SERİ PARALEL DEVRELER

Benzer belgeler
SERİ PARALEL DEVRELER

ALTERNATİF AKIMDA GÜÇ

ALTERNATİF AKIMDA GÜÇ

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

ALTERNATİF AKIMDA ANİ VE ORTALAMA GÜÇ

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ

ALTERNATİF AKIMDA ÜÇ FAZLI DEVRELER

ALTERNATİF AKIMDA EMPEDANS (PARALEL DEVRELER)

ALTERNATİF AKIMIN VEKTÖRLERLE GÖSTERİLMESİ

BÖLÜM 3 ALTERNATİF AKIMDA SERİ DEVRELER

Üç Fazlı Sistemler ALIŞTIRMALAR

DENEY 8- GÜÇ KATSAYISI KAVRAMI VE GÜÇ KATSAYISININ DÜZELTİLMESİ

DAĞITIM ŞEBEKELERİNDE GERİLİM DÜŞÜMÜ HESABI Alternatif Akımda Enerji Dağıtımı Üç Fazlı Şebeke Bağlantıları Yıldız Bağlantı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü ÖLÇME TEKNİĞİ 9. HAFTA

Yükleme faktörü (Diversite) Hesabı

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR)

ENERJİ DAĞITIMI. Doç. Dr. Erdal IRMAK. 0 (312) Erdal Irmak. G.Ü. Teknoloji Fak. Elektrik Elektronik Müh.

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a )

Alternatif Akım Devreleri

DİRENÇ VE REAKTANS (OMİK DİRENÇ, BOBİN VE KONDANSATÖR)

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

REAKTİF GÜÇ İHTİYACININ TESPİTİ

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI

SENKRON MAKİNA DENEYLERİ

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

3 FAZLI SİSTEMLER fazlı sistemler 1

8. ALTERNATİF AKIM VE SERİ RLC DEVRESİ

KOMPANZASYON

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

Cihazın Bulunduğu Yer: Enerji Sistemleri Mühendisliği Bölümü B-Blok, Enerji Verimliliği Laboratuvarı

Uçlarındaki gerilim U volt ve içinden t saniye süresince Q coulomb luk elektrik yükü geçen bir alıcıda görülen iş:

Alternatif Akım. Yrd. Doç. Dr. Aytaç Gören. Alternatif Akım

Konu: GÜÇ HESAPLARI:

Temel Devre Elemanlarının Alternatif Gerilim Etkisi Altındaki Davranışları

ELEKTRİK DEVRELERİ-2 LABORATUVARI VI. DENEY FÖYÜ

ALTERNATİF AKIMIN DENKLEMİ

GENETEK. Güç Sistemlerinde Kısa Devre Analizi Eğitimi. Güç, Enerji, Elektrik Sistemleri Özel Eğitim ve Danışmanlık San. Tic. Ltd. Şti.

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

Elektrik Makinaları I

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1

TRANSFORMATÖRÜN YÜKLÜ ÇALIŞMASI, REGÜLASYON VE VERİMİN BULUNMASI

Reaktif Güç Kompanzasyonu Uygulamalarının Eğitim Amaçlı Benzetimi Simulation of the Reactive Power Compensation Applications for Educational Purpose

güç Atörleri Ans çak gerilim Al kond

KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK TESİSLERİ LABORATUARI RAPOR KİTABI

ENDÜKTİF REAKTİF AKIM NEDİR?

ALTERNATİF AKIM DEVRELERİNİN ÇÖZÜMLERİ

ELEKTRİK DEVRELERİNDE GÜÇ ÖLÇÜMÜ

ELEKTRİK DEVRELERİ-2 LABORATUVARI IV. DENEY FÖYÜ

4. ÜNİTE ALTERNATİF AKIMDA GÜÇ

1 ALTERNATİF AKIMIN TANIMI

1000 V a kadar Çıkış Voltaj. 500 V a kadar İzolasyon Sınıfı. F 140C İzolasyon Malzemesi IEC EN Çalışma Frekansı Hz.

MOTOR GENERATÖR. jx L

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

YÜKSEK GERİLİM ENERJİ NAKİL HATLARI

ASENKRON MOTORLARA YOL VERME METODLARI


ENERJİ DAĞITIMI. Doç. Dr. Erdal IRMAK. G.Ü. Teknoloji Fak. Elektrik Elektronik Müh.

ALTERNATİF AKIMIN TEMEL ESASLARI

Dengeli Üç Fazlı Devreler

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

5. ÜNİTE GÜÇ KATSAYISI

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

Elektrikte Güç Faktörünün Düzeltilmesi Esasları. Önerge No: 2227/2010

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

ELEKTRİK DEVRELERİNDE GÜÇ ÖLÇÜMÜ

AC/DC DÖNÜŞTÜRÜCÜLER (Doğrultucular)

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

Enerji Verimliliği ve Tasarrufu açısından Kompanzasyon ve Enerji Kalitesi Çalışmaları

T.C. MİLLÎ EĞİTİM BAKANLIĞI

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

ELEKTRİK DEVRELERİNDE GÜÇ ÖLÇÜMÜ

P Cu0 = R I 0. Boş çalışma deneyinde ölçülen değerlerle aşağıdaki veriler elde edilebilir. P 0 = P Fe P Fe = P 0 P Cu Anma Dönüştürme Oranı

Deney Esnasında Kullanılacak Cihaz Ve Ekipmanlar

Enerji Sistemleri Mühendisliği

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

ALTERNATİF AKIMIN DENKLEMİ

REAKTİF GÜÇ İHTİYACININ TESPİTİ. Aktif güç sabit. Şekil 5a ya göre kompanzasyondan önceki reaktif güç. Q 1 = P 1 * tan ø 1 ( a )

Enerji Kalitesi Nedir?

AC-DC Dönüştürücülerin Genel Özellikleri

Yrd. Doç. Dr. Levent Çetin. Alternatif Gerilim. Alternatif Akımın Fazör Olarak İfadesi. Temel Devre Elemanlarının AG Etkisi Altındaki Davranışları

Boşta çalışma deneyi (Yüksek gerilim tarafı boşta)

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

Alternatif Akım ve Transformatörler. Test 1 in Çözümleri

DENEY 1-1 AC Gerilim Ölçümü

Pasif devre elemanları (bobin, kondansatör, direnç) kullanarak, paralel kol olarak tasarlanan pasif

Resmi Gazete; 01 Aralık 1988; sayı 20006

Şekil 1: Direnç-bobin seri devresi. gerilim düşümü ile akımdan 90 o ileri fazlı olan bobin uçlarındaki U L gerilim düşümüdür.

Yüksek Gerilim Tekniği İÇ AŞIRI GERİLİMLER

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Olgun SAKARYA EMO Enerji Birim Koordinatörü. 13 Haziran 2012 / ANKARA

DENEY 2: ALTERNATİF AKIM DEVRELERİNDE KONDANSATÖR VE BOBİN DAVRANIŞININ İNCELENMESİ

PWM Doğrultucular. AA/DA güç dönüşümü - mikroelektronik devrelerin güç kaynaklarında, - elektrikli ev aletlerinde,

Transkript:

1 SERİ PARALEL DEVRELER

ALTERNATİF AKIMDA EMPEDANS Seri Paralel Devreler Çözüm Yöntemi: Seri ve paralel devrelerin bir arada bulunduğu devrelerdir. Devrelerin çözümünde Her kolun empedansı bulunur. Her koldan geçen akım ve açılar bulunur. Devrenin vektör diyagramı çizilerek Vektör diyagramından yararlanılarak devre akımı ve devre açısı hesaplanır. Örnek: Şekildeki devre kol akımlarını ve devre akımını bulunuz. Aktif, reaktif ve görünür güçlerini hesaplayınız. I U=25V IR R=25 IC XC=60 IB RB=40 BOBİN XLB=30 2

ALTERNATİF AKIMDA EMPEDANS Seri Paralel Devreler Örnek: Şekildeki devre kol akımlarını, devre akımını, aktif, reaktif ve görünür güçlerini bulunuz. I U=75V XC=40 R2=48 I1 R1=30 I2 XL=36 3

4 (KOMPANZASYON)

Devrede direnç (Rezistif) bulunduran kapasitif devrelerde faz farkı, akım gerilimden ilerde olacak şekilde iken endüktif devrelerde akım geride olur. Faz farkının oluşması, reaktif güç oluşması demektir. Bir sistemin görünür gücü değişmez, ancak faz farkına bağlı olarak görünür gücün bileşenleri olan aktif ve reaktif güç değişir. Aktif güç görünür güce eşit ise maksimum iş verimi alınır. Devrede işi aktif bileşen yapar, reaktif bileşen her döngüde şebekeden çekilir ve döngü bitmeden geri şebekeye verilir. Sadece omik dirençlerden oluşan devrede faz farkı olmaz ve aktif güç maksimum değerini alır, reaktif güç yoktur. Ancak endüktif ve kapasitif devrelerde faz farkına göre reaktif güç oluşur. Bu da işe çevrilebilen aktif gücün azalmasına dolayısıyla verimin düşmesine ve kullanılamayan bir reaktif güç oluşumuna neden olur. Aktif gücün maksimum hale getirilip, güç faktörünün düzeltilmesi ve verimin en büyük halini alması işlemine kompanzasyon denir. 5

Uygulamada fabrikalar, elektrik makineleri, iş makineleri ve motorlar endüktif çalıştıklarından bağlandıkları şebekeye reaktif güç verirler. Verilen reaktif güç aktif gücün dolayısıyla verimin oldukça düşmesine neden olur. Fabrikaların bolca bulunduğu bir bölge göz önüne alındığında o bölgede bulunan konutların bu durumdan nasıl olumsuz etkileneceği açıktır. Aynı sistemin öncelikle kompanze edilmemiş ve sonra kompanze edilmiş hali karşılaştırıldığında aynı işi gerçekleştirmek için çekilen akımın azaldığı görülür. Farklı şekilde ise kompanze edilmiş bir sistemde verilebilecek aktif güç kompanze edilmemiş bir sisteme göre daha fazla olur. İşte verimin artması ve şebekenin reaktif güçten kötü etkilenmemesi için endüktif sistemin girişine bir kompanzasyon kondansatörü bağlanır ve devrede üretilen reaktif güç şebekeye verilmeden kondansatörlerde depolanır. Motor devreye girerken de bu kondansatörler depoladıkları reaktif gücü motorlara geri verirler. Dolayısıyla şebeke sistemi omik bir sisteme yakın olarak görür ve şebekeyle sistem arasında reaktif güç alışverişi olmaz. 6

Kondansatör Akımının Hesaplanması Devreden çekilen akımlara ait vektör diyagramı şekildeki gibi çizilebilir. Vektör diyagramında; I ; Devre akımı I e ; Devre akımının aktif bileşeni I q ; Devre akımının reaktif bileşeni I c ; Kondansatör akımı I 2 ; Güç katsayısı düzeltildikten sonraki devre akımıdır. φ 1 ; Devre açısı φ 2 ; Güç katsayısı düzeltildikten sonraki devre açısı Iq-Ic Ic Ie I2 U Devre akımının aktif bileşeni olan I e çekilen aktif güç ile ilişkili olup güç katsayısı düzeltilse de değişmez. Devre akımının reaktif bileşeni olan I q çekilen reaktif güç ile ilişkili olup güç katsayısı düzeltilmesi ile azalır. Iq Devre akımlarına ait vektör diyagramı I 7

Devre akımlarına ait vektör diyagramından yararlanarak mevcut devre açısının (φ 1 ) ve güç katsayısının düzeltilmiş haliyle yeni devre açısının (φ 2 ) tanjantı; tanφ 2 = I q I c I e tanφ 1 = I q I e I q I c = I e. tanφ 2 I c = I q I e. tanφ 2 I q I c = I e. tanφ 2 I q = I e. tanφ 1 Denklemde I q yu koyarsak kondansatör akımı; denkleminde kondansatör akımı yalnız bırakılırsa; Ic I c = I e. tanφ 1 I e. tanφ 2 I c = I e. (tanφ 1 tanφ 2 ) Kondansatör akımı Iq-Ic Ie I2 U I c = I. cosφ 1 (tanφ 1 tanφ 2 ) Güç katsayısı düzeltildikten sonra devre akım I 2 = (I. cosφ 1 ) 2 + I. sinφ 1 I 2 c Iq Devre akımlarına ait vektör diyagramı I 8

Gerekli Kondansatör Gücünün Hesaplanması Devreden çekilen güçlere ait vektör diyagramı şekildeki gibi çizilebilir. Vektör diyagramında S ; Çekilen görünür güç P ; Çekilen aktif güç Qc Q ; Çekilen reaktif güç Q c ; Gerekli kondansatör gücü S 2 ; Güç katsayısı düzeltildikten sonraki görünür güç. Devreden çekilen aktif güç güç katsayısı düzeltilse de değişmez. Devreden reaktif güç güç katsayısının düzeltilmesi ile azalır. Devrenin güç diyagramından yararlanarak mevcut devre açısının (φ 1 ) ve güç katsayısının düzeltilmiş haliyle yeni devre açısının (φ 2 ) tanjantını yazalım. tanφ 2 = Q 2 Q c P tanφ 1 = Q 2 P Q 2 Q c = P. tanφ 2 Q 2 = P. tanφ 1 Q-Qc Q P S2 Devre güçlerine ait vektör diyagramı S U 9

Q 2 Q c = P. tanφ 2 denkleminde gerekli kondansatör gücü yalnız bırakılırsa; Q c = Q 2 P. tanφ 2 olur. Denklemde Q 2 = P. tanφ 1 i yerine koyarsak gerekli kondansatör gücü; Q c = P. tanφ 1 P. tanφ 2 Gerekli kondansatör gücü Q c = P(tanφ 1 tanφ 2 ) Gerekli kondansatör kapasitesi C = I C ω.u (Farad) 10

Örnek: 220V, 2,21A ve cosφ=0,76 olan bir fazlı ASM nin güç katsayısını 0,996 yapmak için gerekli kondansatör kapasitesini, gücünü ve güç katsayısı düzeltildikten sonra çekilen akım ile aktif, reaktif güçlerini bulunuz. Elde edilen değerler Şebeke gerilimi U = 220V Motor akımı I M = 2, 21A Mevcut güç katsayısı cosφ 1 = 0, 76 geri endüktif İstenen güç katsayısı cosφ 2 = 0, 996 geri endüktif 11

Örnek: Etiketinde gücü P = 18W olarak verilmiş olan flüoresan lamba şebeke gerilim altında çalıştırıldığında elde edilen değerler aşağıdaki gibidir. Bu flüoresan lambanın güç katsayısının cosφ = 0, 99 değerine yükseltilebilmesi için gerekli kondansatör kapasitesini bulunuz. Güç katsayısı düzeltildikten sonraki akımı değerlendiriniz. Elde edilen değerler Aktif Güç Şebeke gerilimi Mevcut güç katsayısı İstenen Güç katsayısı P = 25, 6W U = 220V cosφ 1 = 0, 32 geri endüktif cosφ 2 = 0, 99 geri endüktif 12

Örnek: Yukarıda verilen bilgilerden yararlanılarak kurulu gücü 50KVA üstünde olan bir işletmenin harcadığı reaktif enerjiden dolayı ceza almaması için güç katsayısının olması gereken en düşük değerini hesaplayınız. Hatırlatma: Proje gücü 50KVA ve üzeri olan işletmelerin şebekeden çektikleri endüktif enerji, aktif enerjinin en fazla %20'si; kapasitif enerji de aktif enerjinin en fazla %15'i, işletmenin proje gücü 9KVA-50KVA arasında ise şebekeden çektikleri endüktif enerji, aktif enerjinin en fazla %33'ü; kapasitif enerji de aktif enerjinin en fazla %20'si kadar olabilir. Aksi halde işletme ceza faturası ödemek ile yükümlüdür. 13

Örnek: Kompanzasyon yapılmak istenen bir atölyede işletmede bulunan bir fazlı elektrik motorları ile aydınlatma sitemine ait değerler aşağıdaki gibidir. Motor1 P 1 =2,2kW Cosϕ 1 =0,95geri I 1 =13,5A Motor2 P 2 =0,75kW Cosϕ 2 =0,98geri I 2 =4,6A Motor3 P 3 =0,37kW Cosϕ 3 =0,91geri I 3 =2,6A Motor4 P 4 =1,5kW Cosϕ 4 =0,96geri I 4 =9,3A Motor5 P 5 =1,1kW Cosϕ 5 =0,96geri I 5 =7,1A Aydınlatma için 4x18W ve Cosφ 6 =0,50 geri flüoresan 8 adet armatür ile 60W lık 6 adet akkor flamanlı armatür kullanılmıştır. a) Bu atölyede güç katsayısını 0,99 değerine yükseltmek için gerekli kondansatör gücünü hesaplayınız. b) Atölyede mevcut durum ile güç katsayısı düzeltildikten sonraki durumu karşılaştırınız. 14

Etiketinde 220V, 13,4A, n=1425d/d ve cosφ=0,93 yazılı olan 2,2kW lık dört kutuplu bir fazlı ASM nin güç katsayısını 0,99 yapmak için gerekli kondansatör kapasitesini ve gücünü hesaplayınız. 15

KAYNAKLAR YAĞIMLI, Mustafa; AKAR, Feyzi; Alternatif Akım Devreleri & Problem Çözümleri, Beta Basım, Ekim 2004 MARTI, İ. Baha; GÜVEN, M. Emin; COŞKUN, İsmail; Elektroteknik Cilt I, 1998 MARTI, İ. Baha; GÜVEN, M. Emin; Elektroteknik Cilt II, 1998 16