Yarıiletken devre elemanlarında en çok kullanılan maddeler;

Benzer belgeler
T.C. AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ EEM207/ GEEM207 ELEKTRONİK-I LABORATUVARI DENEY RAPORU

Valans elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.

DENEY 1 DİYOT KARAKTERİSTİKLERİ

Elektronik cihazların yapımında en çok kullanılan üç yarıiletken şunlardır,

Deney 3: Diyotlar ve Diyot Uygulamaları. Amaç: Araç ve Malzeme: Teori:

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-5 AKTİF DEVRE ELEMANLARI Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

İletken, Yalıtkan ve Yarı İletken

6. Bölüm: Alan Etkili Transistörler. Doç. Dr. Ersan KABALCI

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK SİSTEMLER LABORATUVARI 1. DİYOT ve UYGULAMALARI

2. Bölüm: Diyot Uygulamaları. Doç. Dr. Ersan KABALCI

ALAN ETKİLİ TRANSİSTÖR

Şekil 1: Diyot sembol ve görünüşleri

4. Bölüm: Çift Jonksiyonlu Transistörler (BJT) Doç. Dr. Ersan KABALCI

DENEY 1: DİYOT KARAKTERİSTİKLERİ

Yarıiletkenler Diyotlar

Elektronik-I Laboratuvarı 1. Deney Raporu. Figure 1: Diyot

ÜNİTE 3 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

DENEY 1: DİYOT KARAKTERİSTİKLERİ

DİYOT KARAKTERİSTİKLERİ

ELEKTRONİK LAB. I DİYOT KARAKTERİSTİĞİ

Temel Elektrik Elektronik. Seri Paralel Devrelere Örnekler

DİYOT ÇEŞİTLERİ TEMEL ELEKTRONİK

Modern Fiziğin Teknolojideki Uygulamaları

ELEKTRONİK DEVRE ELEMANLARI

T.C HİTİT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRONİK DEVRELER 1 LAB. DENEY FÖYÜ DENEY-1:DİYOT

Atomdan e koparmak için az ya da çok enerji uygulamak gereklidir. Bu enerji ısıtma, sürtme, gerilim uygulama ve benzeri şekilde verilebilir.

1. Yarı İletken Diyotlar Konunun Özeti

ELEKTRONİK-1 DERSİ LABORATUVARI DENEY 1: Diyot Karakteristikleri Deneyleri (PN Jonksiyon)

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I

Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

DERS NOTLARI. Yard. Doç. Dr. Namık AKÇAY İstanbul Üniversitesi Fen Fakültesi

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

AMASYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Bölüm 8 FET Karakteristikleri

1. Kristal Diyot 2. Zener Diyot 3. Tünel Diyot 4. Iºýk Yayan Diyot (Led) 5. Foto Diyot 6. Ayarlanabilir Kapasiteli Diyot (Varaktör - Varikap)

5. Bölüm: BJT DC Öngerilimleme. Doç. Dr. Ersan KABALCI

ANALOG ELEKTRONİK BİPOLAR TRANSİSTÖR

Enerji Band Diyagramları

1.1. Deneyin Amacı: Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

DENEY 3 : TRANSİSTÖR KARAKTERİSTİKLERİ. Amaç : Bipolar Transistörlerin çalışmasını teorik ve pratik olarak öğrenmek.

EEME 210 ELEKTRONİK LABORATUARI

BÖLÜM 1 YARIİLETKENLERİN TANITILMASI. Konular: Amaçlar:

Bölüm 7 FET Karakteristikleri Deneyleri

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Yarım Dalga Doğrultma

ZENER DİYOTLAR. Hedefler

P-N Birleşimli Diyotlar

Şekil 1.1. Hidrojen atomu

ÜNİTE 4 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK)

ELEKTRONİK-I DERSİ LABORATUVARI DENEY 2: Zener ve LED Diyot Deneyleri

T.C. MARMARA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

Bölüm 5 Transistör Karakteristikleri Deneyleri

4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek

Hazırlayan: Tugay ARSLAN

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 2. HAFTA

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA

AKHİSAR CUMHURİYET MESLEKİ VE TEKNİK ANADOLU LİSESİ YARI İLETKENLER

SİLİKON KONTROLLÜ ANAHTAR SİLİCON CONTROLLED RECTETİER ( SCR )

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

SICAKLIK ALGILAYICILAR

Atom Y Atom ap Y ısı

(BJT) NPN PNP

PN-Jonksiyon ve Zener Diyot Karakteristikleri Deney 1. Elektronik Laboratuvarı

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi * Elektrik-Elektronik Mühendisliği Bölümü Elektronik Anabilim Dalı * Elektronik Laboratuarı I

EEME210 ELEKTRONİK LABORATUARI

BJT KARAKTERİSTİKLERİ VE DC ANALİZİ

Bölüm 1 Diyot Karakteristikleri

DENEY 13 Diyak ve Triyak Karakteristikleri

BÖLÜM 1 YARIİLETKENLERİN TANITILMASI. Konular: Amaçlar:

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUVARI I

ELEKTRONİK DEVRE ELEMANLARI

BLM 224 ELEKTRONİK DEVRELER. Hafta 2. Prof. Dr. Mehmet Akbaba Karabük Üniversitesi Bilgisayar Mühendisliği Bölümü

TEMEL KAVRAMLAR BİRİM SİSTEMİ TEMEL NİCELİKLER DEVRE ELEMANLARI ÖZET

Elektrik Elektronik Mühendisliği Bölümü Elektronik Laboratuarı I DENEY-2 TEMEL YARI ĐLETKEN ELEMANLARIN TANIMLANMASI (BJT, FET, MOSFET)

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Transistörler yarıiletken teknolojisiyle üretilmiş, azınlık-çoğunluk yük taşıyıcılara sahip solidstate elektronik devre elemanlarıdır.

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi

TRANSİSTÖRLERİN KUTUPLANMASI

GERİLİM REGÜLATÖRLERİ DENEYİ

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM

ANKARA ÜNİVERSİTESİ GAMA MESLEK YÜKSEKOULU

Bölüm 1 Diyot Karakteristikleri

DENEY 2. Şekil KL modülünü, KL ana ünitesi üzerine koyun ve a bloğunun konumunu belirleyin.

DENEY 1:JFET TRANSİSTÖR VE KARAKTERİSTİKLERİ

BÖLÜM 3. Bobin bir yalıtkan makara (mandren veya karkas) üzerine belirli sayıdaki sarılmış tel grubudur.

MOSFET. MOSFET 'lerin Yapısı

ELEKTRONİK DEVRELER LABORATUVARI I DENEY - I

GÜNEŞ ENERJİ SİSTEMLERİ

ÜNİTE 4 TEST SORU BANKASI (TEMEL ELEKTRONİK) TRANSİSTÖRÜN TANIMI Transistörlerin çalışması için, beyz ve emiterin... kollektörün ise...

TRANSİSTÖRÜN YAPISI (BJT)

DENEY 6 TUNGSTEN FİTİLLİ AMPUL VE YARIİLETKEN DİYOT

Transkript:

1.. Bölüm: Diyotlar Doç.. Dr. Ersan KABALCI 1

Yarı iletken Maddeler Yarıiletken devre elemanlarında en çok kullanılan maddeler; Silisyum (Si) Germanyum (Ge) dur. 2

Katkı Oluşturma Silisyum ve Germanyumun elektriksel özellikleri, katkı işlemiyle eklenen maddeler sayesinde arttırılır. İki tip katkılı yarıiletken vardır: n-tipi p-tipi n-tipi maddeler silisyum (ya da germanyum) atomlarını negatif yapar. p-tipi maddeler silisyum (ya da germanyum) atomlarını pozitif yapar. 3

p-n Jonksiyonu Silisyum ya da germanyum kristalinin bir kısmı p-tipi madde ile diğer kısmı ise n-tipi madde ile katkılandırılır. Sonuçta elde edilen durum p-n jonksiyonudur. 4

p-n Jonksiyonu p-n jonksiyonunda, n-tipi katmanın negatif yüklü atomları, p-tipi katmanın pozitif yüklü atomları tarafından hareketlendirilir. n-tipi maddedeki elektronlar, jonksiyon bölgesini geçerek p-tipi maddeye doğru akarlar (elektron akışı). Sonuçta, jonksiyon bölgesinin etrafında bir boşaltılmış bölge oluşur. 5

Diyot P ve N tipi malzemeler bir kristal yapı içinde bir araya getirildiğinde iki bölge arasında bir P-N jonksiyonu oluşturur. Bu eleman yarı iletken diyot olarak bilinir ve tek yönde akım geçirir. P-N jonksiyonu diyot, transistör ve diğer yarı iletken elemanların temelidir. Bir diyot, anot ve katot şeklinde iki ucu olan bir devre elemanıdır. Diyot, idealde bir yönde akım geçiren devre elemanıdır. 6

Diyot İletim Bölgesi Kesim Bölgesi Diyot üzerindeki gerilim 0V tur Akım idealde sonsuzdur. İleri yön direnci R F = V F / I F ile tanımlanır. Diyot iletimde kısa devre gibi davranır. Uygulanan gerilim diyot üzerindedir. Akım 0A dir. Ters yön direnci; R R = V R / I R Diyot açık devredir. 7

Diyotun Çalışma Şartları Bir diyotun üç çalışma durumu vardır: Öngerilimsiz İleri Öngerilimli Ters Öngerilimli 8

Diyotun Çalışma Şartları Öngerilimsiz Dışarıdan bir gerilim uygulanmaz: V D = 0V Herhangi bir akım oluşmaz: I D = 0A Çok az miktarda boşluk bölgesi vardır. 9

Diyotun Çalışma Şartları Ters Öngerilim p-n jonksiyonuna ters yönde harici bir gerilim uygulanır. Ters polarma, boşluk bölgesinin genişlemesine neden olur. n-tipi maddedeki elektronlar pozitif uca doğru hareketlenir. p-tipi maddedeki oyuklar negatif uca doğru hareketlenir. 10

Diyotun Çalışma Şartları İleri Öngerilim p-n jonksiyonuna, p ve n katmanları ile aynı yönde harici bir gerilim uygulanır. İleri polarma, boşluk bölgesinin daralmasına neden olur. Elektronlar ve oyuklar, p-n jonksiyonuna doğru itilir. Elektronlar ve oyuklar, p-n jonksiyonunu geçecek kadar yeterli enerjiye sahip olur. 11

Diyot Karakteristik Eğrisi 12

Çoğunluk ve Azınlık Taşıyıcıları Bir diyottan iki çeşit akım geçer: Çoğunluk Taşıyıcıları n-tipi maddede çoğunluk taşıyıcıları elektronlardır. p-tipi maddede çoğunluk taşıyıcıları oyuklardır. Azınlık Taşıyıcıları n-tipi maddede azınlık taşıyıcıları oyuklardır. p-tipi maddede azınlık taşıyıcıları elektronlardır. 13

Zener Bölgesi Zener Bölgesi, bir diyotun ters polarma bölgesidir. Zener bölgesinin sınırı aşıldığında, diyot bozulur ve ters yön akım ani bir şekilde artış gösterir. Bu maksimum sınır gerilimi çığ kırılma gerilimi Akım ise çığ akımı olarak tanımlanır. 14

İleri Yön Gerilimi Elektron ve oyuklar p-n jonksiyonunu geçecek kadar enerjilendiğinde, diyot öngerilimsiz durumdan ileri öngerilimli duruma geçer. Burada gerekli olan enerji, harici bir kaynaktan uygulanan gerilimdir. Diyot tipine göre gerekli olan öngerilim değerleri şunlardır: Silisyum diyot 0.7V Germanyum dyot 0.3V 15

Sıcaklık Etkisi Sıcaklık arttıkça diyottaki enerji artar. İleri polarma durumu için gerekli olan ileri öngerilim değerini düşürür. Ters polarma durumunda ters yön akım değerini yükseltir. Maksimum ters polarma çığ gerilimini arttırır. Germanyum diyotlar, sıcaklık değişimlerine silisyum diyotlara göre daha duyarlıdır. 16

Direnç Seviyeleri Yarıiletkenler DA (DC) ve AA (AC) akımlarda farklı davranırlar. Diyotlarda üç tip direnç vardır: DA, ya da statik direnç AA, ya da dinamik direnç Ortalama AA direnç 17

DA, ya da statik direnç Uygulanan spesifik bir DA V D geriliminin sonucunda, diyotta bir I D akımı meydana gelir ve R D direncini oluşturur. R D V I D D 18

AA, ya da dinamik direnç İleri polarma (doğru polarma) bölgesinde; r d 26 mv I D r B Direnç, diyottaki akımın (I D ) değerine bağlıdır. Diyot gerilimi sabittir (26mV @25 C). r B yüksek güç elemanlarında 0.1 dan düşük güç elemanlarında 2 a kadar değer gösterir. Bazı durumlarda r B göz ardı edilir. Ters polarma bölgesinde r d Direnç sonsuzdur ve diyot açık devre gibi çalışır. 19

Ortalama AA direnç r av V I d d AA direnç karakteristik eğride akım ve gerilim için ikişer nokta seçilerek hesaplanır. 20

Diyot Katalogları Diyot kataloglarında yer alan bilgiler ve açıklamaları şu şekildedir; 1. V F, belirli bir akım ve sıcaklıkta ileri yön gerilimi 2. I F, belirli bir sıcaklıkta maksimum ileri yön akımı 3. I R, belirli bir sıcaklıkta maksimum ters yön akımı 4. PIV ya da PRV ya da V(BR), belirli bir sıcaklıkta maksimum ters yön gerilimi 5. Güç tüketimi, belirli bir sıcaklıkta tüketilen maksimum güç değeri 6. C, ters polarmada kapasitans seviyesi 7. t rr, ters toparlanma süresi 8. Sıcaklıklar, çalışma ve depolama sıcaklıkları 21

Diyot Kapasitansı Ters polarmada, boşluk bölgesi çok geniştir. Diyotun pozitif ve negatif polariteleri C T kapasitansını oluşturur. Kapasitansın değeri uygulanan ters gerilime bağlıdır. Doğru polarmada depolama kapasitansı C D uygulanan gerilim arttıkça artış gösterir. 22

Ters Toparlanma Süresi (t rr ) Ters toparlanma zamanı iletimdeki bir diyotun kesime geçirildiğinde, akım geçişini durdurması için gerekli olan süreyi ifade eder. 23

Diyot Sembolleri ve Paketleri Anot A kısaltması ile, katot ise K kısaltmasıyla gösterilir. 24

Diyot Kontrolleri Diyot kontrolcüsü Ohmmetre 25

Diyot Kontrolcüsü Bir çok dijital multimetrede diyot kontrol özelliği vardır. Diyot devreden ayırılarak test edilmelidir. Normal bir diyot için ölçülmesi gereken ileri öngerilim değerleri: Silisyum diyot 0.7V Germanyum diyot 0.3V 26

Ohmmetre Ohmmetre düşük bir ohm kademesine alınır. Doğru polarmada düşük direnç, ters polarmada yüksek direnç göstermelidir. 27

Diyot Türleri Zener diyot LED diyot Diyot dizileri 28

Zener Diyot Zener diyot, ters polarmada zener geriliminde çalıştırılır (V Z ). Genel zener gerilimleri 1.8 V ile 200 V arasındadır. 29

Işık yayan diyotlar (LED) LED diyot, doğru polarma durumunda foton yayar. Bu fotonlar, kızılötesi ya da görülebilir ışık spektrumunda olabilir. İleri yön gerilimleri genellikle 2V ile 3V arasındadır. 30

Diyot Dizileri Bir entegre devre içerisinde birçok diyot yerleştirilerek oluşturulur. Common Anode Ortak anot ya da ortak katot tipleri vardır. Common Cathode 31