grup. 1. İçi dolu homojen R yarıçaplı bir top yatay bir eksen etrafında 0 açısal hızı R - - ŞUBT KMPI SINVI--I. Grup. İçi dolu omojen yarıçaplı bir top yatay bir eksen etrafında açısal ızı ile döndürülüyor e topun en alt noktası zeminden yükseklikte iken serbest bırakılıyor. Top zeminden

Detaylı

Işığın izlediği yol : Işık bir doğru boyunca km/saniye lik bir hızla yol alır.

Işığın izlediği yol : Işık bir doğru boyunca km/saniye lik bir hızla yol alır. IŞIK VE SES Işık ve ışık kaynakları : Çevreyi görmemizi sağlayan enerji kaynağına ışık denir. Göze gelen ışık ya bir cisim tarafından oluşturuluyordur ya da bir cisim tarafından yansıtılıyordur. Göze gelen

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

Elektromanyetik Işıma Electromagnetic Radiation (EMR)

Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik Işıma Electromagnetic Radiation (EMR) Elektromanyetik ışıma (ışık) bir enerji şeklidir. Işık, Elektrik (E) ve manyetik (H) alan bileşenlerine sahiptir. Light is a wave, made up of oscillating

Detaylı

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks)

Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Mobil ve Kablosuz Ağlar (Mobile and Wireless Networks) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Ders konuları Sinyaller Sinyallerin zaman düzleminde gösterimi Sinyallerin

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER

DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER DENEY-2 ANİ DEĞER, ORTALAMA DEĞER VE ETKİN DEĞER TEORİK BİLGİ Alternatıf akımın elde edilmesi Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Alternatif

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB)

ÖĞRENME ALANI : FĐZĐKSEL OLAYLAR ÜNĐTE 3 : YAŞAMIMIZDAKĐ ELEKTRĐK (MEB) ÖĞENME ALANI : FZKSEL OLAYLA ÜNTE 3 : YAŞAMIMIZDAK ELEKTK (MEB) B ELEKTK AKIMI (5 SAAT) (ELEKTK AKIMI NED?) 1 Elektrik Akımının Oluşması 2 Elektrik Yüklerinin Hareketi ve Yönü 3 ler ve Özellikleri 4 Basit

Detaylı

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI

T.C. TÜBİTAK-BİDEB. YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI T.C. TÜBİTAK-BİDEB YİBO ÖĞRETMENLERİ (FEN VE TEKNOLOJİ-FİZİK, KİMYA, BİYOLOJİ- ve MATEMATİK) PROJE DANIŞMANLIĞI EĞİTİM ÇALIŞTAYLARI İKİ ELEKTROMIKNATIS ARASINDA BULUNAN BİR DEMİR PARÇACIĞIN HAREKETİ HAZIRLAYANLAR

Detaylı