T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

Benzer belgeler
T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

DENEY-8 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIMDA DAVRANIŞI

DEVRE ANALİZİ LABORATUARI DENEY 6 KONDANSATÖRÜN VE BOBİNİN DOĞRU AKIM DAVRANIŞI

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı

DOĞRU AKIM Doğru Akım Kavramları Doğru Akımın Tanımı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 1

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 4

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 5

DEVRE ANALİZİ DENEY FÖYÜ

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 3

1. RC Devresi Bir RC devresinde zaman sabiti, eşdeğer kapasitörün uçlarındaki Thevenin direnci ve eşdeğer kapasitörün çarpımıdır.

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

ALTERNATİF AKIMDA EMPEDANS SERİ DEVRELER

EEME210 ELEKTRONİK LABORATUARI

OHM KANUNU DENEY 1 OHM KANUNU 1.1. DENEYİN AMACI

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 2008 DEVRELER II LABORATUARI

DENEY 5 GÖZ AKIMI YÖNTEMİ UYGULAMASI

Ölçü Aletlerinin Tanıtılması

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

DOĞRU AKIM DA RC DEVRE ANALİZİ

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

Bölüm 3 AC Devreler. 1. AC devrede, seri RC ağının karakteristiklerini anlamak. 2. Kapasitif reaktans, empedans ve faz açısı kavramlarını anlamak.

V R1 V R2 V R3 V R4. Hesaplanan Ölçülen

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Ohm-Kirchoff Kanunları ve AC Bobin-Direnç-Kondansatör

DENEY 2: AC Devrelerde R, L,C elemanlarının dirençlerinin frekans ile ilişkileri ve RC Devrelerin İncelenmesi

DENEY 1: DĠRENÇLERĠN SERĠ/PARALEL/KARIġIK BAĞLANMASI VE AKIM, GERĠLĠM ÖLÇÜLMESĠ

Şekil 7.1. (a) Sinüs dalga giriş sinyali, (b) yarım dalga doğrultmaç çıkışı, (c) tam dalga doğrultmaç çıkışı

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Dirençler ve Kondansatörler

ALTERNATİF AKIMDA EMPEDANS (PARALEL DEVRELER)

SERİ, PARALEL DİRENÇ DEVRELERİ VE KIRCHHOFF KANUNLARI

Değişken Doğru Akım Zaman göre yönü değişmeyen ancak değeri değişen akımlara değişken doğru akım denir.

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

Şekil 1. R dirençli basit bir devre

Selçuk Üniversitesi Teknoloji Fakültesi Elektrik Elektronik Mühendisliği

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Seri ve Paralel RLC Devreleri

DENEY 1-1 AC Gerilim Ölçümü

1.1. Deneyin Amacı Temel yarı iletken elemanlardan, diyot ve zener diyotun tanımlanması, test edilmesi ve bazı karakteristiklerinin incelenmesi.

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

T.C. YALOVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ESM 413 ENERJİ SİSTEMLERİ LABORATUVARI I

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

DENEY-3 AKIM VE GERİLİM BÖLME KIRCHOFF AKIM VE GERİLİM KANUNLARININ İNCELENMESİ

ADIYAMAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DEVRE ANALİZİ LABORATUVARI-II DENEY RAPORU

DENEY 9- DOĞRU AKIM DA RC DEVRE ANALİZİ

4.1. Deneyin Amacı Zener diyotun I-V karakteristiğini çıkarmak, zener diyotun gerilim regülatörü olarak kullanılışını öğrenmek

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

DENEY 3: DOĞRULTUCU DEVRELER Deneyin Amacı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRONİK DEVRELER LABORATUARI

12. DC KÖPRÜLERİ ve UYGULAMALARI

Ölçme ve Devre Laboratuvarı Deney: 1

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ FİZİK II LABORATUVARI DENEY 2 TRANSFORMATÖRLER

DENEY 3: RC Devrelerin İncelenmesi ve Lissajous Örüntüleri

DENEY 7 DC DEVRELERDE GÜÇ ÖLÇÜMÜ VE MAKSİMUM GÜÇ AKTARIMI UYGULAMALARI

Bölüm 4 Doğru Akım Devreleri. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 2 DC Devreler. DENEY 2-1 Seri-Paralel Ağ ve Kirchhoff Yasası

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK222 TEMEL ELEKTRİK LABORATUARI-II

DENEY 2: TEMEL ELEKTRİK YASALARI-GERİLİM VE AKIM ÖLÇÜMLERİ

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

DENEY DC RC Devresi ve Geçici Olaylar

1) Seri ve paralel bağlı dirençlerin eşdeğer direncinin bulunması. 2) Kirchhoff akım ve gerilim yasalarının incelenmesi.

7. DİRENÇ SIĞA (RC) DEVRELERİ AMAÇ

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ LABORATUARI

Fiz102L TOBB ETÜ. Deney 3. Kondansatörün Şarj/Deşarj Edilmesi. P r o f. D r. S a l e h S U L T A N S O Y. D r. A h m e t N u r i A K A Y

DENEY 1- LABORATUAR ELEMANLARININ TANITIMI VE DC AKIM, DC GERİLİM, DİRENÇ ÖLÇÜMLERİ VE OHM KANUNU

DENEY FÖYÜ 2: Doğru Akım ve Gerilimin Ölçülmesi

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

Alternatif Akım Devreleri

EEM 201 DEVRE TEORĐSĐ I DENEY 3

DENEY 5. Pasif Filtreler

F AKIM DEVRELER A. DEVRE ELEMANLARI VE TEMEL DEVRELER

Doğru Akım Devreleri

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

T.C. MALTEPE ÜNİVERSİTESİ Elektronik Mühendisliği Bölümü. ELK232 Elektronik Devre Elemanları

Temel Kavramlar. Elektrik Nedir? Elektrik nedir? Elektrikler geldi, gitti, çarpıldım derken neyi kastederiz?

4. 8 adet breadboard kablosu, 6 adet timsah kablo

BJT (Bipolar Junction Transistor) nin karakteristik eğrilerinin incelenmesi

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

DENEY 1 DİYOT KARAKTERİSTİKLERİ

Mekatronik Mühendisliği Lab1 (Elektrik-Elektronik) Transformatörün İncelenmesi

10. e volt ve akımıi(

TEK FAZLI KONTROLLU VE KONTROLSUZ DOĞRULTUCULAR

R 1 R 2 R L R 3 R 4. Şekil 1

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ELEKTRİK DEVRELERİ I LABORATUVARI DENEY RAPORU. Deney No: 5 Güç Korunumu

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-3 Doğru Akım Devreleri Hazırlayan: Yrd. Doç. Dr. Ahmet DUMLU

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

14. SİNÜSOİDAL AKIMDA DİRENÇ, KAPASİTE, İNDÜKTANS VE ORTAK İNDÜKTANSIN ÖLÇÜLMESİ

ADIYAMAN ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ ELEKTRĠK-ELEKTRONĠK MÜHENDĠSLĠĞĠ BÖLÜMÜ DEVRE ANALĠZĠ LABORATUVARI-II DENEY RAPORU

Nedim Tutkun, PhD, MIEEE Düzce Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü Konuralp Düzce

DENEY-4 RL DEVRE ANALİZİ. Alternatif akım altında seri RL devresinin analizi ve deneysel olarak incelenmesi.

REZONANS DEVRELERİ. Seri rezonans devreleri bir bobinle bir kondansatörün seri bağlanmasından elde edilir. RL C Rc

DOĞRULTUCULAR VE REGÜLATÖRLER

DENEY FÖYÜ 7: Seri ve Paralel Rezonans Devreleri

Tanım-2: Üreteçten çıkan akımın; Sigorta, Anahtar, Alıcı (yük) ve İletkenden geçerek tekrar üretece gelmesi için izlediği yola elektrik devresi denir.

DENEY 5: ALTERNATİF AKIMDA FAZ FARKI (R, L VE C İÇİN)

EET-202 DEVRE ANALİZİ-II DENEY FÖYÜ OSİLOSKOP İLE PERİYOT, FREKANS VE GERİLİM ÖLÇME

DENEY 9: JFET KARAKTERİSTİK EĞRİLERİ

KTÜ, Mühendislik Fakültesi Elektrik Elektronik Müh. Böl. Temel Elektrik Laboratuarı I. I kd = r. Şekil 1.

Transkript:

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. Sümeyye BAYRAKDAR Arş. Gör. M. Enes BAYRAKDAR

DENEY 7: KONDANSATÖRLER VE BOBİNLER AMAÇ: Kondansatör ve bobinlerin doğru akım karakteristiklerinin incelenmesi ÖN BİLGİ: Doğru Akım Devresinden Kondansatör: Kondansatör doğru akımı geçirmeyip alternatif akımı geçiren bir elemandır. Yükselteçlerde DC yi geçirip AC geçirmeyerek filtre elemanı olarak kullanılır. AC/DC dönüştürülmesinde diyotlar düzgün bir DC elde edilemez burada da filtre elemanı olarak kullanılır. Enerji depolama özelliğinden faydalanılarak kontakların gecikmeli açılması istenen yerlerde röleye paralel bağlanarak kullanılabilir. Kondansatörü bir DC kaynağa bağladığımızda kondansatörden doluncaya kadar akım akar. Kondansatör dolduğunda uçları arasındaki gerilim maksimum değerine ulaşır. Bu gerilim, kendisini besleyen kaynağın gerilimine eşittir. Dolduğunda kondansatör uçları ve kondansatörü besleyen kaynağın uçları arasında potansiyel farkı sıfır olacağı için devreden akım akmaz. Dolayısıyla dolma zamanı dışında bir kondansatör DC gerilim altında açık devre davranışı gösterir. Şekilde görüldüğü gibi kondansatör bir DC kaynağına bağlanırsa, devreden Şekilde görüldüğü gibi, geçici olarak ve gittikçe azalan IC gibi bir akım akar. IC akımının değişimini gösteren eğriye kondansatör zaman diyagramı denir. Bu olaya, kondansatörün şarj edilmesi, kondansatöre de şarjlı kondansatör denir. "Şarj" kelimesinin Türkçe karşılığı "yükleme" ya da "doldurma" dır. Zaman sabitesi kondansatöre seri bağlanan R direnci ve kondansatörün kapasitesi ile doğru orantılıdır. τ ile gösterilir ve τ = R.C dir. R.C sürede kondansatör gerilimi, şarj geriliminin ancak 0,632 si kadardır. Kondansatör pratikte 4. R.C kadar sürede tam dolmuş kabul edilir.

Doğru Akım Devresinden Bobin: Bobin silindir üzerine sarılmış ve dışı izole edilmiş iletken telden oluşur. Bu yüzden gerçek bobin, telin özdirencinden dolayı bir omik dirence de sahiptir. DC de bobin; elektrikte motor, elektromıknatıs, röle, elektronikte ise filtre ve regüle devrelerinde kullanılır. Bobinin DC de dar bir kullanım alanı vardır. AC de daha geniş bir kullanım alanı vardır. Seri R-L devresine yani gerçek bobine Şekildeki gibi DC uygulandığında ilk anda bobin akımdaki değişikliğe karşı koyar. Bu yüzden akım yavaşça yükselir. Faraday ve Lenz kanunlarına göre akımın yükselişindeki empedans miktarı akımın değişim oranına bağlıdır. Akım değişikliği ne kadar fazla olursa o kadar fazla direnç gösterir. Akım direncin tek başına alacağı değere kadar yükselir. Çünkü eğer akımda değişme olmazsa bobinin empedansı yoktur. Bu yükselme oranı L/R zaman sabitesi ile karakterize edilir. Şekildeki gibi logaritmik bir eğri şeklinde olur. Bu olaylar çok kısa sürede gerçekleşir. Bobinin zaman sabitesi denklemi τ = L/R dir. Bobine uygulanan akım bobin sargıları tarafından oluşturulan manyetik alanda ( Resim 1.1 ) potansiyel enerji olarak depolanır. Bu enerji sayesinde devre akımı kesilse bile bobin üzerinde kalan manyetik alan sayesinde bobin uçları arasında bir EMK kalır. Bu haldeki bobinin uçları arasına bir alıcı, örneğin ampul bağlansa; ampul yanmaya manyetik alan azalmaya başlar. Manyetik alan bittiğinde ampul söner. Bu süre akımın yükselişinde de olduğu gibi bobinin indüktansına (L) bağlıdır.

DENEY DEVRE ŞEMASI: Şekil 7.1. Deney Devre Şeması DENEYDE KULLANILACAK CİHAZLAR ve MALZEMELER: 1. DC Güç Kaynağı 3. Montaj kablosu 2. Multimetre 4. Dirençler (220kΩ) 5. Kondansatörler (470µF) DENEYİN YAPILIŞI: 1. Deneye başlamadan önce 220kΩ luk direnci kondansatörün uçlarına bağlayarak biraz bekleyin. Eğer kondansatörde kalıntı yük varsa böylece bunu boşaltmış olursunuz. Not: Kondansatörlerin uçlarını kesinlikle kısa devre yapmayınız. Kondansatöre zarar verebilirsiniz. Kondansatörlerin + ucunun Güç kaynağının + ucuna ve - ucunun da güç kaynağının - ucuna denk gelecek şekilde bağlı olmasına dikkat ediniz. Aksi takdirde patlayabilir. 2. Şekil 7.1 deki devreyi kurunuz. S anahtarı başlangıçta II konumunda olacaktır. Kondansatörün kutuplarına dikkat ediniz kesinlikle ters bağlamayınız. 3. Voltaj kaynağını 20 volt yapınız. Voltmetreyi 20-30 volt ölçecek biçimde ayarlayınız. Kronometre veya kol saatinizi ölçüme hazır hale getiriniz. 4. S anahtarını I konumuna aldığınızda t=0 anı kronometreyi çalıştırınız veya kol saatinizden takip ediniz. 5. Her 30s de bir voltmetreden okuduğunuz değeri Tabloya kaydediniz. Dolum ölçümünü alırken bir süre sonra voltaj değişmez olacaktır. Artık kondansatör dolmuştur. 6. Kondansatör dolduktan sonra, S anahtarını II konumuna alınız. Kondansatörün voltajı sıfır oluncaya kadar voltaj ölçmeye devam ederek kondansatörün boşaldığını görünüz. 7. Deneyde kullandığınız R-C çifti için τ değerini hesaplayınız. SONUÇLARIN İRDELENMESİ: 1. Tabloda yazdığınız ölçümleri t yatay eksen V düşey eksen olacak şekilde çiziniz. 2. Sonuçları yorumlayınız.

DENEY SONUÇLARI ÇİZELGESİ (Bu sayfanın deney bitiminde laboratuvar sorumlusuna onaylatılıp teslim edilmesi gerekmektedir.) Deney No : 7 Deneyin Adı : Kondansatörler ve Bobinler Laboratuvar Grup No : Hazırlayanlar :...................................................................................................... Elde edilen deney sonuçları çizelgesi: R=220kΩ, C=470µF t saniye Dolma V(Volt) 30 60 90 120 150 180 210 240 Tablo (Ölçülen) Laboratuvar Sorumlusu Onayı: SONUÇ ve YORUMLAR: