MAK 353 İMAL USULLERİ

Benzer belgeler
MAK 351 İMAL USULLERİ

DÖKÜM İMAL USULLERİ 1

İmal Usulleri. Fatih ALİBEYOĞLU -3-

MAK 353 İMAL USULLERİ DÖKÜM (1)

DÖKÜM. - Kalıbın bozularak/dağıtılarak/kırılarak/parçalanarak veya açılarak ürünün çıkarılması şeklinde özetlenebilir.

İstenilene uygun parçaların elde edilmesi için, döküm atölyesinin her bölümündeki çalışmalar teknolojik bilgilere dayalı olarak yapılmalıdır.

İMAL USULLERİ. DOÇ. DR. SAKıP KÖKSAL 1

DÖKÜM TEKNOLOJİSİ. Döküm:Önceden hazırlanmış kalıpların içerisine metal ve alaşımların ergitilerek dökülmesi ve katılaştırılması işlemidir.

DÖKÜM TEKNOLOJİSİ. Derleyen. Prof. Dr. Adnan AKKURT

TALAŞSIZ ÜRETİM YÖNTEMLERİ -1

İmal Usulleri. Döküm Tekniği

Metallerde Döküm ve Katılaşma

PLASTİK ŞEKİL VERMENİN ESASLARI EÜT 231 ÜRETİM YÖNTEMLERİ. Metal Şekillendirmede Gerilmeler. Plastik Şekil Verme

Gaz. Gaz. Yoğuşma. Gizli Buharlaşma Isısı. Potansiyel Enerji. Sıvı. Sıvı. Kristalleşme. Gizli Ergime Isısı. Katı. Katı. Sıcaklık. Atomlar Arası Mesafe

İmal Usulleri. Fatih ALİBEYOĞLU -4-

PÜSKÜRTME ŞEKİLLENDİRME (SPRAY FORMING / SPRAY DEPOSITION)

METAL DÖKÜMÜNÜN ESASLARI MAK 351 İMAL USULLERİ. Katılaştırma Yöntemleri

MAK-205 Üretim Yöntemleri I. Yöntemleri. (4.Hafta) Kubilay Aslantaş

Döküm Prensipleri. Yard.Doç.Dr. Derya Dışpınar. İstanbul Üniversitesi

KARADENİZ TEKNİK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ LABORATUAR DENEY FÖYÜ DÖKÜM DENEYİ

Elektron ışını ile şekil verme. Prof. Dr. Akgün ALSARAN

İmal Usulleri. Fatih ALİBEYOĞLU -5-6-

Metalurji Mühendisliğine Giriş. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Dökümün Temelleri. DeGarmo s Materials and Processes in

Metalürji; üretim metalürjisi (ekstraktif metalürji) ve fiziksel metalürji (malzeme) olmak üzere iki ana dala ayrılabilmektedir.

ERGİTME,DÖKÜM VE KATILAŞMA

Plastik Şekil Verme MAK351 İMAL USULLERİ. Metal Şekillendirmede Gerilmeler PLASTİK ŞEKİL VERMENİN ESASLARI

DÖKÜM İMALAT PROSESLERİ İÇİN İLERİ DÜZEY SİMÜLASYON YAZILIMI: VULCAN

POLİSTREN KÖPÜK MODELLERİNİN DÖKÜMDE KULLANILMASI HAKKINDA PRATİK BİLGİLER

Faz Dönüşümleri ve Faz (Denge) Diyagramları

Çukurova Kimya Endüstrisi A.Ş. Besleyici Gömlek

KALICI KALIBA DÖKÜM. Kalıcı Kalıp Kullanan Döküm Yöntemleri

Şekil Yolluk sistemi hesaplamasında 1. örnekte kullanılan konsol parça

BETON KARIŞIM HESABI (TS 802)

Malzeme Bilgisi Prof. Dr. Akgün ALSARAN. Temel kavramlar Demir-Karbon Denge Diyagramı

MALZEME BİLİMİ I MMM201. aluexpo2015 Sunumu

EKSTRÜZYON YOLU İLE İMALAT

DOĞAL KURŞUN METALİK KURŞUN PLAKALAR

METAL DÖKÜM YÖNTEMLERİ EÜT 231 ÜRETİM YÖNTEMLERİ. Kum Döküme Genel Bakış. Döküm Yöntemlerinin İki Kategorisi

2.Oturum: Kalıp & Maça Teknolojileri Oturum Başkanı: Teoman Altınok (Entil Endüstri)

İmal Usulleri. Fatih ALİBEYOĞLU -11-

Demir-Karbon Denge Diyagramı

KATILAŞMA ZAMANI VE BESLEME

6XXX EKSTRÜZYON ALAŞIMLARININ ÜRETİMİNDE DÖKÜM FİLTRELERİNDE ALIKONAN KALINTILARIN ANALİZİ

ÜRETİM YÖNTEMLERİ (Devam)

PLASTİK ŞEKİL VERME (PŞV) Plastik Şekil Vermenin Temelleri: Başlangıç iş parçasının şekline bağlı olarak PŞV iki gruba ayrılır.

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ DÖKÜM TEKNOLOJİSİ (MMM 3007) DERSİ ÖDEVİ

MAK 353 İMAL USULLERİ. B - Döküm Yöntemleri İTÜ Makina Fakültesi

MAK 353 İMAL USULLERİ. İTÜ Makina Fakültesi

Alaşımınbüyümesi: 2. durum. Katıda yine difüzyonyok: D k = 0

DÖKÜM USULLERİ : Parçamız Adı : Bağlantı elemanı Dökülecek metal : Dökme demir Çekme payı : % 1 Maçanın Mal. : Kum Modelin Mal.

Dişhekimliğinde MUM. Prof Dr. Övül KÜMBÜLOĞLU. Ege Üniversitesi Dişhekimliği Fakültesi Protetik Diş Tedavisi Anabilim Dalı Öğretim Üyesi

METALLERDE KATILAŞMA HOŞGELDİNİZ

Döküm Süreçleri ve Uygulamaları (MATE 401) Ders Detayları

DÖVME (Forging) Dövme (cold forging parts)

DENEYİN ADI: Kum ve Metal Kalıba Döküm Deneyi. AMACI: Döküm yoluyla şekillendirme işleminin öğrenilmesi.

MALZEME BİLGİSİ DERS 7 DR. FATİH AY.

METAL DÖKÜM YÖNTEMLERİ

MALZEME BİLGİSİ. Katılaşma, Kristal Kusurları

Alaşımların Ergitilmesinde Kullanılan Gereçler Eritme ocakları Potalar ve maşalar Tel ve plaka şideleri

DÖKÜM TEKNOLOJİSİ UYGULAMALARI - 2. Dr.Çağlar Yüksel ATATÜRK ÜNİVERSİTESİ METALURJİ ve MALZEME MÜHENDİSLİĞİ BÖLÜMÜ

PROF. DR. HÜSEYİN UZUN HOŞGELDİNİZ

TEKNOLOJİSİ--ITEKNOLOJİSİ. Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ

Dövmenin tarihi 4000 yıl veya daha fazlasına dayanmaktadır. Cıvatalar, perçinler, çubuklar, türbin milleri, paralar, madalyalar, dişliler, el

FAZ DİYAGRAMLARI ve DÖNÜŞÜMLERİ HOŞGELDİNİZ

İNŞAAT MALZEME BİLGİSİ

Prof. Dr. İRFAN AY / Öğr. Gör. FAHRETTİN KAPUSUZ 1

Cam: Malzemeye Genel Bakış CAM İŞLEME. Cam Ürünler. Cam Şekillendirme Yöntemleri

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUARI

Tozların Şekillendirilmesi ve Sinterleme. Yrd. Doç. Dr. Rıdvan YAMANOĞLU

Döküm Prensipleri. Yard.Doç.Dr. Derya Dışpınar. İstanbul Üniversitesi

MADDENİN AYIRT EDİCİ ÖZELLİKLERİ ERİME VE DONMA NOKTASI

BESLEYICILERIN HESAPLANMASI

İmal Usulleri. Fatih ALİBEYOĞLU -8-

Dokuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü YAPI MALZEMESİ II DERSİ BETON TEKNOLOJİSİ DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

BRİKET DUVAR. Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu İnşaat Bölümü. Öğretim Görevlisi Tekin TEZCAN İnşaat Yüksek Mühendisi

Beton; kum, çakıl, su, çimento ve diğer kimyasal katkı maddelerinden oluşan bir bileşimdir. Bu maddeler birbirleriyle uygun oranlarda karıştırıldığı

BACA STANDARTLARI GENEL BACA STANDARTLARI

5.SINIF FEN VE TEKNOLOJİ KİMYA KONULARI MADDENİN DEĞİŞMESİ VE TANINMASI

İki malzeme orijinal malzemelerden elde edilemeyen bir özellik kombinasyonunu elde etmek için birleştirilerek kompozitler üretilir.

1. HAFTA Giriş ve Temel Kavramlar

PLASTİK MALZEMELERİN İŞLENME TEKNİKLERİ

Kaynak nedir? Aynı veya benzer alaşımlı maddelerin ısı tesiri altında birleştirilmelerine Kaynak adı verilir.

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

Döküm Yolu İle İmalat

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 2

Isı Cisimleri Hareket Ettirir

ÜRETİM YÖNTEMLERİ VE İMALAT TEKNOLOJİLERİ DÖKÜM YÖNTEMLERİ. Doç. Dr. Fehmi Nair Erciyes Üniversitesi Makine Mühendisliği Bölümü

3/9/ µ-2µ Filler (taşunu) 2µ altı Kil. etkilemektedir.

TOZ METALURJİSİ Prof.Dr. Muzaffer ZEREN

KATI YALITIM MALZEMELERİ KALSİYUM SİLİKAT

Kaynak yöntemleri ile birleştirilen bir malzemenin kaynak bölgesinin mikroyapısı incelendiğinde iki ana bölgenin var olduğu görülecektir:

SInIrsIz KatI Erİyebİlİrlİk Faz DİyagramlarI (İkİlİ İzomorfİk Sİstemler)

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Termodinamik Termodinamik Süreçlerde İŞ ve ISI

İÇİNDEKİLER BÖLÜM 1 BÖLÜM 2

Bölüm 7 ENTROPİ. Bölüm 7: Entropi

Yapıblok İle Akustik Duvar Uygulamaları: Digiturk & TV8

Malzeme İşleme Yöntemleri

DENEYİN ADI: Çeliklerin Isıl İşlemi. AMACI: Çeliklerde ısıl işlem yoluyla mikroyapı ve mekanik özelliklerin değişiminin öğretilmesi.

Transkript:

MAK 353 İMAL USULLERİ Prof.Dr. Murat VURAL İTÜ Makina Fakültesi http://www.akademi.itu.edu.tr/vuralmu http://www.akademi.itu.edu.tr/dikicioglu vuralmu@itu.edu.tr 1

METAL DÖKÜMÜNÜN ESASLARI 1. Döküm Teknolojisine Genel Bakış 2. Isıtma ve Dökme 3. Katılaşma ve Soğuma 2

Katılaştırma Yöntemleri Başlangıç malzemesi, ya bir sıvıdır ya da yüksek derecede plastikleştirilmiştir ve malzemenin katılaştırılması sayesinde bir parça oluşturulur Katılaştırma yöntemleri, işlenen mühendislik malzemesine göre sınıflandırılabilir: Metaller Seramikler, özel camlar Polimerler ve polimer matrisli karma malzemeler (PMC ler) 3

Bozulabilir kalıba döküm Kum döküm Metallerin dökümü Diğer döküm yöntemleri Kalıcı kalıba döküm Katılaştırma yöntemleri Cam işleme Ekstrüzyon ve ilgili yöntemler Enjeksiyonla kalıplama Polimer ve PMC lerin imalatı Diğer kalıplama yöntemleri PMC ler için özel yöntemler Şekil 10.1 Katılaştırma yöntemlerinin sınıflandırılması 4

Döküm Erimiş metalin, kalıp boşluğunda katılaşacağı kalıba, yerçekimi veya başka bir kuvvetle aktığı yöntem Döküm terimi yöntemle üretilen parçalar için de kullanılmaktadır Dökümdeki adımlar görece olarak basittir: 1. Metalin eritilmesi 2. Kalıba dökülmesi 3. Katılaşmaya bırakılması 5

Dökümün Sınırları ve Üstünlükleri Karmaşık parça geometrileri oluşturulabilir Hem iç hem de dış şekiller oluşturulabilir Bazı döküm yöntemleri net şekil dir; bazıları ise net şekle yakın dır. Çok büyük parçaları üretebilir Bazı döküm yöntemleri seri üretime uygundur 6

Dökümün Zayıflıkları Farklı döküm yöntemlerinin farklı zayıflıkları vardır: Mekanik özelliklerde sınırlamalar Bazı yöntemlerde düşük boyutsal doğruluk ve yüzey kalitesi; örn. Kum döküm Sıcak erimiş metaller nedeniyle çalışanlara iş güvenliği sorunları Çevre sorunları 7

Dökümle Yapılabilen Parçalar Büyük parçalar Otomotiv araçları için motor blokları ve silindir kafaları, ağaç yakma fırınları, makina gövdeleri, vagon tekerlekleri, borular, büyük heykeller, pompa gövdeleri Küçük parçalar Diş kaplamaları, mücevher, küçük heykeller, kızartma tavaları Demir esaslı ve demir dışı tüm metal türleri dökülebilir 8

9

Döküm Teknolojisine Genel Bakış Döküm genellikle dökümhane de yapılır Dökümhane = kalıpların yapılması, erimiş metalin eldesi ve taşınması, döküm işleminin yapılması ve bitmiş dökümlerin temizlenmesi için donatılan fabrika Döküm işini yapan işçiler dökümcü olarak adlandırılır 10

Dökümde Kalıp Geometrisi parça şeklini belirleyen boşluklar içerir Kalıp boşluğunun gerçek boyut ve şekli, katılaşma ve soğuma sırasında metalin büzülmesine izin vermek üzere hafifçe daha büyük olmalıdır Kalıplar, kum, alçı, seramik ve metal olmak üzere değişik malzemelerden yapılır 11

Açık Kalıplar ve Kapalı Kalıplar Şekil 10.2 İki kalıp türü: (a) sadece istenen parçanın şeklindeki bir kap olan açık kalıp; ve (b) kalıp geometrisinin daha karmaşık olduğu ve kalıp boşluğuna giden bir yolluk sistemi (geçiş yolları) gerektiren kalıp geometrisinin olduğu kapalı kalıp 12

Döküm Yöntemlerinin İki Kategorisi 1. Bozulabilir kalıp yöntemleri dökümü çıkarmak için dağıtılması gereken bir kalıp kullanır Kalıp malzemeleri: kum, alçı ve benzer malzemeler, ayrıca bağlayıcılar 2. Kalıcı kalıp yöntemleri çok sayıda döküm üretmek için tekrar tekrar kullanılabilecek bir kalıcı kalıp kullanır Metalden (kokil) veya, nadiren seramik bir refrakter malzemeden yapılır 13

Üstünlükleri ve Eksiklikleri Bozulabilir kalıp yöntemleriyle daha kesin geometriler oluşturulabilir Kalıcı kalıp yöntemlerindeki parça şekilleri, kalıbın açılması gerektiğinden sınırlıdır Kalıcı kalıp yöntemleri, yüksek üretim işlemlerinde daha ekonomiktir 14

Kum Döküm Kalıbı Şekil 10.2 (b) Kum döküm kalıbı. 15

Kum Döküm Kalıp Terimleri Kalıp iki yarıdan oluşur: Üst derece = kalıbın üst yarısı Alt derece = alt yarısı Kalıp yarıları, derece denen bir kutunun içindedir İki yarı, ayırma yüzeyinde birbirinden ayrılır 16

Kalıp Boşluğunun Oluşturulması Kalıp boşluğu, parçanın şekline sahip olan bir model çevresinde kumun sıkıştırılmasıyla oluşturulur Model çıkarıldığında, sıkıştırılmış kumda kalan boşluk, dökme parçanın istenen şekline sahiptir Model, katılaşma ve soğuma sırasında metalin büzülmesine izin vermek üzere genellikle daha büyük yapılır Kalıp kumu nemlidir ve şeklini koruması için bir bağlayıcı içerir 17

Kalıp Boşluğunda Bir Maça Kullanımı Kalıp boşluğu, dökülecek parçanın dış yüzeyini oluşturur Ek olarak parçanın iç geometrisini belirleyecek şekilde, kalıp boşluğunun içine yerleştirilen bir maça tarafından belirlenen iç yüzeylere de sahip olabilir Kum dökümde maçalar genellikle kumdan yapılır 18

Yolluk Sistemi Erimiş metalin kalıp dışından kalıp boşluğuna doğru aktığı kanal Metalin içinde akarak yatay yolluğa ulaştığı bir düşey yolluk içerir Düşey yolluğun üstünde, genellikle sıçramayı en aza indirecek ve metalin düşey yolluğa türbülanssız girmesini sağlayacak bir döküm ağzı bulunur 19

Besleyici Katılaşma sırasında parçanın büzülmesini karşılamak üzere bir sıvı metal orijini olan, kalıp içindeki depo Besleyicinin fonksiyonunu yerine getirebilmesi için, esas dökümden sonra katılaşacak şekilde tasarlanmalıdır 20

21

Metalin Isıtılması Isıtma fırınları, metali döküme yeterli sıcaklığa ulaşacak şekilde eritmede kullanılır Gerekli ısı aşağıdakilerin toplamından oluşur: 1. Sıcaklığı erime sıcaklığına yükseltecek ısı 2. Katıyı sıvıya dönüştürecek eritme ısısı 3. Erimiş metali döküme uygun sıcaklığa yükseltecek ısı 22

Erimiş Metalin Dökülmesi Bu aşamada başarılı olmak için, katılaşmadan önce metalin kalıbın tüm bölgelerine, en önemlisi de kalıp boşluğuna akması gerekir Başarıyı belirleyen faktörler Döküm sıcaklığı Döküm hızı Türbülans 23

Sıvı Metalin Akıcılık Testi (Spiral Döküm Testi) Döküm ağzı Düşey yolluk Katılaşmadan önceki akış sınırı Spiral kalıp Şekil 10.3 Sıvı metalin akıcılığının belirlenmesi için uygulanan spiral kalıba döküm testi 24

Metalin Katılaşması Erimiş metalin tekrar katı hale dönüşümü Katılaşma, metalin durumuna bağlı olarak değişir Saf bir element, veya Bir alaşım 25

Saf Metalin Soğuma Eğrisi Saf bir metal katılaşma sıcaklığına eşit bir sabit sıcaklıkta katılaşır (erime sıcaklığıyla aynıdır) Şekil 10.4 Saf bir metalin katılaşma sırasındaki soğuma eğrisi. 26

Saf Metallerin Katılaşması Kalıp cidarının soğuma eylemi (chilling) sırasında, dökümden hemen sonra ara yüzeyde ince bir katı metal filmi oluşur Katılaşma sürerken film kalınlığı, erimiş metalin çevresinde bir kabuk oluşturacak şekilde artar Katılaşma hızı, kalıba ısı transferine ve ayrıca metalin ısıl özelliklerine bağlıdır 27

Şekil 10.5. Kalıp cidarı yakınında rastgele yönlenmiş ince taneleri ve dökümün merkezine doğru yönlenmiş büyük kolonsal taneleri gösteren, saf bir metalin dökümündeki karakteristik tane yapısı 28

Alaşımların Katılaşması Çoğu alaşım, sabit bir sıcaklık yerine bir sıcaklık aralığında katılaşır Şekil 10.6 (a) Bir bakır-nikel alaşım sisteminin faz diyagramı; ve (b) döküm sırasında % 50 Ni - % 50 Cu bileşimindeki bir alaşımın soğuma eğrisi 29

Şekil 10.7 Döküm merkezinde alaşım elemanlarının segregasyonunu gösteren, bir alaşım dökümündeki karakteristik tane yapısı. 30

Katılaşma Süresi Katılaşma belirli bir süre alır Toplam katılaşma süresi T TS = dökümden sonra katılaşma için gerekli süredir T TS aralarındaki ilişki Chvorinov Kuralı olarak bilinen, dökümün boyut ve şekline bağlıdır T TS C m V A burada T TS = toplam katılaşma süresi; V = dökümün hacmi; A = dökümün yüzey alanı; n = üstel sayı (tipik değeri = 2); ve C m kalıp sabiti. n 31

Chvorinov Kuralındaki Kalıp Sabiti C m kalıp sabiti aşağıdakilere bağlıdır: Kalıp malzemesi Döküm metalinin ısıl özellikleri Erime sıcaklığına oranla döküm sıcaklığı Belirli bir döküm işlemi için C m değeri, parça şekli çok farklı olsa bile, aynı kalıp malzemesi, metal ve döküm sıcaklığı kullanılan önceki deneysel verilere dayanabilir 32

Chvorinov Kuralının Anlamı Daha yüksek bir hacim/yüzey oranına sahip bir döküm, düşük oranlı olana göre daha yavaş soğur (Hacmi, yüzeyinden büyük ise). Erimiş metali kalıp boşluğuna beslemek için, besleyicinin T TS değerinin ana dökümün T TS değerinden daha büyük olması gerekir Besleyici ve dökümün kalıp sabitleri birbirine eşit olacağından, ana dökümün önce katılaşması için, besleyicinin daha büyük hacim/yüzey oranına sahip olacak şekilde tasarlanması gerekir Bu tasarım, büzülmenin etkilerini en aza indirir 33

Katılaşma ve Soğumadaki Büzülme Şekil 10.8 Silindirik bir dökümün katılaşma ve soğuma sırasındaki büzülmesi: (0) erimiş metalin dökümden hemen sonraki seviyesi; (1) soğuma sırasında sıvının kendini çekmesinin neden olduğu küçülme (boyutsal küçülmeler, anlaşılabilirliği arttırmak için abartılmıştır). 34

Katılaşma ve Soğumadaki Büzülme Şekil 10.8 (2) Katılaşma büzülmesinin neden olduğu büzülme boşluğunun oluşumu ve yükseklikteki azalma; (3) katı metalin soğuması sırasında ısıl kendini çekme (büzülme) nedeniyle yükseklik ve çaptaki ek küçülme (boyutsal küçülmeler, anlaşılabilirliği arttırmak için abartılmıştır). 35

Katılaşma Büzülmesi Katı faz sıvı fazdan daha yüksek yoğunluğa sahip olduğundan, hemen tüm metallerde meydana gelir Böylece, katılaşma, birim metal ağırlığı başına hacimde bir küçülmeye neden olur İstisna: Yüksek C içerikli dökme demir Katılaşmanın son aşamasındaki grafitleşme, faz dönüşümüyle ilgili hacimsel azalmanın aksine, genleşmeye neden olur 36

Büzülme Toleransı Model yapımcıları, kalıp boşluğunun ölçüsünü büyük yaparak katılaşma büzülmesi ve ısıl küçülmeyi hesaba katarlar Kalıbın son döküm boyutuna göre daha büyük yapılma miktarı, model büzülme toleransı olarak adlandırılır Döküm boyutları, lineer olarak belirtilir; böylece toleranslar buna göre belirlenir 37

Yönlenmiş Katılaşma Büzülmenin zararlı etkilerini en aza indirmek için, sıvı metalden en uzak döküm bölgelerinin ilk önce katılaşması ve katılaşmanın bu bölgelerden besleyici(ler)e doğru ilerlemesi istenir Böylece, büzülme boşluklarının önlenmesi için erimiş metal sürekli olarak besleyiciden çekilebilir Yönlenmiş katılaşma terimi, katılaşma kavramını ve bunun kontrol edildiği yöntemleri kapsar 38

Yönlenmiş Katılaşmanın Eldesi İstenen yönlenmiş katılaşma, dökümün kendisini, kalıbı yönlenmesini ve bunu besleyen besleyici sistemini tasarlamak için Chvorinov kuralını kullanarak başarılır. Dökümün küçük V/A oranına sahip kesitlerinin (yani alanı hacminden büyük olanlar) besleyiciden uzağa yerleştirilmesiyle, katılaşma ilk olarak bu bölgelerde başlar ve dökümün diğer bölgeleri için sıvı metalin önü açık kalır. Soğutucular - dökümün belirli bölgelerinde hızlı katılaşmayı sağlayan iç ve dış ısı emiciler 39

Dış Soğutucular Dış soğutucular Kum kalıp Şekil 10.9 (a) Dökümün kalın kesitlerindeki erimiş metalin hızlı katılaşmasını desteklemek için dış soğutucu; ve (b) dış soğutucunun kullanılmaması durumundaki muhtemel sonuç. 40

Besleyici Tasarımı Besleyici, dökümden ayrılan ve sonraki dökümleri yapmak için yeniden eritilen bir atık metaldir Bir işlemde atık miktarını en aza indirmek için, besleyicideki metal hacminin en düşük değerde olması istenir Besleyici geometrisi genelde, V/A oranını en büyük yapacak şekilde seçildiğinden, bu durum besleyici hacminin mümkün olan en düşük değere indirilmesini sağlar 41